
This is the **accepted version** of the article:

Bogdziewicz, Michał; Szymkowiak, Jakub; Bonal, Raúl; [et al.]. «What drives phenological synchrony? Warm springs advance and desynchronize flowering in oaks». *Agricultural and forest meteorology*, Vol. 294 (Nov. 2020), art. 108140. DOI 10.1016/j.agrformet.2020.108140

This version is available at <https://ddd.uab.cat/record/232216>

under the terms of the license

1 What drives phenological synchrony? Warm springs advance and desynchronize flowering in
2 oaks

3

4 Running head: Warm springs desynchronize flowering

5

6 Bogdziewicz M^{1,2*}, Szymkowiak J³, Bonal R⁴, Hacket-Pain A⁵, Espelta JM², Pesendorfer M⁶,
7 Grewling L⁷, Kasprzyk I⁸, Belmonte J⁹, Kluska K⁸, De Linares C^{9,10}, Penuelas J^{2,11},
8 Fernandez-Martinez M¹²

9

10 1 Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University,
11 Poznań, Poland

12 2 CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain

13 3 Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland

14 4 Forest Research Group, INDEHESA, University of Extremadura, Plasencia, Spain

15 5 Department of Geography and Planning, School of Environmental Sciences, University of
16 Liverpool, Liverpool, UK

17 6 Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural
18 Resources and Life Sciences, Vienna, Austria

19 7 Laboratory of Aerobiology, Department of Systematic and Environmental Botany, Faculty
20 of Biology, Adam Mickiewicz University, Poznań, Poland

21 8 Department of Environmental Monitoring, Institute of Biology and Biotechnology,
22 University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszów, Poland

23 9 Institute of Environmental Science and Technology, Universitat Autònoma de Barcelona,
24 Cerdanyola del Vallès 08193, Catalonia, Spain

25 10 Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de
26 Barcelona, Cerdanyola del Vallès 08193, Catalonia, Spain

27 11 CSIC, Global Ecology Unit, Bellaterra 08193, Catalonia, Spain

28 12 PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, 2610
29 Wilrijk, Belgium

30 *corresponding author: michalbogdziewicz@gmail.com

31

32 Word count: 3692; Figures: 5; Tables: 1; Online Supplement: Yes

33 **Summary**

34 Annually variable and synchronous seed production, or masting, is often correlated with
35 environmental factors and in oaks involves differential pollination success that depends on
36 phenological synchrony in flowering. The synchronization of phenology of flowering was
37 thought to be driven by temperature during flowering (microclimatic hypothesis). We tested
38 an alternative, whereby phenological synchronization is driven by the timing of the onset of
39 flowering (photoperiod-sensitivity hypothesis). This hypothesis assumes that flowering
40 synchrony is driven by interaction between daylength and temperature, and individual
41 variation in sensitivity to daylength as a phenological cue. We used long-term (23-26 years)
42 records of airborne pollen in *Quercus robur*, *Q. petraea*, *Q. ilex*, and *Q. humilis*. Late pollen
43 seasons were short, as predicted by photoperiod-sensitivity hypothesis. The onset of pollen
44 seasons was delayed as preseason temperatures cooled over the last three decades at our
45 Mediterranean sites, which was paralleled by shortening in pollen seasons, providing
46 additional support for the photoperiod-sensitivity hypothesis. Global warming under the
47 microclimatic hypothesis is predicted to lead to less frequent reproductive failures and thus
48 decreased variability and synchrony of mast seeding. In contrast, warming under the
49 photoperiod-sensitivity hypothesis should advance the onset of and desynchronize flowering,
50 a pattern supported by our data. This pattern suggests that global warming will lead to more
51 frequent vetoes and more stochastic and variable patterns of oak reproduction.

52

53 Key words: flowering onset, flowering synchrony, global warming, microclimatic variation,
54 phenology, photoperiod sensitivity, pollen

55

56

57 **Introduction**

58 Masting, or mast seeding, is the highly variable and synchronized production of seeds
59 by plant populations (Crone and Rapp, 2014; Kelly, 1994), that is a widespread reproductive
60 strategy in perennial plants (Fernández-Martínez et al., 2019; Kelly and Sork, 2002;
61 Tanentzap and Monks, 2018). The variable allocation of resources associated with masting
62 affects plant growth, the population dynamics of plants and animals, macronutrient cycling,
63 carbon stocks, forest regeneration, future species composition, and risk of disease in humans
64 (Bogdziewicz et al., 2016; Clark et al., 2019; Hacket-Pain et al., 2018; Ostfeld and Keesing,
65 2000). Masting functionally depends on economies of scale, i.e. individual plants that
66 reproduce when other plants are also flowering have lower costs for each surviving offspring
67 (Bogdziewicz et al., 2020c; Kelly, 1994). The proximate mechanisms driving masting, i.e.
68 how annual variability in seed production and synchronization among individuals happen,
69 remain poorly understood (Bogdziewicz et al., 2020a; Pearse et al., 2016).

70 Masting is frequently correlated with environmental cues such as temperature or
71 rainfall (Bogdziewicz et al., 2020b; Koenig and Knops, 2000; Pérez-Ramos et al., 2015;
72 Schermer et al., 2019), but little attention has been paid to the mechanisms driving these
73 connections (Bogdziewicz et al., 2017a; Kelly et al., 2013; Koenig et al., 2015). Flowering
74 and pollination dynamics are hypothesized to provide the mechanistic link for the observed
75 relationship between weather and population-level seed production (Hanley et al., 2019;
76 Koenig and Knops, 2013; Nussbaumer et al., 2018). The phenological synchrony hypothesis
77 proposes that weather drives pollen limitation by determining the annual differences in the
78 synchrony of flowering within a population (Koenig et al., 2015). The original formulation of
79 the phenological synchrony hypothesis states that the phenology of flowering is driven by
80 temperature during flowering (microclimatic hypothesis). Specifically, flowering is more
81 synchronous in warm years when microclimatic conditions are more homogeneous,
82 conditions that lead to lower variability in flowering time (Koenig et al., 2015). We tested an
83 alternative hypothesis, whereby phenological synchronization is driven by the timing of the
84 onset of flowering.

