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Abstract. We provide normal forms and the global phase portraits
in the Poincaré disk for all planar polynomial vector fields of the form
lineal plus cubic homogeneous that are symmetric with respect to the
x-axis or to the y-axis and having a nilpotent saddle at the origin.

1. Introduction and statement of the results

Quadratic systems have been widely studied in the last 100 years, and
more than 1.000 papers have been published about them. The classification
of centers for quadratic polynomial differential systems goes back mainly to
Dulac [5], Kapteyn [7, 8] and Bautin [2]. In [9] Vulpe provides all the global
phase portraits of quadratic polynomial differential systems having a center
and there are also many partial results for the centers of planar polynomial
differential systems of degree larger than two. Mostly of these results are for
linear centers but recently Colak, Llibre and Valls [3, 4] provided the global
phase portraits on the Poincaré disk of all Hamiltonian planar polynomial
vector fields having only linear and cubic homogeneous terms which have
a nilpotent center at the origin, together with their bifurcation diagrams.
Despite the fact that there is a large list of works regarding systems which
have a center at the origin, mostly nothing is known about systems that
have a saddle at the origin. In this paper we are concerned with this last
problem and we are interested in providing all global phase portraits on the
Poincaré disk of all planar polynomial vector fields having only linear and
cubic homogeneous terms which have a nilpotent saddle at the origin. This
problem is too hard to study due to the huge number of parameters and so
we will restrict to the systems that are Z2 reversible.

Vector fields with symmetry appear very often in applications, so the
study of symmetric vector fields is not old fashioned and nowadays it has
been an increasing interest in systems that are Z2 reversible. We recall that
a vector field

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
(1)
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has a Z2-reversibility if is invariant by the change of variables (x, y, t) 7→
(R(x, y), −t) in which

R(x, y) = (x,−y), or R(x, y) = (−x, y) or R(x, y) = (−x,−y).
We consider that P and Q are linear plus cubic homogeneous. Note that
under these assumptions, the vector field (1) is never invariant by the change
(x, y, t) 7→ (R(x, y),−t) with R(x, y) = (−x,−y) and so we will restrict to
the cases R(x, y) = (x,−y), or R(x, y) = (−x, y). In these two cases, the
vector field must satisfy

MX(x, y) = −X(x,−y), MX(x, y) = X(−x, y),

where
M =

(
1 0
0 −1

)
.

In short, in this paper we classify the global phase portraits of all planar
polynomial vector fields of the form linear plus homogeneous of degree three
reversible with respect to the x−axis or to the y-axis having a nilpotent
saddle at the origin. To do this we will use the Poincaré compactification of
polynomial vector fields. The Poincaré compactification that we shall use
for describing the global phase portraits of our systems is standard. For all
the definitions and results on the Poincaré compactification see Chapter 5
of [6]. We say that two vector fields on the Poincaré disk are topologically
equivalent if there exists a homeomorphism from one into the other which
sends orbits to orbits preserving or reversing the direction of the flow. Our
main result is the following one.

Theorem 1. A planar polynomial vector field of the form linear plus cubic
homogeneous of degree three with a nilpotent saddle at the origin and Z2-
reversible with R(x, y) = (x,−y) or R(x, y) = R(−x, y), after a linear change
of variables and a rescaling of ten classes:

(I) x′ = y + bx2y + sy3, y′ = ax3 + xy2;
(II) x′ = y + bx2y, y′ = x3 + xy2;

(III) x′ = y + bx2y + sy3, y′ = ax3 − xy2;
(IV ) x′ = y + bx2y, y′ = x3 − xy2;
(V ) x′ = y + sx2y + y3, y′ = ax3;

(V I) x′ = y + y3, y′ = x3;
(V II) x′ = y + sx2y − y3, y′ = ax3;

(V III) x′ = y − y3, y′ = x3;
(IX) x′ = y + sx2y, y′ = x3;
(X) x′ = y, y′ = x3,

where b ∈ R, a ∈ R+ and s ∈ {−1, 1}. Moreover, the global phase portraits of
these twelve families are topologically equivalent to the following of Figure 1:

• for system (I): 1.1 if s = 1; 1.2 if b > 1 + 2
√
a, s = −1; 1.3 if

b = 1 + 2
√
a, s = −1 and 1.4 if b < 1 + 2

√
a, s = −1;

• for system (II): 1.5 if b ≤ 1 and 1.6 if b > 1;
• for system (III): 1.7 if b < −a, s = 1; 1.1 if b ≥ −1, s = 1; 1.8 if
b < −1 − 2

√
a, s = −1; 1.9 if b ∈ (−1 − 2

√
a, 1), a ≥ 1, s = −1,
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or b ∈ (−1 − 2
√
a,−1 + 2

