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Agricultural ecosystems are globally important sinks of carbon and other nutrient 30 

elements. In China, acid rain events affect about 0.62 million km2, representing about 31 

6.4% of total land area; however, the impacts of acid rain mediated nitrogen (N) and 32 

sulfur (S) depositions on soil carbon and nutrient stocks in paddy soils and implications 33 

for yield production under climate change are unclear. We conducted a field experiment 34 

during two annual crop seasons to determine the effects of simulated acid rain on soil 35 

organic carbon (SOC) fractions and nutrients in a subtropical paddy in China. Acid rain 36 

treatments comprised solutions of HNO3 + H2SO4 to simulate N and S deposition at pH 37 

levels of 4.5, 3.5, and 2.5. The results showed that content of soil C fractions varied 38 

with acid rain pH. Acid rain led to increased SOC content and decreased ratios of soil 39 

labile organic carbon (LOC): SOC and dissolved organic carbon DOC: SOC 40 

concentration, independently of crop season and growth stage. Soil salinity was 41 

positively associated with SOC suggesting that higher levels of salinity inhibit C 42 

decomposition favoring SOC accumulation. Treatment effects of acid rain on soil 43 

microbial C and N depended on crop growth stage. Concentration of Fe2+ was positively 44 

correlated with DOC in early and late paddy soils under acid rain, possibly as a result 45 

of Fe2+ retention by DOC, when Fe3+ is reduced to Fe2+. Acid rain led to increases in 46 

soil TN, TP, available N, NH4
+ concentration, and SOC, and decreases in ratios of DOC: 47 

SOC, indicating decreases in soil biological activity and mineralization processes. 48 

Increases in dead rice plant biomass under acid rain were consistent with the increase 49 

in soil N and P concentrations, due to reduced nutrient uptake, and higher levels of total 50 

SOC.  51 

 52 
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1. Introduction  55 

Acid rain is a key environmental problem, because acidification influences soil nutrient 56 

storage and release processes (Rosi-Marshall et al., 2016), animal growth (Warren et 57 

al., 2017; Wei et al., 2017), plant growth (Medeiros et al., 2016), and soil metal leaching 58 

(Li et al., 2015). Acid rain has been shown to affect plant photosynthetic and antioxidant 59 

activities (Chen et al., 2013), physiological responses (Kováčik et al., 2011), and litter 60 

decomposition (Wang et al., 2012), and while a number of studies have investigated 61 

effects of simulated acid rain on soil respiration and its drivers in a subtropical mixed 62 

conifer and broadleaf forest (Liang et al., 2016), effects on organic carbon fractions 63 

remain unclear. 64 

Global enhancement of carbon (C) sequestration in agricultural soils is considered 65 

a key measure to offset anthropogenic GHG emissions (Wang et al., 2015a, b), 66 

particularly in crops, such as rice paddy fields (Pan et al., 2004). Rice is a staple cereal 67 

crop for more than 50% of the global population (Haque et al., 2015); however, a 40% 68 

increase in its production by the end of 2030 is required to meet the food demands of 69 

the growing global population (FAO, 2009). Acid rain enhances photosynthetic 70 

parameters in rice, and hence grain yields (Wang et al., 2014a), and it general increases 71 

CO2 emission and decreases the N nutrient availability (Ouyang et al., 2008), significant 72 

losses of major plant nutrients, such as potassium, calcium, and magnesium (Nawaz et 73 

al., 2012), increases recalcitrant organic matter ( Wu et al., 2016). Rice cultivation plays 74 

an important role in the mitigation of atmospheric carbon dioxide (CO2) (Lal, 2004), 75 

because the low soil organic C (SOC) content in paddy soils facilitates greater potential 76 

for sequestration of additional C under suitable management practices than soils with 77 

greater levels of SOC content (Pan et al., 2004; Wissing et al., 2011; Wang et al., 2015a), 78 

and it affects soil active C, which is the fraction of soil C with high levels of activity, 79 

due to impacts on plants and microorganisms and susceptibility to oxidation and 80 

decomposition (Kimura et al., 2004; Chen et al., 2010; Wang et al., 2015a). Nitrogen 81 

(N) inputs impact C and nutrient stoichiometry and, therefore, nutritional conditions 82 

required for microbe growth (Wang et al., 2014b), so the fraction of active C in paddy 83 

soil has been used as an indicator of management impacts on microbial and plant 84 
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growth, and soil C dynamics (Purakayastha et al., 2008; Gong et al., 2009; Xu et al., 85 