85 This alternative, known as the photoperiod-sensitivity hypothesis, assumes that
86 flowering synchrony is driven by interaction between daylength and temperature, and
87 individual variation in sensitivity to daylength as a phenological cue (Bogdziewicz et al.,
88 2020a). Days in cold years are already long at the onset of warmer spring temperatures,
89 reducing the effect of plant daylength sensitivity on flowering time and increasing population-
90 level flowering synchrony (Fu et al., 2019c; Zohner et al., 2018). In contrast, days in warm

91 years are still short at the onset of warmer spring temperatures, preventing plants sensitive to
92 daylength from flushing and flowering. Leaf-out and flowering in warm years thus advance
93 only in individuals insensitive to daylength, which extends population-level flowering time
94 and reduces synchrony. Experiments have confirmed large intraspecific variation in daylength
95 sensitivity within populations of some species (Zohner et al., 2018). This response may
96 consequently decrease the population-level synchrony of flowering when days are short
97 (warm years, early spring) and increase the synchrony of flowering in late springs (cold years,
98 late spring).

99 These two processes linking variation in weather with pollen limitation lead to
100 contrasting predictions of the effects of global warming on flowering synchrony in plants and
101 thus their reproductive success. Global warming under the microclimatic hypothesis should
102 increase the frequency of years favorable for pollination, because warmer weather should
103 generally lead to more frequent highly synchronized flowering, which in turn should reduce
104 the interannual variability of seed production (Koenig et al., 2015). In contrast, global
105 warming under the photoperiod-sensitivity hypothesis would lead to a lower frequency of
106 years favorable for pollination, because warmer years would generally advance flowering in
107 some individuals and thus desynchronize it at a population level. More frequent failures of
108 pollination will increase the stochasticity and interannual variability of seed production
109 (Koenig et al., 2015; Schermer et al., 2020). A better understanding of the ecophysiological
110 processes controlling flowering phenology is thus essential for improving our understanding
111 of the responses of trees and forests to the ongoing climate change.

112 We used long-term (23-26 years) records of airborne pollen concentrations from
113 several locations in Europe to test the hypothesis that flowering synchrony in four oak species
114 (*Quercus robur*, *Q. petraea*, *Q. ilex*, and *Q. humilis*) is determined by the timing of flowering
115 onset. We used airborne pollen concentrations data as proxy of flowering times, using the
116 length of the pollen season as an index of phenological synchrony in pollen release within the
117 population. The link between acorn production and flowering synchrony, as measured by the
118 length of the pollen season, has already been established in the oak populations we study here
119 (Bogdziewicz et al., 2017a; Bogdziewicz et al., 2017b). Following relationships should hold
120 under the photoperiod sensitivity hypothesis. First, the advanced onset of pollen production
121 should lead to long pollen seasons. An advanced onset of pollen seasons should be in turn
122 driven by high temperatures, as established by many studies of this topic (Fu et al., 2015; Liu
123 et al., 2016; Peaucelle et al., 2019; Zohner et al., 2018). Second, we explored the trends
124 (1994-2019) in timing of pollen seasons onset and their length. Here, advances in the timing

125 of pollen seasons onset driven by temperature should reduce synchrony within populations,
126 leading to longer pollen seasons.

127

128 **Methods**

129 Study species

130 We investigated the relationships between temperature, calendar day, and airborne
131 pollen concentrations for four oak species that are common throughout Europe. We present
132 data for populations of two temperate oak species in Poland, *Q. petraea* and *Q. robur*, and
133 two Mediterranean oak species in Spain, *Q. ilex* and *Q. humilis*. All species are large
134 broadleaved trees that often dominate forests in their native ranges. They are pollinated by
135 wind and generally self-incompatible. Flowers are produced and fertilized in spring and
136 develop into fruits in the same year in which they were pollinated. Our previous study found
137 that synchronous flowering was positively correlated with seed production in these
138 populations (Bogdziewicz et al., 2017a; Bogdziewicz et al., 2017b).

139

140 Pollen and meteorological data

141 Data for airborne pollen for *Q. petraea* and *Q. robur* were collected at two pollen-
142 monitoring sites in Poland for 1997-2019: Poznań (52°25'N, 16°53'E) and Rzeszów (50°01'N
143 22°02'E). Data for *Q. ilex* and *Q. humilis* were collected at three sampling sites in Spain:
144 Barcelona (41°23'N, 2°90'E) for 1994-2019, Bellaterra (41°30'N, 2°60'E) for 1994-2019, and
145 Huecas in Toledo province (39°59'N, 4°13'W) for 2008-2019 (Fig. S1). Pollen grains could
146 only be identified to genus, so the data from Poland included both *Q. robur* and the closely
147 related species *Q. petraea*, and we analyzed the data for these two species at the community
148 level. The pollen grains of an evergreen oak (*Q. ilex*) in Spain are distinguished from those of
149 a deciduous species (*Q. humilis*). Other oaks in the study area included *Q. coccifera*
150 (evergreen) and *Q. suber* (deciduous), but their densities were much lower than those of the
151 dominating *Q. ilex* and *Q. humilis*.

152 Pollen grains were collected using Hirst traps (Hirst, 1952) specifically designed to
153 record the concentration of atmospheric particles as a function of time. The Hirst type trap is a
154 standard sampling method in pollen monitoring studies. For instance, in the European
155 Aeroallergen Network, all monitoring stations use the Hirst type volumetric trap (Galan., et
156 al. 2014). Moreover, the pollen concentrations used in this study, despite being produced in
157 different palynological laboratories, are fully comparable, as they have been obtained
158 following the standards of the European Aerobiology Society (Galan., et al. 2014).

159 The traps were located at a building roofs (10 – 30 m a.s.l.), and contained a built-in
160 vacuum pump, a wind-oriented vane, and a clockwork-driven drum mounted with transparent
161 adhesive tape that served as a medium for collecting the pollen. The sampler drum was
162 changed weekly, and the tape was divided into seven segments (corresponding to 24-h
163 periods). The pollen was then stained with basic fuchsine and transferred to microscope slides
164 (Scheifinger et al., 2013). The pollen grains were identified to genus under a light microscope
165 based on distinct morphological features. More than 10% of the total surface area of all slides
166 was investigated following the recommendation of the European Aerobiology Society (Galán
167 et al., 2014). We derived the length of the pollen season from the raw data for each study year
168 as a measure of flowering synchrony (Bogdziewicz et al., 2017a; Bogdziewicz et al., 2017b;
169 Lebourgeois et al., 2018). The length of the pollen season in Poland was determined using the
170 95% method, whereby the season started when 2.5% of the total yearly pollen was collected
171 and ended when 97.5% was collected (Goldberg et al., 1988). We used a cutoff of 80% for
172 Spain due to the higher number of days with very low concentrations of pollen at the end of
173 the season, which may have been due to the redistribution of pollen rather than additional
174 pollen release (Bogdziewicz et al., 2017a; Fernández-Martínez et al., 2012). Data for daily air
175 temperature and precipitation were obtained from meteorological stations within 10 km of the
176 pollen-monitoring sites.