√
a), a ∈ (0, 1), s = −1; 1.10 if b = 1,

a > 1, s = −1; 1.11 if b ∈ (1,−1 + 2
√
a), a > 1, s = −1; 1.12 if

b = −1 + 2
√
a, a > 1, s = −1; 1.13 if b ∈ (−1 + 2

√
a, a), a > 1,

s = −1; 1.14 if b ≥ a, a 6= 1, s = −1, or b > 1, a = 1, s = −1; 1.15
if b = a = 1, s = −1; 1.16 if b = −1 + 2

√
a, a ∈ (0, 1), s = −1; 1.17

if b ∈ (−1 + 2
√
a, a), a ∈ (0, 1), s = −1;

• for system (IV ): 1.6 if b ≥ 0; 1.19 if b ∈ (−1, 0) and 1.18 if b ≤ −1;
• for system (V ) or system (V I): 1.1;
• for system (V II); 1.4 if a > 1/4; 1.20 if a = 1/4, s = 1; 1.21 if
a < 1/4, s = 1 and 1.22 if a ≤ 1/4, s = −1;

• for system (V III): 1.4;
• for system (IX): 1.6 if s = 1 and 1.5 if s = −1;
• for system (X): 1.5.

The proof of Theorem 1 is given in section 3.

2. Normal forms (I)–(X) in Theorem 1

Consider the planar polynomial vector fields of the form linear plus ho-
mogeneous of degree three

ẋ = y + a1x
3 + a2x

2y + a3xy
2 + a4y

3

ẏ = b1x
3 + b2x

2y + b3xy
2 + b4y

3.
(2)

By imposing that the system is reversible with respect to the x−axis or to
the y-axis; that is, that is invariant by the symmetry (x, y, t) → (−x, y,−t)
or (x, y, t) → (x,−y, t) we get

a1 = 0, a3 = 0, b2 = 0, b4 = 0,

so system (2) becomes

ẋ = y +A(x, y) = y + a2x
2y + a4y

3

ẏ = B(x, y) = b1x
3 + b3xy

2.
(3)

Now we impose that (3) has a nilpotent saddle at the origin by applying
Theorem 3.5 in [6]. Clearly the origin is a singular point of (3) and y = 0 is
a solution of y+A(x, y) = 0. Substituting this solution into F (x) = B(x, 0)
and G(x) = (∂A/∂x + ∂A/∂y)(x, 0) we get F (x) = b1x

3 and G = 0. Then
system (3) has a nilpotent saddle at the origin if and only if the parameter
b1 is positive. From now on we assume that b1 > 0.

We consider the change of variables and the rescaling of time
X → Ax, Y → By, T → Ct. (4)

Case 1. Assume b3 > 0. We consider two different subcases.
Subcase 1.1. If a4 6= 0, by the change given in (4) with

A =
√
b3, B =

√
|a4|, C =

√
b3√
|a4|
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1.1 1.2 1.3 1.4

1.5 1.6 1.7 1.8

1.9 1.10 1.11 1.12

1.13 1.14 1.15 1.16

1.17 1.18 1.19 1.20

1.21 1.22

Figure 1. Global phase portraits of the planar vector fields
of the form linear plus cubic homogeneous of degree three
with a nilpotent saddle at the origin and Z2-reversible with
R(x, y) = (x,−y) or R(x, y) = R(−x, y). The separatrices
are in bold.
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we get system (I) with b = a2/b3 and a = a4b1/b
2
3. The case s = 1 (resp.

s = −1) corresponds to a4 > 0 (resp. a4 < 0).
Subcase 1.2. If a4 = 0, by (4) with

A =
√
b3, B =

b3√
b1
, C =

√
b1√
b3
,

we get system (II) with b = a2/b3.
Case 2. Assume b3 < 0. We consider also two different subcases.

Subcase 2.1. If a4 6= 0, by the change given in (4) with

A =
√
−b3, B =

√
|a4|, C =

√
−b3√
|a4|

,

we get system (III) with b = −a2/b3 and a = a4b1/b
2
3. The case s = 1 (resp.

s = −1) corresponds to a4 > 0 (resp. a4 < 0).
Subcase 2.2. If a4 = 0, by (4) with

A =
√
−b3, B =

b3√
b1
, C = −

√
b1√
−b3

,

we get system (IV) with b = −a2/b3.
Case 3. Assume b3 = 0. We consider different subcases.