2011a,b).  86 

Adequate levels of soil nutrients are essential to support the sustainable production 87 

of food (Ford et al., 2016); however, loss of nutrients creates environmental problems, 88 

such as eutrophication of water (Smith et al., 1999). Acid rain may affect soil nutrients 89 

directly through acidification and input of large amounts of active nutrients, such as N. 90 

Effects of acid rain may vary among nutrients, and with intensity and level of acidity; 91 

for example, soil NO3
- and available P were reduced in tea plantation rhizosphere soil 92 

(Hu et al., 2017), while there was little effect on soil C and nutrient status (Chen et al., 93 

2015). Effects of acid rain on soil nutrient status in paddy crops are unclear, although it 94 

is known that frequent periods of acid rain are associated with high levels of N and 95 

sulfur (S) deposition that indicate subsequent changes in soil chemistry, structure, C 96 

content, and nutrient status (Dise and Verry, 2001; Krusche et al., 2003; Hu et al., 2018). 97 

Soil nutrient status drives ecosystem carbon sequestration and nutrient dynamics 98 

(Hessen et al., 2004), as a result of processes associated with litter C input (Wang et al., 99 

2016), soil C concentration and storage (Wang et al., 2015c), and release of C from soils 100 

(Wang et al., 2014b). Besides nutrient stoichiometry, soil properties, such as iron 101 

dynamics (Peng et al., 2015), salinity (Wang et al., 2017a), water content (Wang et al., 102 

2013), and pH (Jin and Wang, 2018) affect soil C fractions and nutrient content that are 103 

known to vary with rice growth (Wang et al., 2017b). However, effects of acid rain on 104 

variation in soil C fractions with rice crop growth stage are unclear.  105 

China cultivates the second largest area of rice in the world, where 90% of the 106 

paddies are in the subtropics, such as in Fujian, Jiangxi, and Hunan Provinces. The 107 

development of strategies to increase the cost-effectiveness of rice agriculture and 108 

enhancement of crop yield and carbon sequestration from paddies has been investigated 109 

in subtropical China (Wang et al., 2015a, b). In China, acid rain affects an area of about 110 

0.62 million km2 (equivalent to about 6.4% of total land area), and this deposition is 111 

associated with inputs of N and S (about 24.2 and 21.1% of the total ion equivalent in 112 

acid rain, respectively) (Ministry of Ecology and Environment of the People’s Republic 113 

of China, 2018) that is commonly occurring in several paddy areas of the country 114 
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(Larssen and Carmichael, 2000).  115 

We aimed to determine the impacts of acid rain mediated N and S depositions on 116 

soil carbon and nutrient stocks in paddy soils and implications for yield production. We 117 

expected to provide a scientific basis for the effective assessment of the impact of acid rain on soil 118 

nutrient status and carbon sequestration. We also expected to provide suggestions for better 119 

responding to the impact of acid rain in future. 120 

 121 

2. Materials and methods 122 

2.1. Study site and experimental design  123 

A field experiment was established in 2015 at the Fujian Academy of Agricultural 124 

Sciences, Fujian, southeastern China (119.3°E, 26.1°N,) (Fig. S1) during early (16 April 125 

to 16 July) and late (25 July to 6 November) paddy seasons. The proportions of sand, 126 

silt, and clay in the upper 15 cm of soil were 28, 60, and 12%, respectively, and other 127 

physicochemical properties comprised bulk density: 1.1 g cm-3; pH: (1:5 with H2O) 6.5; 128 

organic C content: 18.1 g kg-1; total N content: 1.2 g kg-1; and, total P content: 1.1 g kg-129 

1 (Wang et al. 2014c, 2015b). Air temperature and humidity during the study period 130 

were shown in Fig. S2. 131 

The paddy soils were plowed to a depth of 15 cm using a moldboard plow and 132 

then leveled immediately prior to transplantation of rice seedlings of ‘Hesheng 10’ and 133 

‘Qinxiangyou 212’ in the early and late paddy seasons, respectively, using a rice 134 

transplanter, to a depth of 5 cm, and with plant and row spacings of 14 and 28 cm, 135 

respectively. Fertilizer was applied as NH4-P2O5-K2O (16-16-16; Keda Fertilizer Co., 136 

Ltd., Jingzhou, China) and urea (46% N), according to common agronomic practice in 137 

the region. Fertilizer was applied 1 d before transplantation (N, P, and K at 42, 40 and 138 

40 kg ha-1, respectively); during tiller-initiation, 7 d after transplantation (DAT), (N, P, 139 

and K at 35, 20, and 20 kg ha-1, respectively); and, during panicle-initiation at 56 DAT; 140 