177

178 Statistical analysis

179 We began our analysis by asking whether the timing of pollen seasons onset was
180 driven by preseason temperatures. For simplicity, we used mean daily temperatures from
181 January to April for all sites and years; the average day of flowering onset was in April for all
182 species (Fig. S2). Calculating these over different time periods (e.g. January – March or
183 February – April) do not change conclusions of the analysis. We did not use more
184 complicated approaches, like the growing degree days requirement adjusted per each site, as
185 this may lead to illogical results when the flowering onset is very late (Fu et al., 2015, 2019c),
186 which was the case in our dataset (unpublished). We constructed a linear mixed model
187 (LMM), with the day of the start of the pollen season (day of the year) as a response variable
188 and species, average preseason temperature, and their interaction as fixed effects. We next
189 tested our prediction that advanced pollen season onset would lead to longer pollen seasons
190 using a LMM that featured the length of the pollen seasons (in number of days) as a response
191 variable and species, day of onset, and their interaction as fixed effects. All models included
192 site as an intercept-only random effect to control for repeated sampling (Zuur et al., 2009).

193 We explored whether the length of the pollen season was better predicted by the
194 timing of the season onset, as predicted by the photoperiod-sensitivity hypothesis, or by the
195 temperature during pollen season, as predicted by the microclimatic hypothesis, by building a
196 set of LMMs that included combinations of three predictors: the day of pollen season onset,
197 mean temperature during the pollen season, and species. We included site as a random
198 intercept. We then compared the models using standard Akaike information criteria (AICs)
199 (Anderson and Burnham, 2004). We calculated the mean temperature during each pollen
200 season as the average of daily temperatures from the first until the last day of that pollen
201 season.

202 Finally, we used our long-term records to identify temporal trends in pollen season
203 onset and length of the pollen season for 1994 (Spain) or 1997 (Poland) to 2019. We built two
204 LMMs, one with the timing of the onset of the pollen season and the other with the length of
205 the pollen season as the response. We used the interaction between year and species as a fixed
206 effect and included site as an intercept-only random effect in both LMMs.

207 We explored models with temporal autocorrelation structures (lag-1 autocorrelation)
208 and retained those where $d\text{AIC} < 2$. We fitted all models using the glmmTMB package
209 (Brooks et al., 2017) in R using restricted maximum likelihood (REML). We tested for the
210 statistical significance of fixed factors using the Wald type II chi-square test. Model
211 validation by graphical inspection of residual patterns indicated normality and homogeneity.
212 We calculated conditional (i.e. variance explained by the complete model) and marginal (i.e.
213 variance explained by the fixed factors) R^2 for the models using the sjstats package (Lüdecke,
214 2018; Nakagawa and Schielzeth, 2017) and selected models based on the AICs using the
215 MuMIn package (Bartoń, 2018).

216

217 Results

218 The timing of pollen season onset was negatively correlated with the average
219 preseason (January-April) temperatures ($\chi^2 = 41.09, p < 0.001$), which varied among species
220 (preseason temperature \times species interaction: $\chi^2 = 27.63, df = 2, p < 0.001$). Pollen season
221 onset for *Q. robur* and *Q. petraea* advanced by 1.06 d (SE = 0.56) per 1 °C increase in the
222 mean temperatures (Fig. 1). This effect was stronger in the Mediterranean species, advancing
223 by 6.63 d (SE = 1.05) for *Q. humilis* and by 4.97 d (SE = 0.99) for *Q. ilex* per 1 °C increase in
224 the preseason temperatures (conditional $R^2 = 0.82$, marginal $R^2 = 0.58$).

225 The length of the pollen season was negatively correlated with the timing of the
226 season onset ($\chi^2 = 27.25, p < 0.001$), as predicted by the photoperiod-sensitivity hypothesis

227 (Fig. 2). A 1-d delay in flowering onset shortened the pollen season by 0.59 d (SE = 0.23) for
228 *Q. robur* and *Q. petraea*, 0.29 d (SE = 0.15) for *Q. humilis*, and 0.62 d (SE = 0.13) for *Q. ilex*
229 (conditional $R^2 = 0.60$, marginal $R^2 = 0.20$).

230 The timing of pollen season onset was a better predictor of the length of the pollen
231 season than the mean temperature during the season, supporting the photoperiod-sensitivity
232 hypothesis (Table 1). Models that included the timing of pollen season onset and the
233 temperature during the pollen season, or only the timing of pollen season onset, received
234 similar AIC support ($\Delta\text{AIC} = 1.29$). In contrast, the model that included temperature during
235 the pollen season as the only predictor received little support given the data ($\Delta\text{AIC} = 16.43$).
236 In fact, when both predictors when included, the temperature was no longer significant
237 predictor of the pollen season length ($\beta = 0.23$, SE = 0.59, $p = 0.70$), while the onset was ($\beta =$
238 -0.51, SE = 0.11, $p < 0.001$). These analyses indicated that the timing of flowering onset was
239 a stronger driver of the length of the pollen season than the temperature during the pollen
240 season.

241 We detected significant trends in both the onset of pollen seasons ($\chi^2 = 6.70$, $p =$
242 0.009) and its duration ($\chi^2 = 24.08$, $p < 0.001$), which varied among the species (species \times
243 onset of flowering: $\chi^2 = 10.86$, $df = 2$, $p = 0.004$; species \times length of the pollen season: $\chi^2 =$
244 13.57, $df = 2$, $p < 0.001$). The timing of pollen season onset for *Q. robur* and *Q. petraea* did
245 not advance in the last decades ($p = 0.12$, Fig. 3). In contrast, the onset was significantly
246 delayed by 0.45 d y^{-1} (SE = 0.15) for *Q. humilis* and by 0.35 d y^{-1} (SE = 0.15) for *Q. ilex*. The
247 trend of delays in the pollen seasons onset shortened their length by 1.05 d y^{-1} (SE = 0.18) for
248 *Q. ilex* (Fig. 4) but not for *Q. humilis* ($p = 0.12$), in accordance with the predictions of the
249 photoperiod-sensitivity hypothesis. The length of the pollen season did not consistently
250 change with time ($p = 0.64$) for *Q. robur* or *Q. petraea*, where no temporal trend of the onset
251 of flowering was detected. The contrasting phenological trends in Poland and Spain were
252 likely due to contrasting changes in temperatures the last ca. 30 years in these regions. The
253 mean temperatures for January-April did not change in Poland but decreased in Spain (Fig.
254 S3). We note, however, that the general trend during the last century in Spain was positive,
255 although it slowed and reversed in the last decades (Fig. S4).