Subcase 3.1. If a4 > 0 we consider two subcases.
Subcase 3.1.1. If a2 6= 0, by the change given in (4) with

A =
√
|a2|, B =

√
a4, C =

√
|a2|√
a4

,

we get system (V) with a = a4b1/a
2
2. The case s = 1 (resp. s = −1)

corresponds to a2 > 0 (resp. a2 < 0).
Subcase 3.1.2. If a2 = 0, by (4) with

A = 4
√

a4b1, B =
√
a4, C = 4

√
b1
a4

,

we get system (VI).
Subcase 3.2. If a4 < 0 we consider three subcases.
Subcase 3.2.1. If a2 6= 0, by the change given in (4) with

A =
√
|a2|, B =

√−a4, C =

√
|a2|√−a4

,

we get system (VII) with a = −a4b1/a
2
2. The case s = 1 (resp. s = −1)

corresponds to a2 > 0 (resp. a2 < 0).
Subcase 3.2.2. If a2 = 0, by (4) with

A = 4
√
−a4b1, B =

√−a4, C = 4

√
b1
−a4

,

we get system (VIII).
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Subcase 3.3. If a4 = 0 we consider three subcases.
Subcase 3.3.1. If a2 6= 0, by the change given in (4) with

A =
√
|a2|, B =

|a2|√
b1
, C =

√
b1√
|a2|

,

we get a system (IX). The case s = 1 (resp. s = −1) corresponds to a2 > 0
(resp. a2 < 0).
Subcase 3.3.2. If a2 = 0, by (4) with

A = A, B =
A2

√
b1
, C =

√
b1
A

,

we get system (X).

3. Proof of Theorem 1

3.1. Global phase portrait of system (I) with s = 1. Consider system
(I) with s = 1

x′ = y + bx2y + y3, y′ = ax3 + xy2, a ∈ R+, b ∈ R.

There unique finite singular point is the origin. In the local chart U1 system
(I) with s = 1 becomes

u′ = a− u2(−1 + b+ u2 + v2), v′ = −uv(b+ u2 + v2).

When v = 0, taking into account that a > 0 it follows that for all values of
a ∈ R+ and b ∈ R there are two infinite singular points on the local chart
U1 which are (u±, 0) where

u± = ±

√
1− b+

√
4a+ (−1 + b)2
√
2

.

Computing the eigenvalues of the Jacobian matrix at the points (w, 0)
with w = u± we get that they are −w(w2 + b) and −2w(2w2 + b− 1). The
quantities (u±)2 + b and 2(u±)2 + b − 1 are both positive. So, (u+, 0) is a
stable node, (u−, 0) is an unstable node.

In the local chart U2 we get

u′ = 1 + (−1 + b)u2 − au4 + v2, v′ = −(u+ au3)v.

The origin is not an infinite singular point of the system.

Gluing all this information (on the finite and infinite singular points)
together with the symmetries of the system we get that the global phase
portrait of system (I) with s = 1 is topologically equivalent to 1.1 of Figure
1.
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3.2. Global phase portrait of system (I) with s = −1. Consider sys-
tem (I) with s = −1

x′ = y + bx2y − y3, y′ = ax3 + xy2, a ∈ R+, b ∈ R.

There are three finite singular points: the origin which is a nilpotent saddle
and the points (0,±1). Computing the eigenvalues of the Jacobian matrix
at these two points we get that they are ±i

√
2 for both points. Taking into

account that the system is reversible we get that they are both centers.

In the local chart U1 system (I) with s = −1 becomes

u′ = a+ u2(1− b+ u2 − v2), v′ = −uv(b− u2 + v2).

When v = 0, taking into account that a > 0 it follows that if b < 1 − 2
√
a

there are no infinite singular points in the local chart U1, if b > 1 + 2
√
a

there are four infinite singular points on the local chart U1 which are (u0±, 0)
and (u1±, 0) where

u0± = ±

√
b− 1 +

√
−4a+ (−1 + b)2
√
2

, u1± = ±

√
b− 1−

√
−4a+ (−1 + b)2
√
2

and if b = 1 + 2
√
a there are two infinite singular points on the local chart

U1 which are (u0+, 0) and (u0−, 0) (in this case the points (u0+, 0) and (u1+, 0)
collide and the same happens with (u0−, 0) and (u1−, 0)).

Computing the eigenvalues of the Jacobian matrix at the points (w, 0)
with w either u0± or u1± we get that they are w(w2− b) and 2w(2w2− b+1).

If b > 1+2
√
a the quantities (u1±)2−b and 2(u1±)

2−b+1 are both negative
and the quantities (u0±)

2 − b and 2(u0±)
2 − b + 1 are negative and positive,

respectively. So, (u1+, 0) is a stable node, (u1−, 0) is an unstable node and
(u0±, 0) are saddles.

If b = 1 + 2
√
a the points (u0+, 0) and (u0−, 0) are both semihyperbolic.