(N, P, and K at 18, 10, and 10 kg ha-1, respectively). Paddy soils were flooded from 0 141 

to 37 DAT, during which time, an automatic water-level controller was used to maintain 142 

water level at 5-7 cm above the soil surface. Then, the paddies were drained between 143 

37 and 44 DAT; we maintained moist soils between 44 and 77 DAT for the early paddy 144 
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and between 44 and 91 DAT for the late paddy. Paddies were drained 2 weeks before 145 

harvest (77 DAT for the early crop, 91 DAT for the late crop), and we harvested the rice 146 

crops at 92 DAT and 106 DAT for the early and late crops, respectively.  147 

Three acid rain treatments, with pH 4.5, 3.5, and 2.5, were based on the acidity of 148 

rain water recorded in natural rain events in the study area (Table S1). Simulated acid 149 

rain was added every 7 d as simulated rainfall, as an amount equivalent to the local 150 

weekly mean rainfall during the respective paddy crop seasons, using mixed acid 151 

solutions of HNO3 and H2SO4 (Wang et al., 2014a) to simulate N and S deposition. 152 

Three replicates of experimental and control plots were arranged in a randomized block 153 

design, where the 10-m2 plots were separated by 0.5-cm thick, 30-cm high PVC plate 154 

(of which 20 cm was inserted into the soil) and a buffer zone of about 2 m. Control 155 

plots received non-acidified water. Plots were managed according to local common 156 

practice (Zhang et al., 2013; Wang et al., 2015a, b), and wooden bridges were 157 

constructed to minimize disturbance to soils during sample collection. 158 

 159 

2.2. Determination of soil and rice properties 160 

Soils were sampled (N = 72) during the rice greening, jointing, and mature stages (8, 161 

78, and 92 DAT for the early paddy; 8, 64, and 106 for the late paddy) using a core 162 

sampler (0.3-m long, with 0.1-m diameter) from the upper 15-cm soil layer. The sample 163 

cores were divided into two parts, with one maintained at 4 °C for the measurement of 164 

soil microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), available 165 

nitrogen (N), available phosphorus (P), and dissolved organic carbon (DOC), and the 166 

other was air-dried and finely ground using a ball mill, after all roots and visible plant 167 

remains had been removed, for determination of total soil organic carbon (SOC) and 168 

labile organic carbon (LOC). 169 

 DOC was determined by extracting C from the soils using 0.5 mol l-1 of K2SO4 and 170 

measuring its concentration using a TOC-V CPH total C analyzer (Shimadzu Scientific 171 

Instruments, Kyoto, Japan). MBC was determined using chloroform fumigation and 172 

extraction using 0.5 mol l-1 of K2SO4 (Lu, 1999) prior to measurement of C 173 

concentration using a TOC-V CPH total C analyzer (Shimadzu Scientific Instruments, 174 



7 

 

Kyoto, Japan). MBN was determined using chloroform fumigation and extraction using 175 

0.5 mol l-1 of K2SO4 (Lu, 1999) prior to measurement using a sequence flow analyzer 176 

(San++, SKALAR Corporation production, Breda, The Netherlands); additional details 177 

are provided by Fang et al. (2018). Available P was extracted using the Mehlich method 178 

and measured using a sequence flow analyzer (San++, SKALAR Corporation 179 

production, Breda, The Netherlands). Available N was calculated as the sum of NO3
- 180 

and NH4
+ in soil that was extracted using 2 mol l-1 of KCl and measured using a 181 

sequence flow analyzer (San++, SKALAR Corporation production, Breda, The 182 

Netherlands). Total SOC and total N (TN) were determined using an Elementar Vario 183 

MAX CN Analyzer (Elementar Scientific Instruments, Hanau, Germany), and soil LOC 184 

was extracted using 333 mM of KMnO4 in a digestion method (Xu et al., 2011b) and 185 

then determined using a UV-2450 spectrophotometer (Shimadzu Scientific Instruments, 186 

Kyoto, Japan). Soil total P (TP) concentration was measured extracted using perchloric-187 

acid digestion and determined using a sequence flow analyzer (San++, SKALAR 188 

Corporation production, Breda, The Netherlands). 189 

Soil salinity and temperature were measured using a 2265FS EC/temperature 190 

meter (Spectrum Technologies Inc., Paxinos, USA), while soil pH (1:5 soil:water ratio) 191 

was measured using a Starter 300 pH meter (Ohaus Scientific Instruments, Parsippany, 192 