256

257 **Discussion**

258 Our results indicated that a late pollen seasons onset shortened their length for all
259 species we studied, as predicted by the photoperiod-sensitivity hypothesis. The pollen season
260 in warm years started earlier, which was correlated with long population-level flowering

261 times. Our analyses also suggested that high temperatures during the pollen seasons were not
262 the main driver of their durations, as suggested by the microclimatic hypothesis (Koenig et
263 al., 2015) or by studies linking flowering synchrony with pollen limitation and seed
264 production (Bogdziewicz et al., 2017a; Bogdziewicz et al., 2017b; Lebougeois et al., 2018).
265 Both processes can act together in driving the synchrony of flowering. However, determining
266 whether microclimate or photoperiod sensitivity is the main driver, is important for our
267 understanding of the processes that drive the phenological synchrony of flowering in plants,
268 because they generate contrasting predictions of the effects of changes in global temperature
269 on flowering synchrony and consequently seed production. Warming under the photoperiod-
270 sensitivity hypothesis should lead to advanced flowering onsets and desynchronized
271 flowering, a pattern supported by our data.

272 High preseason temperatures advanced onset of pollen seasons in all species, leading
273 to long flowering seasons, supporting the predictions of the photoperiod-sensitivity
274 hypothesis. Temperature and daylength in temperate and boreal regions interact to cause leaf-
275 out around the optimal date (Flynn and Wolkovich, 2018; Fu et al., 2019a, 2015). The optimal
276 timing is a trade-off between occasional late frosts and the harvesting of light (Liu et al.,
277 2018). Daylength is hypothesized to act as a cue controlling the sensitivity of the growth of
278 meristem cells to warm temperatures, thereby conditioning the relationship between
279 temperature and phenology (Fu et al., 2019c). Shorter than optimal daylength reduces
280 temperature sensitivity, thereby allowing plants to avoid precocious leaf-out that would
281 increase the risk of frost damage. A longer than optimal daylength in turn increases
282 temperature sensitivity, allowing leaf-out when high solar radiation is optimal for
283 photosynthesis (Flynn and Wolkovich, 2018; Fu et al., 2019a; Malyshev et al., 2018). The
284 sensitivity of leaf unfolding to photoperiod was recently reported to vary between species (Fu
285 et al., 2019a). Moreover, different intraspecific sensitivities to daylength desynchronized leaf-
286 out and subsequently flowering in several temperate species, including oaks (Zohner et al.,
287 2018). We thus hypothesized that the negative correlation between pollen seasons onset and
288 their length documented by our data was due to the advance of flowering in oaks insensitive
289 to daylength, but not in individuals sensitive to daylength. Experiments and individual-level
290 phenological observations are now required to test causality (Bogdziewicz et al., 2020a). For
291 example, in the absence of individual plant flowering data, a long pollen season can be caused
292 by either each tree releasing its pollen over a longer period or because trees are less
293 synchronized with each other. In addition, experiments that simulate early (short days, high
294 temperatures) and late (long days, high temperatures) springs in greenhouse conditions should

295 lead to desynchronization under the photoperiod-sensitivity hypothesis but not the
296 microclimatic hypothesis.

297 The long-term changes in preseason temperature that affected the phenology of pollen
298 production provides additional support for the photoperiod-sensitivity hypothesis. We found
299 no trends in Poland and delayed pollen seasons onset in the Mediterranean oaks. The
300 difference between regions in these trends of flowering paralleled the trends in preseason
301 temperatures that decreased in Spain in the last 26 years but did not change in Poland.
302 Importantly, the trend of delayed pollen phenology was paralleled by the shortening of the
303 pollen seasons for *Q. ilex*, as predicted by the photoperiod-sensitivity hypothesis. The changes
304 in pollen production phenology for *Q. humilis*, though, did not lead to trends in the length of
305 the pollen seasons, despite the similar rate of change in the timing of the pollen season onset.
306 We hypothesized that this result follows different sensitivity to daylength in the two oak
307 species. Recent analyses found large interspecific variations in the effects of photoperiod on
308 the sensitivity of plants to changes in preseason temperature (Fu et al., 2019a, 2019b; Zohner
309 et al., 2018, 2016). In support, our models indicated that the effect of phenology of pollen
310 season onset on the length of the pollen season was twice as large for *Q. ilex* than *Q. humilis*.

311 Our results suggest that the interspecific variation in phenological sensitivity led to
312 species-specific effects of long-term temperature trends on flowering synchrony. Possible
313 consequences include asymmetrical effects on pollen limitation, as predicted by the
314 phenological synchrony hypothesis (Koenig et al., 2015; Pesendorfer et al., 2016; Wagenius
315 et al., 2020), but also on changes in gene flow and biotic interactions (Elzinga et al., 2007;
316 Jump and Peñuelas, 2005). The changes in flowering synchrony induced by temperature are
317 also likely to be associated with similar changes in the phenology of leaf unfolding (Zohner et
318 al., 2018). Leaf-out synchrony in turn affects insect herbivory (Pearse et al., 2015), which
319 may strongly affect seed production; insect herbivory in *Q. ilex* can decrease seed set by half
320 (Canelo et al., 2018), which can create differences in the responses of species to global
321 warming that will have asymmetrical effects on fecundity in different plant species. Thus, a
322 comprehensive understanding of the species-specific differences of the effects of global
323 warming on flowering is essential for improving our understanding of the responses of forests
324 to the ongoing climatic change (McDowell et al., 2020).