Using Theorem 2.19 in [6] we get that they are both saddle-nodes.

In the local chart U2 we get

u′ = −1 + (−1 + b)u2 − au4 + v2, v′ = −(u+ au3)v.

The origin is not an infinite singular point of the system.

Gluing all this information (on the finite and infinite singular points)
together with the symmetries of the system we get that the global phase
portrait of system (I) with s = −1 is topologically equivalent to: 1.2 of
Figure 1 if b > 1 + 2

√
a; 1.3 of Figure 1 if b = 1 + 2

√
a and 1.4 of Figure 1

if b < 1 + 2
√
a.

3.3. Global phase portrait of system (II). Consider system (II)

x′ = y + bx2y, y′ = x3 + xy2, b ∈ R.

The origin is the unique finite singular point.
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In the local chart U1 system (II) becomes
u′ = 1− u2(−1 + b+ v2), v′ = −uv(b+ v2).

When v = 0 and b ≤ 1 there are no infinite singular points on the local
chart U1 and when b > 1 there are two infinite singular points on the local
chart U1 which are (u0±, 0) with u0± = ±1/

√
b− 1. The eigenvalues of the

Jacobian matrix at these points are ∓2
√
b− 1 and ∓b/

√
b− 1, respectively.

Hence, (u0+, 0) is a stable node and (u0−, 0) is an unstable node.

In the local chart U2 we get
u′ = (−1 + b)u2 − u4 + v2, v′ = −(u+ u3)v.

The origin is an infinite singular point of the system, whose linear part is
zero. Applying the blow-up technique (see [1] for more details) we obtain
that the origin of U2 is formed by two hyperbolic sectors when b > 1; by two
elliptic sectors when b ∈ [0, 1] and by two elliptic and four parabolic sectors
when b < 0.

Gluing all this information (on the finite and infinite singular points)
together with the symmetries of the system we get that the global phase
portrait of system (II) is topologically equivalent to: 1.5 of Figure 1 if b ≤ 1
and 1.6 of Figure 1 if b > 1.

3.4. Global phase portrait of system (III) with s = 1. Consider sys-
tem (III) with s = 1,

x′ = y + bx2y + y3, y′ = ax3 − xy2, a ∈ R+, b ∈ R.

The origin is always a singular point (which is a nilpotent saddle). If a+b <
0, there are four additional singular points (x±, y±) with

x± = ± 1√
−a− b

, y± = ±
√
a√

−a− b
.

Computing the eigenvalues of the Jacobian matrix at the points (x−, y−)
and (x+, y+) we get that they are

λ1 = −
√
a
(
b− 1 +

√
4a+ (b+ 1)2

)

a+ b
, λ2 = −

√
a
(
b− 1−

√
4a+ (b+ 1)2

)

a+ b
,

and at the points (x−, y+) and (x+, y−) they are −λ1 and −λ2. We see that
λ1, λ2 < 0 for all b < −a. Hence (x−, y−) and (x+, y+) are stable nodes
whereas (x−, y+) and (x+, y−) are unstable nodes.

In the local chart U1 system (III) with s = 1 becomes
u′ = a− u2(1 + b+ u2 + v2), v′ = −uv(b+ u2 + v2).

When v = 0, taking into account that a > 0, it follows that for all values of
a ∈ R+ and b ∈ R there are two infinite singular points on the local chart
U1 which are (u±, 0) where

u± = ±

√
−1− b+

√
4a+ (1 + b)2

√
2

.
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Computing the eigenvalues of the Jacobian matrix at the points (w, 0) with
w = u± we get that they are −w(w2 + b) and −2w(2w2 + b + 1). The
quantity 2w2 + b + 1 is always positive. The quantity (u±)2 + b is positive
for b > −a, negative for b < −a and zero for b = −a. So, if b > −a, (u−, 0)
is an unstable node and (u+, 0) is a stable node; if b < −a, both (u−, 0) and
(u+, 0) are saddles.

If b = −a, the points (u±, 0) are both semihyperbolic. Using Theorem 2.19
in [6] we get that (u+, 0) is a stable node and (u−, 0) is an unstable node.

In the local chart U2 we get
u′ = 1 + (1 + b)u2 − au4 + v2, v′ = (u− au3)v.

The origin is not an infinite singular point of the system.

Gluing all this information (on the finite and infinite singular points)
together with the symmetries of the system we get that the global phase
portrait of system (III) with s = 1 is topologically equivalent to: 1.1 of
Figure 1 if b ≥ −a and to 1.7 of Figure 1 if b < −a.