USA), and soil water content was measured using a TDR300 water content meter in 193 

situ (Spectrum Technologies Inc., Paxinos, USA). Total active Fe concentration was 194 

determined using a colorimetric method, where 1,10-phenanthroline was added to 1 195 

mol l-1 HCl fresh-soil extracts to react with ferrous ions (Lu, 1999; Wang et al., 2014c). 196 

Ferric Fe concentration was calculated by subtracting concentration of ferrous Fe from 197 

that of total active Fe (Wang et al., 2014c). Rice height and grain yield were determined 198 

at the harvesting stage directly (Wang et al., 2014c). 199 

 200 

2.3. Statistical analysis 201 

We used general mixed models (GLM) in the “nlme” package in R, with the “lme” 202 

function (Pinheiro et al., 2016) to analyze the effects of acid rain independently of the 203 

season and growth stage, with acid rain season and growth stage as independent fixed 204 
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categorical variables and plot as independent random factors with all soil studied 205 

variables as continuous dependent variables. Thereafter, we also analyzed the effects of 206 

acid rain within each crop season by similar mixed model but without season as fixed 207 

categorical independent variable.Non-normally distributed variables were log-208 

transformed.. We chose the best model for each dependent variable based on the Akaike 209 

information criterion, and we used the MuMIn (Barton, 2012) R package to estimate 210 

the proportion of variance (%) explained by the mixed models. Tukey’s post hoc tests 211 

(at P < 0.05) were used to detect treatment differences using the “multcomp” (Hothorn 212 

et al., 2013) R package, with the “glht” function. 213 

 Associations between soil organic fractions and properties were tested using 214 

Pearson correlation analysis and treatment effects were tested using Bonferroni’s post 215 

hoc test (at P < 0.05). These analyses were performed using SPSS Statistics 18.0 (SPSS 216 

Inc., Chicago, USA). 217 

Overall differences in soil traits among the four treatments were tested using a 218 

general discriminant analysis (GDA). Discriminant analyses consist of a supervised 219 

statistical algorithm that derives an optimal separation between groups established a 220 

priori by maximizing between-group variance, while minimizing within-group variance 221 

and controlling the effects of a categorical variable (here, season × crop stage) 222 

(Raamsdonk et al., 2001). Thus, GDA is a useful tool for the identification of variables 223 

that drive greatest differences among groups, and here, it allowed the discrimination of 224 

overall differences in soil traits under contrasting levels of acid rain independently of 225 

season and crop growth stage. Before conducting these multivariate analyses, we 226 

selected the sampling adequacy of individuals and the set of variables by the Barlett’s 227 

test of sphericity (<0.05) and the Kaiser-Meyer-Olkin measure (>0.50). We removed 228 

the variables with communality values < 0.5 and perform GDA analyses with the 229 
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variables with communality > 0.5. To perform these sampling adequacy analyses we 230 

used the package psych (Revelle, 2010). A cross-validation procedure (leave-one-out) was 231 

applied to test the adequacy of the discriminant model. GDAs were performed using 232 

Statistica 8.0 (StatSoft, Inc. Tulsa, USA).  233 

 234 

3. Results 235 

3.1. Effect of acid rain on soil carbon and nutrient concentrations and soil physyco-236 

chemical variables. 237 

Acid rain treatments led to greater levels of SOC, TN, soil N-avail, NO3-, TP and SWC, 238 

but lower pH, C:N, bacterial otus concentration, and ratios of LOC/SOC and DOC/SOC, 239 

regardless of crop season and crop growth stage (Table S2). 240 

Analyzing the relationships of acid rain with the studied soil variables within each 241 

crop season, we observed between and within crop growth season some differences in 242 

several soil variables (Table S3, Fig. 1, Fig. S3). However, in both crop seasons, we 243 

observed that acid rain treatment decreased soil pH and increased TN, TP, SOC and N-244 

availability (Table S3, Fig. 1-4). In early paddy season acid rain increased soil N-245 

availability: P-availability ratio, soil water content and salinity and decreased soil C:N 246 

ratio (Table S3, Fig. 3 and 4). While in late paddy season acid rain was associated with 247 

an increase of soil NO3
- and MBC concentrations and with lower LOC:SOC, DOC:SOC 248 

and MBC:SOC ratios and soil microbial otus concentrations (Table S3, Fig. 1-3). Soil 249 

TN and TP concentrations, and MBC:MBN ratios varied among rice growth stages 250 

(Table S3, Fig. 2,3). Ratios of soil C:P, N:P and LOC:available-N varied among rice 251 

growth stages in the two crop seasons (Table S3, Fig. 3).  252 

Soil available N concentrations in early paddy soils were 45.5% greater in the pH 253 