325 Our results provide support for a novel hypothesis linking variation in weather with
326 flowering synchrony in masting oaks. Flowering synchrony drives pollen limitation in oaks,
327 which in turn is believed to interact with the dynamics of plant resources in driving mast
328 seeding (Koenig et al., 2015; Pesendorfer et al., 2016; Schermer et al., 2019). Desynchronized

329 flowering vetoes reproduction, which forces plants to conserve resources for subsequent
330 years, so more frequent interference leads to more stochastic and variable patterns of
331 reproduction (Pearse et al., 2016; Schermer et al., 2020). To the extent that phenological
332 synchrony is involved in determining variable seed production, global warming under the
333 microclimatic hypothesis is predicted to lead to less frequent vetoes (more frequent high
334 flowering synchrony years), thereby decreasing masting intensity (Koenig et al., 2015). We
335 found support for the hypothesis that predicts the opposite: global warming will lead to more
336 frequent vetoes, i.e. more frequent desynchronized flowering. These effects will depend on
337 the regional trends in temperature and will be asymmetrical among species, as our results
338 demonstrate. Studies of long-term trends in fecundity have reported both increases and
339 decreases in mean reproduction in forest species, but we do not know what drives these
340 differences (Bogdziewicz et al., 2020c; Mutke et al., 2005; Pesendorfer et al., 2020; Redmond
341 et al., 2012; Richardson et al., 2005). A mechanistic understanding of the links between
342 climatic variation and plant reproduction will help to identify these drivers.

343

344 **Acknowledgements**

345 We thank two Anonymous Reviewers for their comments on the previous version of this
346 manuscript. MB was supported by the (Polish) National Science Centre grant numbers
347 2018/28/U/NZ8/00003 (Uwertura) and 2017/24/C/NZ8/00151 (Sonatina). MFM is a
348 postdoctoral fellow of the Research Foundation-Flanders (FWO). MBP is supported by the
349 Austrian Science Foundation (FWF) project number P30381. This work contributes to the
350 ICTA-UAB ‘Unit of Excellence’ (MinECo, MDM2015-0552). JP acknowledges the financial
351 support from the European Research Council Synergy grant ERC-SyG-2013-610028
352 (IMBALANCE-P).

353

354 **Contributions**

355 MB conceived the study, run the analysis, and drafted the manuscript. All authors collected
356 data, participated in the evaluation of the results, contributed to text editing and approved the
357 final version.

358

359 **Literature**

360 Anderson, D., Burnham, K., 2004. Model selection and multi-model inference. Second. NY:
361 Springer-Verlag 63.

362 Bogdziewicz, M., Ascoli, D., Hacket-Pain, A., Koenig, W.D., Pearse, I., Pesendorfer, M.,
363 Satake, A., Thomas, P., Vacchiano, G., Wohlgemuth, T., Tanentzap, A., 2020a. From
364 theory to experiments for testing the proximate mechanisms of mast seeding: an
365 agenda for an experimental ecology. *Ecology Letters* 23, 210–220.
366 <https://doi.org/10.1111/ele.13442>

367 Bogdziewicz, M., Fernández-Martínez, M., Bonal, R., Belmonte, J., Espelta, J.M., 2017. The
368 Moran effect and environmental vetoes: phenological synchrony and drought drive
369 seed production in a Mediterranean oak. *Proceedings of the Royal Society B:
370 Biological Sciences* 284, 20171784. <https://doi.org/10.1098/rspb.2017.1784>

371 Bogdziewicz, M., Kelly, D., Tanentzap, A.J., Thomas, P.A., Lageard, J.G.A., Hacket-Pain,
372 A., 2020b. Climate Change Strengthens Selection for Mast Seeding in European
373 Beech. *Current Biology* . <https://doi.org/10.1016/j.cub.2020.06.056>

374 Bogdziewicz, M., Kelly, D., Thomas, P.A., Lageard, J.G.A., Hacket-Pain, A., 2020c. Climate
375 warming disrupts mast seeding and its fitness benefits in European beech. *Nature
376 Plants* 6, 88–94. <https://doi.org/10.1038/s41477-020-0592-8>

377 Bogdziewicz, M., Szymkowiak, J., Kasprzyk, I., Grewling, Łukasz, Borowski, Z., Borycka,
378 K., Kantorowicz, W., Myszkowska, D., Piotrowicz, K., Ziemianin, M., 2017. Masting
379 in wind-pollinated trees: system-specific roles of weather and pollination dynamics in
380 driving seed production. *Ecology* 98, 2615–2625.

381 Bogdziewicz, M., Zwolak, R., Crone, E.E., 2016. How do vertebrates respond to mast
382 seeding? *Oikos* 125, 300–307.

383 Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A.,
384 Skaug, H.J., Machler, M., Bolker, B.M., 2017. glmmTMB balances speed and
385 flexibility among packages for zero-inflated generalized linear mixed modeling. *The R
386 journal* 9, 378–400. <https://doi.org/10.3929/ethz-b-000240890>

387 Canelo, T., Gaytán, Á., González-Bornay, G., Bonal, R., 2018. Seed loss before seed
388 predation: experimental evidence of the negative effects of leaf feeding insects on
389 acorn production. *Integrative Zoology* 13, 238–250. [https://doi.org/10.1111/1749-4877.12292](https://doi.org/10.1111/1749-
390 4877.12292)

391 Clark, J.S., Nuñez, C.L., Tomasek, B., 2019. Foodwebs based on unreliable foundations:
392 spatiotemporal masting merged with consumer movement, storage, and diet.
393 *Ecological Monographs* 89, e01381. <https://doi.org/10.1002/ecm.1381>

394 Crone, E.E., Rapp, J.M., 2014. Resource depletion, pollen coupling, and the ecology of mast
395 seeding. *Annals of the New York Academy of Sciences* 1322, 21–34.