3.5. Global phase portrait of system (III) with s = −1. Consider
system (III) with s = −1

x′ = y + bx2y − y3, y′ = ax3 − xy2, a ∈ R+, b ∈ R.
If b ≥ a there are three finite singular points: the origin which is a nilpotent
saddle and the points (0,±1). Computing the eigenvalues of the Jacobian
matrix at these two points we get that they are ±

√
2. Hence, both points

are saddles. If b < a among the three above mentioned points (0, 0) and the
saddles (0,±1), we have the four finite singular points (x±, y±) where

x± = ± 1√
a− b

, y± =
1√
a− b

.

The eigenvalues of the Jacobian matrix at the points (x−, y−) and (x+, y+)
are

λ1 =

√
a(−1 + b−

√
(1 + b)2 − 4a)

a− b
, λ2 =

√
a(−1 + b+

√
(1 + b)2 − 4a)

a− b

while the eigenvalues of the Jacobian matrix at the points (x+, y−) and
(x−, y+) are −λ1, −λ2. So, we will study only the behavior of the finite
singular point (x−, y−) because the behavior of the other remaining three
points will follow from this one.

The eigenvalues of the Jacobian matrix at the points (x−, y−) are real for
b ∈ {(−∞,−1 − 2

√
a] ∪ [−1 + 2

√
a, a)} and otherwise they are complex.

Moreover, if b ∈ (−∞,−1−2
√
a] the eigenvalues are both real and negative,

so (x−, y−) is a stable node. On the other hand, if b > −1 − 2
√
a we need

to distinguish between the three cases a > 1, a = 1 and a ∈ (0, 1).

Case 1: a > 1. In this case, we get that if b ∈ (−1− 2
√
a, 1) the eigenvalues

are complex with negative real part. So, the point (x−, y−) is an stable focus.
If b = 1, the eigenvalues are purely imaginary and taking into account that
system (III) with s = −1 is reversible, the point (x−, y−) is a center. If
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b ∈ (1,−1 + 2
√
a) the eigenvalues are complex with positive real part and

if b ∈ [−1 + 2
√
a, a) they are real and positive. So, the point (x−, y−)

is an unstable focus for b ∈ (1,−1 + 2
√
a) and an unstable node for b ∈

[−1 + 2
√
a, a).

Case 2: a = 1. In this case, we get that if b ∈ (−1− 2
√
a, 1) the eigenvalues

are complex with negative real part, so (x−, y−) is a stable focus.

Case 3: a ∈ (0, 1). In this case, we get that the eigenvalues are complex with
negative real part if b ∈ (−1 − 2

√
a,−1 + 2

√
a) and are real and negative

real part if b ∈ [−1 + 2
√
a, a). So, the point (x−, y−) is an stable focus if

b ∈ (−1− 2
√
a,−1 + 2

√
a) and a stable node if b ∈ [−1 + 2

√
a, a).

In the local chart U1 system (III) with s = −1 becomes

u′ = a+ u2(−1− b+ u2 − v2), v′ = −uv(b− u2 + v2).

When v = 0, taking into account that a > 0 it follows that if b < −1 + 2
√
a

there are no infinite singular points in the local chart U1, if b > −1 + 2
√
a

there are four infinite singular points on the local chart U1 which are (u0±, 0)
and (u1±, 0) with

u0± = ±

√
b+ 1 +

√
−4a+ (−1 + b)2
√
2

, u1± = ±

√
b+ 1−

√
−4a+ (−1 + b)2
√
2

and if b = −1+2
√
a there are two infinite singular points on the local chart

U1 which are (u0+, 0) and (u0−, 0) (in this case the points (u0+, 0) and (u1+, 0)
collide and the same happens with (u0−, 0) and (u1−, 0)).

If b = −1+2
√
a and a 6= 1 both infinite singular points are semihyperbolic.

Applying Theorem 2.19 in [6] we obtain that both points are saddle-nodes.

If b ∈ (−1 + 2
√
a, a) then when a ∈ (0, 1) the points (u0±, 0) are an

unstable node and a stable node, respectively while the points (u1±, 0) are
both saddles, and if a > 1, the points (u0±, 0) are saddles while the points
(u1±, 0) are a stable and an unstable node, respectively.

If b = a and a ∈ (0, 1), we get that the points (u0±, 0) are an unstable
node and a stable node, respectively. The points (u1±, 0) are semihyperbolic.
Using Theorem 2.19 in [6] we obtain that they are a stable and an unstable
node, respectively.

If b = a and a > 1, we get that the points (u1±, 0) are a stable node and an
unstable node, respectively. The points (u0±, 0) are semihyperbolic. Using
Theorem 2.19 in [6] we obtain that they are an unstable and a stable node,
respectively.