4.5 acid rain treatment than control. We found that soil NO3
- concentrations were 254 

81.7% greater in the pH 2.5 acid rain treatment than the control; however, NH4
+ 255 

concentrations in early paddy soils were 49.4, 54.9, and 50.6% lower in the pH 4.5, 256 

3.5, and 2.5 acid rain treatments, respectively, than the control. In early paddy soils, 257 
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soil MBN was about 52.2 and 35.5% greater in the pH 4.5 and 2.5 acid rain treatments 258 

than the control, while in late paddy soils, it was about 27.4, 33.8, and 38.3% lower in 259 

the pH 4.5, 3.5, and 2.5 treatments, respectively, than the control. In early paddy soils, 260 

LOC:available N ratios were 22.5% lower in the pH 4.5 acid rain treatment than the 261 

control. Levels of soil Fe2+ concentration, salinity, and temperature varied among rice 262 

growth stages (Table S3, Fig. 5) in the two crop seasons, as did levels of soil water 263 

content and pH (Table S3, Fig. 4). 264 

 265 

3.2. Physico-chemical soil variables (Fe, Salinity, SWC, temperature and pH.)  266 

MBC was negatively correlated with DOC in early (r = -0.758, P < 0.01) and late (r = 267 

-0.436, P < 0.01) paddy soils (Table S4). Soil TN and NH4
+ concentrations were 268 

positively correlated with DOC in early (r = 0.504 and 0.472, respectively, P < 0.01) 269 

and late (r = 0.341 and 0.749, respectively, P < 0.05) paddy soils, and soil available N 270 

was positively correlated with SOC and DOC in early (r = 0.503 and 0.654, respectively, 271 

P < 0.01) and late (r = 0.362 and 0.757, respectively, P < 0.05) paddy soils (Table 1). 272 

TP was positively associated with SOC in early (r = 0.811, P < 0.01) and late (r = 0.480, 273 

P < 0.01) paddy soils (Table 1). Ratio of LOC:available N was negatively correlated 274 

with SOC and DOC in early (r = -0.403 and -0.673, respectively, P < 0.05) and late (r 275 

= -0.333 and -0.579, respectively, P < 0.05) paddy soils, and the ratio of available 276 

N:available P was positively associated with DOC in early (r = 0.673, P < 0.01) and 277 

late (r = 0.631, P < 0.01) paddy soils (Table 1). 278 

In general, soil salinity was positively correlated with SOC, and Fe 2+ was 279 

positively correlated with DOC in the two crop seasons (P < 0.05, Table 1).  280 

 281 

3.3. Effect of acid rain on rice yield and plant traits  282 

There were no effects of acid rain treatment on rice yield or plant height in either crop 283 

season (P > 0.05). In early paddy soils, rice yields in the control and acid rain treatments 284 

pH 4.5, 3.5, and 2.5 were 4.63 ±0.52, 4.12 ±0.42, 4.37 ±0.11, and 4.55 ±0.42 Mg ha-1, 285 

respectively, while in late paddy soils, they were 6.73 ±0.77, 5.89 ±0.25, 7.15 ±0.10, 286 
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and 6.25 ±0.21 Mg ha-1, respectively. Simulated acid rain resulted in greater proportions 287 

of moribund aboveground biomass at the end of the rice growth period, prior to harvest 288 

(data no shown).  289 

 290 

3.4. Overall effects of simulated acid rain treatments on soil traits  291 

GDA showed there were acid rain treatment effects on traits of paddy soils compared 292 

with untreated control soils, and between acid rain treatment pH 4.5 and the other two 293 

acid rain treatments (pH to 3.5 and 2.5); there were no overall differences in traits of 294 

soils treated with simulated acid rain at pH 2.5 and 3.5 (Tables 2, 3). The percent of 295 

correct predictions were 87.3%. Key drivers of differences in soil traits between the 296 

control and acid rain treatments along Root 1 were soil pH and SOC, where lower levels 297 

of higher pH and greater levels of SOC were associated with acid rain, while key drivers 298 

of differences between the pH 4.5 treatment and the pH 3.5 and 2.5 treatments along 299 

Root 2 were SOC, SWC, TP, DOC, Fe3
+, and Navai:Pavai ratio (Fig. 6). 300 

 301 

4. Discussion 302 

4.1. Effect of acid rain on carbon fractions, nutrient, and C, N, P stoichiometry  303 

The results clearly showed that acid rain with N and S inputs as produced in natural 304 

events in China clearly increase SOC and soil total N and P. This is associated with a 305 

decrease of soil pH and more mortality in aboveground plant biomass. Thus, despite 306 

litter production increases following acid rain events, resulting in greater soil inputs of 307 