396 Elzinga, J.A., Atlan, A., Biere, A., Gigord, L., Weis, A.E., Bernasconi, G., 2007. Time after
397 time: flowering phenology and biotic interactions. *Trends in Ecology & Evolution* 22,
398 432–439. <https://doi.org/10.1016/j.tree.2007.05.006>

399 Fernández-Martínez, M., Belmonte, J., Maria Espelta, J., 2012. Masting in oaks:
400 Disentangling the effect of flowering phenology, airborne pollen load and drought.
401 *Acta Oecologica* 43, 51–59. <https://doi.org/10.1016/j.actao.2012.05.006>

402 Fernández-Martínez, M., Pearse, I., Sardans, J., Sayol, F., Koenig, W.D., LaMontagne, J.M.,
403 Bogdziewicz, M., Collalti, A., Hacket-Pain, A., Vacchiano, G., Espelta, J.M.,
404 Peñuelas, J., Janssens, I.A., 2019. Nutrient scarcity as a selective pressure for mast
405 seeding. *Nature Plants* 1–7. <https://doi.org/10.1038/s41477-019-0549-y>

406 Flynn, D.F.B., Wolkovich, E.M., 2018. Temperature and photoperiod drive spring phenology
407 across all species in a temperate forest community. *New Phytologist* 219, 1353–1362.
408 <https://doi.org/10.1111/nph.15232>

409 Fu, Y.H., Geng, X., Hao, F., Vitasse, Y., Zohner, C.M., Zhang, X., Zhou, X., Yin, G.,
410 Peñuelas, J., Piao, S., Janssens, I.A., 2019a. Shortened temperature-relevant period of
411 spring leaf-out in temperate-zone trees. *Global Change Biology* 25, 4282–4290.
412 <https://doi.org/10.1111/gcb.14782>

413 Fu, Y.H., Piao, S., Zhou, X., Geng, X., Hao, F., Vitasse, Y., Janssens, I.A., 2019b. Short
414 photoperiod reduces the temperature sensitivity of leaf-out in saplings of *Fagus*
415 *sylvatica* but not in horse chestnut. *Global Change Biology* 25, 1696–1703.
416 <https://doi.org/10.1111/gcb.14599>

417 Fu, Y.H., Zhang, X., Piao, S., Hao, F., Geng, X., Vitasse, Y., Zohner, C., Peñuelas, J.,
418 Janssens, I.A., 2019c. Daylength helps temperate deciduous trees to leaf-out at the
419 optimal time. *Global Change Biology* 25, 2410–2418.
420 <https://doi.org/10.1111/gcb.14633>

421 Fu, Y.H., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G., Ciais, P., Huang, M., Menzel,
422 A., Peñuelas, J., Song, Y., Vitasse, Y., Zeng, Z., Janssens, I.A., 2015. Declining global
423 warming effects on the phenology of spring leaf unfolding. *Nature* 526, 104–107.
424 <https://doi.org/10.1038/nature15402>

425 Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., Berger, U., Clot,
426 B., Brando, R., EAS QC Working Group, 2014. Pollen monitoring: minimum
427 requirements and reproducibility of analysis. *Aerobiologia* 30, 385–395.
428 <https://doi.org/10.1007/s10453-014-9335-5>

429 Goldberg, C., Buch, H., Moseholm, L., Weeke, E.R., 1988. Airborne Pollen Records in
430 Denmark, 1977–1986. *Grana* 27, 209–217.
431 <https://doi.org/10.1080/00173138809428928>

432 Hacket-Pain, A.J., Ascoli, D., Vacchiano, G., Biondi, F., Cavin, L., Conedera, M.,
433 Drobyshev, I., Liñán, I.D., Friend, A.D., Grabner, M., Hartl, C., Kreyling, J.,
434 Lebourgeois, F., Levanič, T., Menzel, A., Maaten, E. van der, Maaten-Theunissen, M.
435 van der, Muffler, L., Motta, R., Roibu, C.-C., Popa, I., Scharnweber, T., Weigel, R.,
436 Wilmking, M., Zang, C.S., 2018. Climatically controlled reproduction drives
437 interannual growth variability in a temperate tree species. *Ecology Letters* 21, 1833–
438 1844. <https://doi.org/10.1111/ele.13158>

439 Hanley, M.E., Cook, B.I., Fenner, M., 2019. Climate variation, reproductive frequency and
440 acorn yield in English Oaks. *J Plant Ecol* 12, 542–549.
441 <https://doi.org/10.1093/jpe/rty046>

442 Hirst, J.M., 1952. An Automatic Volumetric Spore Trap. *Annals of Applied Biology* 39, 257–
443 265. <https://doi.org/10.1111/j.1744-7348.1952.tb00904.x>

444 Jump, A.S., Peñuelas, J., 2005. Running to stand still: adaptation and the response of plants to
445 rapid climate change. *Ecology Letters* 8, 1010–1020. <https://doi.org/10.1111/j.1461-0248.2005.00796.x>

447 Kelly, D., 1994. The evolutionary ecology of mast seeding. *Trends in Ecology & Evolution* 9,
448 465–470. [https://doi.org/10.1016/0169-5347\(94\)90310-7](https://doi.org/10.1016/0169-5347(94)90310-7)

449 Kelly, D., Geldenhuys, A., James, A., Penelope Holland, E., Plank, M.J., Brockie, R.E.,
450 Cowan, P.E., Harper, G.A., Lee, W.G., Maitland, M.J., 2013. Of mast and mean:
451 differential-temperature cue makes mast seeding insensitive to climate change.
452 *Ecology Letters* 16, 90–98.

453 Kelly, D., Sork, V.L., 2002. Mast seeding in perennial plants: why, how, where? *Annual
454 review of ecology and systematics* 33, 427–447.

455 Koenig, W.D., Knops, J.M., Carmen, W.J., Pearse, I.S., 2015. What drives masting? The
456 phenological synchrony hypothesis. *Ecology* 96, 184–192.

457 Koenig, W.D., Knops, J.M.H., 2013. Large-scale spatial synchrony and cross-synchrony in
458 acorn production by two California oaks. *Ecology* 94, 83–93.
459 <https://doi.org/10.1890/12-0940.1>

460 Koenig, W.D., Knops, J.M.H., 2000. Patterns of Annual Seed Production by Northern
461 Hemisphere Trees: A Global Perspective. *The American Naturalist* 155, 59–69.
462 <https://doi.org/10.1086/303302>

463 Lebourgeois, F., Delpierre, N., Dufrêne, E., Cecchini, S., Macé, S., Croisé, L., Nicolas, M.,
464 2018. Assessing the roles of temperature, carbon inputs and airborne pollen as drivers
465 of fructification in European temperate deciduous forests. *Eur J Forest Res* 137, 349–
466 365. <https://doi.org/10.1007/s10342-018-1108-1>

467 Liu, Q., Fu, Y.H., Zhu, Z., Liu, Y., Liu, Z., Huang, M., Janssens, I.A., Piao, S., 2016. Delayed
468 autumn phenology in the Northern Hemisphere is related to change in both climate
469 and spring phenology. *Global Change Biology* 22, 3702–3711.
470 <https://doi.org/10.1111/gcb.13311>