If b = a = 1, then there are two infinite singular points on the local chart
U1 which are (u0+, 0) and (u0−, 0) (in this case the points (u0+, 0) and (u1+, 0)
collide and the same happens with (u0−, 0) and (u1−, 0)). Theses points are
linearly zero and applying blow-up techniques we get that they are formed
by two elliptic and four parabolic sectors.
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Finally, if b > a with a ∈ R+ we get that the points (u0±, 0) are an unstable
and a stable node, respectively, while the points (u1±, 0) are a stable and an
unstable node, respectively.

In the local chart U2 we get

u′ = −1 + (1 + b)u2 − au4 + v2, v′ = uv(1− au2).

The origin is not an infinite singular point of the system.
Gluing all this information (on the finite and infinite singular points)

together with the symmetries of the system we get the following for system
(III) with s = −1:

When b ∈ (−∞,−1− 2
√
a] among the finite saddles (0, 0), (0,±1) we have

that (x−, y−) and (x+, y+) are stable nodes while (x−, y+) and (x+, y−) are
unstable nodes. In the local charts U1 and U2 there are no infinite singular
points. The global phase portrait is topologically equivalent to 1.8 of Figure
1.

When b ∈ (−1−2
√
a, 1) and a > 1 among the finite saddles (0, 0), (0,±1) we

have that (x−, y−) and (x+, y+) are stable foci while (x−, y+) and (x+, y−)
are unstable foci. In the local charts U1 and U2 there are no infinite singular
points. The global phase portrait is topologically equivalent to 1.9 of Figure
1.

When b = 1 and a > 1 among the finite saddles (0, 0), (0,±1) we have that
(x±, y±) are centers. In the local charts U1 and U2 there are no infinite
singular points. The global phase portrait is topologically equivalent to 1.10
of Figure 1.

When b ∈ (1,−1 + 2
√
a) and a > 1, among the finite saddles (0, 0), (0,±1)

we have that (x−, y−) and (x+, y+) are unstable foci while (x−, y+) and
(x+, y−) are stable foci. In the local charts U1 and U2 there are no infinite
singular points. The global phase portrait is topologically equivalent to 1.11
of Figure 1.

When b = −1 + 2
√
a and a > 1 among the finite saddles (0, 0), (0,±1)

we have that (x−, y−) and (x+, y+) are unstable nodes while (x−, y+) and
(x+, y−) are stable nodes. In the local chart U1 we have two infinite singular
points (u0±, 0) which are saddle nodes and on the local chart U2 the origin
is not a singular point. The global phase portrait is topologically equivalent
to 1.12 of Figure 1.

When b ∈ (−1 + 2
√
a, a) and a > 1 among the finite saddles (0, 0), (0,±1)

we have that (x−, y−) and (x+, y+) are unstable nodes while (x−, y+) and
(x+, y−) are stable nodes. On the local chart U1 we have four infinite singu-
lar points (u0±, 0) and (u1±, 0) which are two saddles, a stable node and an
unstable node, respectively. Moreover, on the local chart U2 the origin is
not a singular point. The global phase portrait is topologically equivalent
to 1.13 of Figure 1.
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When b ≥ a and a 6= 1 or b > a and a = 1, the only singular points are
the origin and (0,±1) which are all saddles. On the local chart U1 we have
four infinite singular points (u0±, 0) and (u1±, 0) which are an unstable node,
two stable nodes, and an unstable node, respectively. On the local chart U2

the origin is not a singular point. The global phase portrait is topologically
equivalent to 1.14 of Figure 1.

When b = 1 and a = 1 the only singular points are the origin and (0,±1)
which are saddles. On the local chart U1 we have the two infinite singular
points (u0±, 0) that are formed by two elliptic and four parabolic sectors.
On the local chart U2 the origin is not a singular point. The global phase
portrait is topologically equivalent to 1.15 of Figure 1.

When b ∈ (−1 − 2
√
a,−1 + 2

√
a) and a ∈ (0, 1], among the finite sad-

dles (0, 0), (0,±1) we have that (x−, y−) and (x+, y+) are stable foci while
(x−, y+) and (x+, y−) are unstable foci. On the local charts U1 and U2 there
are no infinite singular points. The global phase portrait is topologically
equivalent to 1.9 of Figure 1.
When b = −1 + 2

√
a and a ∈ (0, 1) among the finite saddles (0, 0), (0,±1)

we have that (x−, y−) and (x+, y+) are stable nodes while (x−, y+) and
(x+, y−) are unstable nodes. On the local chart U1 we have two infinite
singular points (u0±, 0) which are saddle-nodes and on the local chart U2

the origin is not a singular point. The global phase portrait is topologically
equivalent to 1.16 of Figure 1.