C, N, and P (Wang et al., 2012); the results strongly suggest that litter decomposition 308 

rates have decreased due to acid rain observing of LOC:SOC and LOC:SOC ratios and 309 

total soil P. This showed a lower rates of SOC conversion to DOC and LOC under acid 310 

rain consistent with the decrease of microbial community density.  311 

 Our finding that acid rain resulted in greater levels of soil TN and available N was 312 

consistent with the association between acid rain and N inputs (Rosi-Marshall et al., 313 

2016) but also with the association of lower levels of pH and microbe inhibition (Babich 314 

and Stotzky, 1982). The very high rise in soil nitrate and a no clear rise in soil 315 

ammonium would be consistent with the rise of nitrification activity observed in other 316 
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studies (Chao, 2010), and thus with higher mineralization of N and P and few N, P loss 317 

(Wang et al., 2012; Chen et al., 2015). The results also strongly suggest that the drop 318 

plant growth and nutrient uptake capacity (Malkanthi et al., 1995; Medeiros et al., 2016) 319 

linked to reduced root growth as observed in other studies (Liao and Chen, 1991; 320 

Kováčik et al., 2011; Medeiros et al., 2016) have conducted to an accumulation of C, 321 

N and P in soils. Thus, simulated acid rain at the level and characteristics as the observed 322 

in several cropland areas of China have a general short-time effect reducing soil pH and 323 

soil microbe content, associated to a rise in SOC and total N and P in soil associated all 324 

them to a drop in plant activity..  325 

 326 

4.2. Effect of growth stage on soil properties, carbon fractions, nutrients, and C, N, and 327 

P stoichiometry 328 

Concentrations of soil Fe2+, water content, salinity, and temperature varied among rice 329 

growth stages in the two crop seasons. The greater levels of soil active Fe2+ 330 

concentrations at the greening growth stage than at the jointing and mature stages were 331 

related to greater anoxic soil conditions and, therefore, the reduction of Fe3+ to Fe2+ that 332 

occurred under flood conditions (Liu et al., 2013). However we have not observed 333 

changes in soil Fe2+ and Fe3+ concentrations the possible Fe3+ reduction by sulfate  334 

application, because sulfate-reduced products act as electron donors for the reduction 335 

of Fe3+ to Fe2+ (Nicol et al., 2016) as observed in other studies (Fry et al., 1986). 336 

In general, we found that total SOC concentrations, soil TN, TP, available N, and 337 

available NH4
+ concentrations varied among rice growth stages in the two crop seasons, 338 

coinciding with the rice crop phenology and with the periods of fertilizer application 339 

such as observed in previous studies (Bowatte et al., 2010; Wang et al., 2017b; Song et 340 

al., 2018; Wang et al., 2018a,b).. 341 

 342 

4.3. Associations among soil carbon fractions, nutrients and stoichiometry, and soil 343 

traits 344 

DOC was the active C resource for microbe growth; therefore, greater levels of DOC 345 

should have increased microbe growth (Schmidt et al., 1997; Wang et al., 2015a), 346 
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however, we have observed that acid rain whereas increase DOC was associated to a 347 

decrease in soil microbe otus number. The decrease in microbes may reduce 348 

mineralization of SOC into labile carbon, such as DOC (Kunlanit et al., 2014), as 349 

reflected by decrease of microbe otus and the rise of DOC:SOC under acid rain.  350 

     Soil TN, available N, NH4
+ concentration, and available N:available P ratios 351 

were positively associated with DOC in the two crop seasons, indicating the study 352 

paddy soils were N, rather than P-limited. This is consistent with the positive effects of 353 

N fertilization in the paddy soils of this cropland area (Zhang et al., 2009; Xu et al., 354 

2010; Wang et al., 2014b; 2018c; Zhu et al., 2016). Overall, our data showed that acid 355 

rain decreased soil microbe biomass and SOC mineralization, despite greater 356 

availabilities of N and P that were probably related to decreased plant and microbial 357 

uptake. Thus, we suggest acid rain decreases biological activity, including 358 

mineralization of soil organic matter and plant-microbe uptake, that leads to increases 359 

in losses of available forms of nutrients and accumulation of C, N, and P soil recalcitrant 360 

fractions. 361 

 362 

5. Conclusions  363 

1. Acid rain increased SOC content and decreased ratios of soil LOC: SOC, DOC: SOC 364 

and MBC:SOC concentration ratios, whereas total soil N and P concentrations 365 

increased, indicating a decrease in soil mineralization and/or lower plant uptake. 366 