471 Liu, Q., Piao, S., Janssens, I.A., Fu, Y., Peng, S., Lian, X., Ciais, P., Myneni, R.B., Peñuelas,
472 J., Wang, T., 2018. Extension of the growing season increases vegetation exposure to
473 frost. *Nature Communications* 9, 1–8. <https://doi.org/10.1038/s41467-017-02690-y>

474 Lüdecke, D., 2018. sjstats: Statistical functions for regression models. R package version 0.14
475 3.

476 Malyshev, A.V., Henry, H.A.L., Bolte, A., Arfin Khan, M.A.S., Kreyling, J., 2018. Temporal
477 photoperiod sensitivity and forcing requirements for budburst in temperate tree
478 seedlings. *Agricultural and Forest Meteorology* 248, 82–90.
479 <https://doi.org/10.1016/j.agrformet.2017.09.011>

480 McDowell, N.G., Allen, C.D., Anderson-Teixeira, K., Aukema, B.H., Bond-Lamberty, B.,
481 Chini, L., Clark, J.S., Dietze, M., Grossiord, C., Hanbury-Brown, A., Hurtt, G.C.,
482 Jackson, R.B., Johnson, D.J., Kueppers, L., Lichstein, J.W., Ogle, K., Poulter, B.,
483 Pugh, T.A.M., Seidl, R., Turner, M.G., Uriarte, M., Walker, A.P., Xu, C., 2020.
484 Pervasive shifts in forest dynamics in a changing world. *Science* 368.
485 <https://doi.org/10.1126/science.aaz9463>

486 MuMIn, B.K., 2018. multi-model inference. R package version 1.15. 6. 2016.

487 Mutke, S., Gordo, J., Gil, L., 2005. Variability of Mediterranean Stone pine cone production:
488 Yield loss as response to climate change. *Agricultural and Forest Meteorology* 132,
489 263–272. <https://doi.org/10.1016/j.agrformet.2005.08.002>

490 Nakagawa, S., Schielzeth, H., 2017. A general and simple method for obtaining R2 from
491 generalized linear mixed-effects models. *Methods in Ecology and Evolution* 133–142.
492 [https://doi.org/10.1111/j.2041-210x.2012.00261.x@10.1111/\(ISSN\)2041-210XSTATSTOO](https://doi.org/10.1111/j.2041-210x.2012.00261.x@10.1111/(ISSN)2041-210XSTATSTOO)

493

494 Nussbaumer, A., Waldner, P., Apuhtin, V., Aytar, F., Benham, S., Bussotti, F., Eichhorn, J.,
495 Eickenscheidt, N., Fabianek, P., Falkenried, L., Leca, S., Lindgren, M., Manzano
496 Serrano, M.J., Neagu, S., Nevalainen, S., Pajtik, J., Potočić, N., Rautio, P., Sioen, G.,

497 Stakėnas, V., Tasdemir, C., Thomsen, I.M., Timmermann, V., Ukonmaanaho, L.,
498 Verstraeten, A., Wulff, S., Gessler, A., 2018. Impact of weather cues and resource
499 dynamics on mast occurrence in the main forest tree species in Europe. *Forest*
500 *Ecology and Management* 429, 336–350. <https://doi.org/10.1016/j.foreco.2018.07.011>

501 Ostfeld, R.S., Keesing, F., 2000. Pulsed resources and community dynamics of consumers in
502 terrestrial ecosystems. *Trends in Ecology & Evolution* 15, 232–237.

503 Pearse, I.S., Funk, K.A., Kraft, T.S., Koenig, W.D., 2015. Lagged effects of early-season
504 herbivores on valley oak fecundity. *Oecologia* 178, 361–368.
505 <https://doi.org/10.1007/s00442-014-3193-2>

506 Pearse, I.S., Koenig, W.D., Kelly, D., 2016. Mechanisms of mast seeding: resources, weather,
507 cues, and selection. *New Phytologist* 212, 546–562. <https://doi.org/10.1111/nph.14114>

508 Peaucelle, M., Janssens, I.A., Stocker, B.D., Descals Ferrando, A., Fu, Y.H., Molowny-Horas,
509 R., Ciais, P., Peñuelas, J., 2019. Spatial variance of spring phenology in temperate
510 deciduous forests is constrained by background climatic conditions. *Nature*
511 *Communications* 10, 1–10. <https://doi.org/10.1038/s41467-019-13365-1>

512 Pérez-Ramos, I.M., Padilla-Díaz, C.M., Koenig, W.D., Marañón, T., 2015. Environmental
513 drivers of mast-seeding in Mediterranean oak species: does leaf habit matter? *Journal*
514 *of Ecology* 103, 691–700. <https://doi.org/10.1111/1365-2745.12400>

515 Pesendorfer, M.B., Bogdziewicz, M., Szymkowiak, J., Borowski, Z., Kantorowicz, W.,
516 Espelta, J.M., Fernández-Martínez, M., 2020. Investigating the relationship between
517 climate, stand age, and temporal trends in masting behavior of European forest trees.
518 *Global Change Biology* 26, 1654–1667. <https://doi.org/10.1111/gcb.14945>

519 Pesendorfer, M.B., Koenig, W.D., Pearse, I.S., Knops, J.M.H., Funk, K.A., 2016. Individual
520 resource limitation combined with population-wide pollen availability drives masting
521 in the valley oak (*Quercus lobata*). *Journal of Ecology* 104, 637–645.
522 <https://doi.org/10.1111/1365-2745.12554>

523 Redmond, M.D., Forcella, F., Barger, N.N., 2012. Declines in pinyon pine cone production
524 associated with regional warming. *Ecosphere* 3, art120. <https://doi.org/10.1890/ES12-00306.1>

525 Richardson, S.J., Allen, R.B., Whitehead, D., Carswell, F.E., Ruscoe, W.A., Platt, K.H., 2005.
526 Climate and Net Carbon Availability Determine Temporal Patterns of Seed
527 Production by *Nothofagus*. *Ecology* 86, 972–981. <https://doi.org/10.1890/04-0863>

528 Scheifinger, H., Belmonte, J., Buters, J., Celenk, S., Damialis, A., Dechamp, C., García-
529 Mozo, H., Gehrig, R., Grewling, L., Halley, J.M., Hogda, K.-A., Jäger, S., Karatzas,
530