Finally, when b ∈ (−1 + 2
√
a, a) and a ∈ (0, 1) among the finite saddles

(0, 0), (0,±1) we have that (x−, y−) and (x+, y+) are stable nodes while
(x−, y+) and (x+, y−) are unstable nodes. On the local chart U1 we have
four infinite singular points (u0±, 0) and (u1±, 0) which are an unstable node,
a stable node and two saddles, respectively. Moreover, on the local chart U2

the origin is not a singular point. Then the global phase portrait of system
(V ) is topologically equivalent to the phase portrait 1.17 of Figure 1.

3.6. Global phase portrait of system (IV ). Consider system (IV )

x′ = y + bx2y, y′ = x3 − xy2, b ∈ R.

The origin is always a finite singular point (a nilpotent saddle). If b < 0,
then there are four additional singular points (x±, y±) where

x± = ±
√

−1

b
, y± = ±

√
−1

b
.

Computing the eigenvalues of the Jacobian matrix at the points (x−, y−)
and (x+, y+) we get that they are λ1 = 2/b, λ2 = −2, and at the points
(x−, y+) and (x+, y−) are −λ1 and −λ2. We see that λ1, λ2 < 0 for all b < 0.
Hence (x−, y−) and (x+, y+) are stable nodes whereas (x−, y+) and (x+, y−)
are unstable nodes.

In the local chart U1 system (IV ) becomes

u′ = 1− u2(1 + b+ v2), v′ = −uv(b+ v2).



NILPOTENT SADDLES 13

When v = 0, it follows that if b > −1 there are two infinite singular points
on the local chart U1 which are (u±, 0) where u± = ±1/

√
1 + b. Computing

the eigenvalues of the Jacobian matrix at the points (u±, 0) we get that if
b ∈ (−1, 0) they are saddles; whereas if b > 0, (u−, 0) is an unstable node
and (u+, 0) is a stable node.

If b = 0, the points (u±, 0) are both semihyperbolic. Using Theorem 2.19
in [6] we get that (u+, 0) is a stable node and (u−, 0) is an unstable node.

In the local chart U2 we get

u′ = (1 + b)u2 − u4 + v2, v′ = (u− u3)v.

The origin is an infinite singular point whose linear part is zero. Applying
blow-up techniques we obtain that it is formed by six hyperbolic sectors
(three stable and three unstable) if b ≤ −1; by two hyperbolic sectors (one
stable and one unstable) and four parabolic sectors (two stable and two
unstable) if b ∈ (−1, 0) and by two hyperbolic sectors (one stable and one
unstable) if b ≥ 0.

Gluing all this information (on the finite and infinite singular points)
together with the symmetries of the system we get that if b ≤ −1 the global
phase portrait of system (IV ) is topologically equivalent to: 1.18 of Figure
1 if b ≤ −1; to 1.19 of Figure 1 if b ∈ (−1, 0) and to 1.6 of Figure 1 if b ≥ 0.

3.7. Global phase portrait of system (V ). Consider system (V )

x′ = y + sx2y + y3, y′ = ax3, a ∈ R+.

The origin is the unique finite singular point. In the local chart U1 system
(V ) with s = 1 becomes

u′ = a− u2(s+ u2 + v2), v′ = −uv(s+ u2 + v2).

Taking into account that a > 0, there are two unique infinite singular points
on the local chart U1 defined for all a > 0 which are (u±, 0) where

u± = ±
√
−s+

√
1 + 4a√

2
.

Computing the eigenvalues of the Jacobian matrix at the points (u±, 0) we
get that (u+, 0) is a stable node and (u−, 0) is an unstable node.

In the local chart U2 we get

u′ = 1 + su2 − au4 + v2, v′ = −au3v.

So the origin is not an infinite singular point.

Gluing all this information (on the finite and infinite singular points)
together with the symmetries of the system we get that the global phase
portrait of system (V ) is topologically equivalent to 1.1 of Figure 1.
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3.8. Global phase portrait of system (V I). Consider system (V I)
x′ = y + y3, y′ = x3.

The origin is the unique finite singular point. In the local chart U1 system
(V I) becomes

u′ = 1− u4 − u2v2, v′ = −uv(u2 + v2).

There are two unique infinite singular points on the local chart U1 which
are (±1, 0). Computing the eigenvalues of the Jacobian matrix we get that
(1, 0) is a stable node and (−1, 0) is an unstable node.

In the local chart U2 we get
u′ = 1− u4 + v2, v′ = −u3v.

So the origin is not an infinite singular point.

Gluing all this information (on the finite and infinite singular points)
together with the symmetries of the system we get that the global phase
portrait of system (V I) is topologically equivalent to 1.1 of Figure 1.