2. Increased soil availability of N and P (P only in late paddy soils) under acid rain was 367 

likely related to diminished plant nutrient up-take, as supported by an increase in the 368 

proportion of dead rice plant biomass under acid rain.  369 

3. The concentration of Fe2+ was positively correlated with DOC in early and late paddy 370 

soils under acid rain, possibly as a result of Fe2+ retention by DOC when Fe3+ is reduced 371 

to Fe2+. 372 

4. The observed increases in labile soil N and P, together with greater levels of SOC 373 

under acid rain strongly suggest that prolonged acid rain on paddy should favor the 374 

accumulation of C, N, and P recalcitrant fractions in soils leading to lower levels of soil 375 

fertility in paddy soils. 376 
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 377 

5. Soil TN, available N, NH4
+ concentration, and ratio of available N:available P were 378 

positively associated with DOC in the two crop seasons, indicating the study site paddy 379 

soils were N, rather than P-limited. But the positive role on soil microbe and plant 380 

activity and SOC decomposition that can be expected from N deposition accompanying 381 

acid rain is counteracted by the negative effects of soil acidification. 382 

 383 
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Tables 606 

Table 1 607 

Pearson correlation analysis of association between carbon fractions and environmental factors. 608 

Variable 
Early paddy Late paddy 

SOC DOC MBC EOC SOC DOC MBC LOC 

TN 0.575** 0.504** -0.535** -0.031 0.253 0.341* -0.078 -0.338* 

Available N 0.503** 0.654** -0.676** 0.058 0.362* 0.757** -0.184 -0.217 

NO3
- -0.301 0.384* -0.200 -0.360* 0.213 -0.271 0.268 -0.062 

NH4
+ 0.604** 0.472** -0.568** 0.201 0.290 0.749** -0.223 -0.187 

Microbial N -0.125 0.417* -0.173 -0.259 -0.126 -0.158 0.423* -0.044 

TP 0.811** -0.378* 0.256 0.175 0.480** 0.065 -0.225 -0.112 

Available P 0.327 -0.106 -0.332* 0.362* 0.433** 0.202 0.132 0.187 

C:N ratio 0.294 -0.742** 0.603** 0.305 0.361* -0.164 0.081 0.283 

C:P ratio 0.128 0.422* -0.513** 0.134 0.380* 0.124 0.295 0.056 

N:P ratio -0.137 0.747** -0.698** -0.153 -0.086 0.182 0.102 -0.179 

LOC:available N -0.403* -0.647** 0.627** 0.304 -0.333* -0.579** 0.256 0.687** 

LOC:available P -0.094 0.019 0.191 0.445** -0.261 -0.216 0.039 0.847** 
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available N:available P 0.397* 0.673** -0.529** -0.075 0.082 0.631** -0.266 -0.310 

MBC:MBN 0.283 -0.620** 0.618** 0.155 -0.012 -0.082 0.107 0.355* 

Total Fe -0.237 0.428** -0.229 0.010 0.134 0.141 -0.177 0.113 

Fe2+ 0.600** 0.441** -0.527** 0.093 -0.015 0.533** -0.325 -0.159 

Fe3+ -0.385* 0.320 -0.100 -0.012 0.167 -0.382* 0.130 0.291 

Salinity 0.551** 0.159 -0.483** 0.399* 0.338* 0.690** -0.210 -0.291 

Water content 0.542** 0.309 -0.539** 0.372* 0.262 0.503** -0.318 -0.022 

pH -0.044 0.275 -0.307 0.221 -0.373* 0.205 -0.099 0.056 

Temperature -0.244 -0.745** 0.745** -0.084 0.232 0.626** -0.231 -0.046 

*P < 0.05; **P < 0.01. 609 

 610 
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Table 2 622 

Discriminant analysis of treatment effects on soil traits (independent continuous variables), with 623 

season as a categorical independent factor. 624 

 625 

 pH 4.5 pH 3.5 pH 2.5 

Control 

M = 49.9 

F = 8.76 

P < 0.00001 

M =5 5.4 

F = 9.72 

P < 0.00001 

M = 10.5 

F = 10.0 

P < 0.00001 

pH 4.5  
M = 7.61 

F = 1.38 

P = 0.17 

M = 14.4 

F = 2.52 

P = 0.004 

pH 3.5  
M = 11.8 

F = 2.03 

P = 0.019 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 
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 637 
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 639 

 640 
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 656 

Table 3 657 

General discriminant analysis (Wilks’ λ and P) of soil variables。 658 

 659 

Test Value F P 

pH 0.602 8.80 <0.0001 

Fe2+ 0.758 4.25 0.011 

Fe3+ 0.823 2.86 0.049 

salinity 0.828 2.78 0.049 

Water % 0.713 5.378 0.0033 

temperature 0.974 0.368 0.78 

SOC 0.630 7.828 0.0003 

DOC 0.881 1.80 0.16 

MBC 0.939 0.871 0.46 

LOC/SOC 0.886 1.72 0.18 

DOC/SOC 0.874 1.93 0.14 

MBC/SOC 0.944 0.794477 0.50 

NO3
- 0.972 0.381 0.77 

NH4
+ 0.948 0.730 0.54 

MBN 0.859 2.19 0.10 

Total P 0.871 1.98 0.13 

Available P 0.827 2.79 0.053 

C/N 0.866 2.07 0.12 

C/P 0.871 1.98 0.13 

N/P 0.904 1.42 0.25 

LOC/N-available 0.840 2.53 0.070 

LOC/P-available 0.847 2.43 0.081 

N-available/P-available 0.950 0.706 0.55 

MBC/MBN 0.858 2.20 0.10 

timing 0.596 1.52 0.11 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 
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 668 

Figure legends 669 

 670 

Fig. 1. Treatment effects on SOC, LOC, DOC, and MBC in early (A, C, E, and G, 671 

respectively) and late (B, D, F, and H, respectively) paddies. Data are means ±SE. 672 

Different uppercase letters indicate treatment differences among rice growth stages and 673 

lowercase letters indicate treatment differences within a rice growth stage (P < 0.05). 674 

 675 

Fig. 2. Treatment effects on total N, available N, NO3
-, NH4

+, MBN, total P, and 676 

available P in early (A, C, E, G, I, K, and M, respectively) and late (B, D, F, H, J, L, 677 

and N, respectively) paddies. Data are means ±SE. Different uppercase letters indicate 678 

treatment differences among rice growth stages and lowercase letters indicate treatment 679 

differences within a rice growth stage (P < 0.05). 680 

 681 

Fig. 3. Treatment effects on ratios of C:N, C:P, N:P, LOC:available N, LOC:available 682 

P, available N:available P, and MBC:MBN in early (A, C, E, G, I, K, and M, 683 

respectively) and late (B, D, F, H, J, L, and N, respectively) paddies. Data are means 684 

±SE. Different uppercase letters indicate treatment differences among rice growth 685 

stages, and lowercase letters indicate treatment differences within a rice growth stage 686 

(P < 0.05). 687 

 688 

Fig. 4. Treatment effects on salinity, water content, temperature, and pH in early (A, C, 689 

E, and G, respectively) and late (B, D, F, and H, respectively) paddies. Data are means 690 

±SE. Different uppercase letters indicate treatment differences among rice growth 691 

stages and lowercase letters indicate treatment differences within a rice growth stage (P 692 

< 0.05). 693 

 694 

 695 

Fig. 5. Treatment effects on total active Fe, Fe2+, and Fe3+ in early (A, C, and E, 696 

respectively) and late (B, D, and F, respectively) paddies. Data are means ±SE. Different 697 
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uppercase letters indicate treatment differences among rice growth stages and lowercase 698 

letters indicate treatment differences within a rice growth stage (P < 0.05). 699 

 700 

 701 

Fig. 6. GDA biplot of treatment effects on soil traits by grouping factor (treatment by 702 

season). Data are means ±95% CI and the standardized canonical discriminate 703 

function coefficients for the first two roots represent the soil variables as independent 704 

variables. pH: soil pH; Fe2+: soil Fe2+ concentration; Fe3+: soil Fe2+ concentration; 705 

salinity: soil salinity; SWC: soil water content; T: soil temperature; DOC: dissolved 706 

organic carbon; SOC: soil organic carbon; MBC: microbial carbon concentration; 707 

MBN: microbial nitrogen concentration; NO3
-: soil nitrate ion concentration; NH4

+: 708 

soil ammonium concentration; TP: soil total P concentration; avaiP: soil P plant 709 

availability; C:N: soil total C:N ratio; C:P: soil total C:P ratio; N:P: soil total N:P 710 

ratio; MBC:MBN: MBC:MBN ratio; LOC:Navai: LOC:available N ratio; LOC:Pavai: 711 

LOC:available P ratio; DOC:SOC: DOC:SOC ratio; MBC:SOC: MBC:SOC ratio; 712 

Navai:Pavai: Navai:Pavai ratio; and, LOC:SOC: LOC:SOC ratio. 713 

 714 
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