3.9. Global phase portrait of system (V II). Consider system (V II)
x′ = y + sx2y − y3, y′ = ax3, a ∈ R+.

There are three singular points: the origin and (0,±1). Computing the
eigenvalues of the Jacobian matrix at the points (0,±1) we see that both
points are nilpotent. Using Theorem 3.5 in [6] and the reversibility of the
system we conclude that: both of them are centers if a > 1/4 and both of
them consist in one hyperbolic and one elliptic sector if a ≤ 1/4 .

In the local chart U1 system (V II) becomes
u′ = a+ u2(−s+ u2 − v2), v′ = −uv(s− u2 + v2).

Computing the infinite singular points in the local chart U1 we conclude
that: if either s = −1 or s = 1 and a > 1/4 there are no infinite singular
points, if s = 1 and 0 < a < 1/4 there are four infinite singular points which
are (u0±, 0) and (u1±, 0) where

u0± = ±
√
1−

√
1− 4a√
2

, u1± = ±
√
1 +

√
1− 4a√
2

and if s = 1 and a = 1/4 there are two infinite singular points which are
(u0+, 0) and (u0−, 0) (in this case the points (u0+, 0) and (u1+, 0) collide and
the same happens with (u0−, 0) and (u1−, 0)).

Computing the eigenvalues of the Jacobian matrix at the points (u0±, 0)
or (u1±, 0) we get that if 0 < a < 1/4, (u0+, 0) is a stable node, (u0−, 0) is
a unstable node and (u1±, 0) are saddles; if a = 1/4, (u0+, 0) and (u0−, 0)
are semihyperbolic. Using Theorem 2.19 in [6] we get that they are both
saddle-nodes.

In the local chart U2 we get
u′ = −1 + su2 − au4 + v2, v′ = −au3v.
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So the origin is not an infinite singular point.

Gluing all this information (on the finite and infinite singular points)
together with the symmetries of the system we get that the global phase
portrait of system (V II) is topologically equivalent to: 1.4 of Figure 1 if
a > 1/4; to 1.20 of Figure 1 if s = 1 and a = 1/4, to 1.21 of Figure 1 if s = 1
and 0 < a < 1/4; and to 1.22 of Figure 1 if s = −1 and 0 < a ≤ 1/4.

3.10. Global phase portrait of system (V III). Consider system (V III)
x′ = y − y3, y′ = x3.

There are three nilpotent singular point: the origin (which is a saddle) and
(0,±1). Applying Theorem 3.5 in [6] together with the reversibility of the
system we can see that (0,±1) are both centers.

In the local chart U1 system (V III) becomes
u′ = 1 + u4 − u2v2, v′ = uv(u2 − v2).

So there are no infinite singular points in the local chart U1. In the local
chart U2 we get

u′ = −1− u4 + v2, v′ = −u3v.

So the origin is not an infinite singular point.

Gluing all this information (on the finite and infinite singular points)
together with the symmetries of the system we get that the global phase
portrait of system (V III) is topologically equivalent to 1.4 of Figure 1.

3.11. Global phase portrait of system (IX). Consider system (IX)
x′ = y + sx2y, y′ = x3.

The origin is the unique finite singular point.

In the local chart U1 system (IX) with s = 1 becomes
u′ = 1− u2(1 + v2), v′ = −uv(1 + v2).

So if s = 1 there are two singular points at infinity in the local chart U1, the
point (1, 0) which is a stable node and the point (−1, 0) which is a unstable
node. If s = −1 there are no singular points at infinity in the local chart
U1.

In the local chart U2 we get
u′ = su2 − u4 + v2, v′ = −u3v.

So the origin is a infinite singular point which is linearly zero. Applying
blow-up techniques we get that it is formed by two hyperbolic (one stable
and one unstable) sectors when s = 1 and it is formed by two elliptic and
four parabolic sectors when s = −1.

Gluing all this information (on the finite and infinite singular points)
together with the symmetries of the system we get that the global phase
portrait of system (IX) is topologically equivalent to 1.6 of Figure 1 when
s = 1 and to 1.5 of Figure 1 when s = −1.
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3.12. Global phase portrait of system (X). Consider system (X)

x′ = y, y′ = x3.

The origin is the unique finite singular point. In the local chart U1 system
(X) becomes

u′ = 1− u2v2, v′ = −uv3.

So, there are no infinite singular points on the local chart U1. In the local
chart U2 we get

u′ = −u4 + v2, v′ = −u3v.

The origin is an infinite singular point of the system, whose linear part
is zero. Applying blow-up techniques we obtain that it is formed by the
union of two elliptic and four parabolic sectors. The global phase portrait
of system (X) is topologically equivalent to 1.5 of Figure 1.
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