531 K., Karlsen, S.-R., Koch, E., Pauling, A., Peel, R., Sikoparija, B., Smith, M., Galán-
532 Soldevilla, C., Thibaudon, M., Vokou, D., de Weger, L.A., 2013. Monitoring,
533 Modelling and Forecasting of the Pollen Season, in: Sofiev, M., Bergmann, K.-C.
534 (Eds.), Allergenic Pollen: A Review of the Production, Release, Distribution and
535 Health Impacts. Springer Netherlands, Dordrecht, pp. 71–126.
536 https://doi.org/10.1007/978-94-007-4881-1_4

537 Schermer, É., Bel-Venner, M.-C., Fouchet, D., Siberchicot, A., Boulanger, V., Caignard, T.,
538 Thibaudon, M., Oliver, G., Nicolas, M., Gaillard, J.-M., Delzon, S., Venner, S., 2019.
539 Pollen limitation as a main driver of fruiting dynamics in oak populations. *Ecology*
540 Letters 22, 98–107. <https://doi.org/10.1111/ele.13171>

541 Schermer, É., Bel-Venner, M.-C., Gaillard, J.-M., Dray, S., Boulanger, V., Roncé, I.L.,
542 Oliver, G., Chuine, I., Delzon, S., Venner, S., 2020. Flower phenology as a disruptor
543 of the fruiting dynamics in temperate oak species. *New Phytologist* 225, 1181–1192.
544 <https://doi.org/10.1111/nph.16224>

545 Tanentzap, A.J., Monks, A., 2018. Making the mast of a rainy day: environmental constraints
546 can synchronize mass seeding across populations. *New Phytologist* 219, 6–8.
547 <https://doi.org/10.1111/nph.15219>

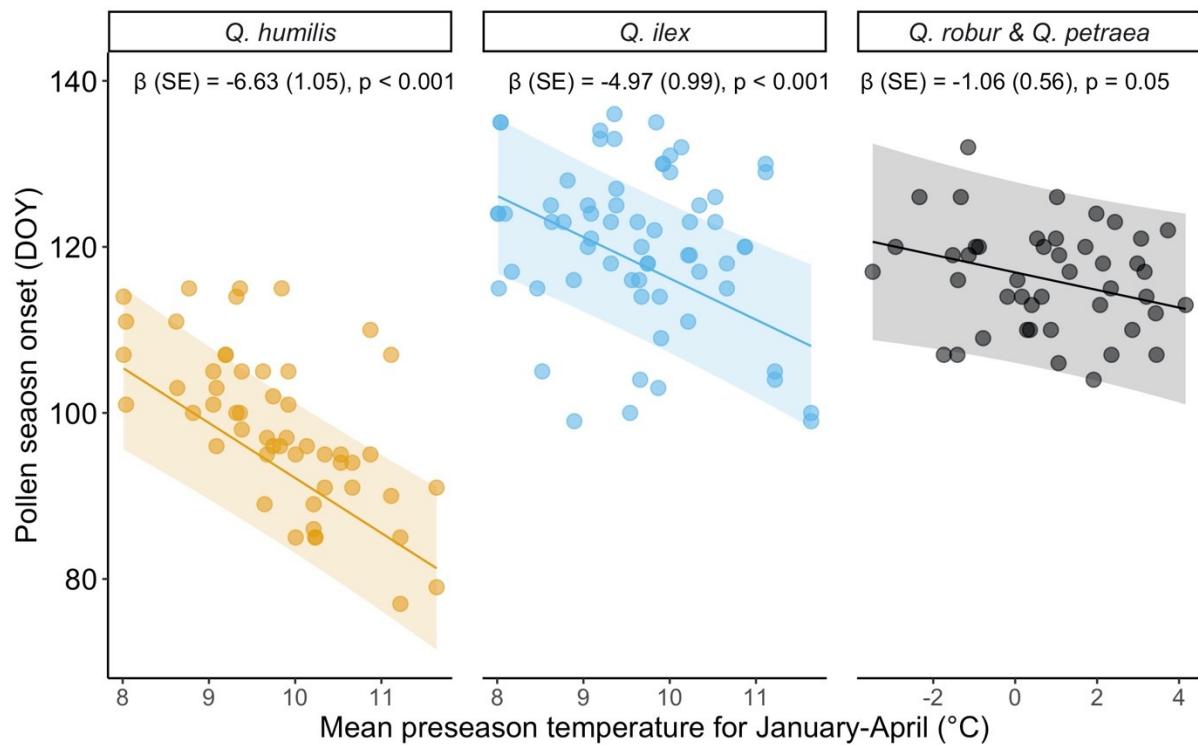
548 Wagenius, S., Beck, J., Kiefer, G., 2020. Fire synchronizes flowering and boosts reproduction
549 in a widespread but declining prairie species. *PNAS* 117, 3000–3005.
550 <https://doi.org/10.1073/pnas.1907320117>

551 Ziska, L.H., Makra, L., Harry, S.K., Bruffaerts, N., Hendrickx, M., Coates, F., Saarto, A.,
552 Thibaudon, M., Oliver, G., Damialis, A., Charalampopoulos, A., Vokou, D.,
553 Heiðmarsson, S., Guðjohnsen, E., Bonini, M., Oh, J.-W., Sullivan, K., Ford, L.,
554 Brooks, G.D., Myszkowska, D., Severova, E., Gehrig, R., Ramón, G.D., Beggs, P.J.,
555 Knowlton, K., Crimmins, A.R., 2019. Temperature-related changes in airborne
556 allergenic pollen abundance and seasonality across the northern hemisphere: a
557 retrospective data analysis. *The Lancet Planetary Health* 3, e124–e131.
558 [https://doi.org/10.1016/S2542-5196\(19\)30015-4](https://doi.org/10.1016/S2542-5196(19)30015-4)

559 Zohner, C.M., Benito, B.M., Svenning, J.-C., Renner, S.S., 2016. Day length unlikely to
560 constrain climate-driven shifts in leaf-out times of northern woody plants. *Nature*
561 *Climate Change* 6, 1120–1123. <https://doi.org/10.1038/nclimate3138>

562 Zohner, C.M., Mo, L., Renner, S.S., 2018. Global warming reduces leaf-out and flowering
563 synchrony among individuals. *eLife* 7, e40214. <https://doi.org/10.7554/eLife.40214>

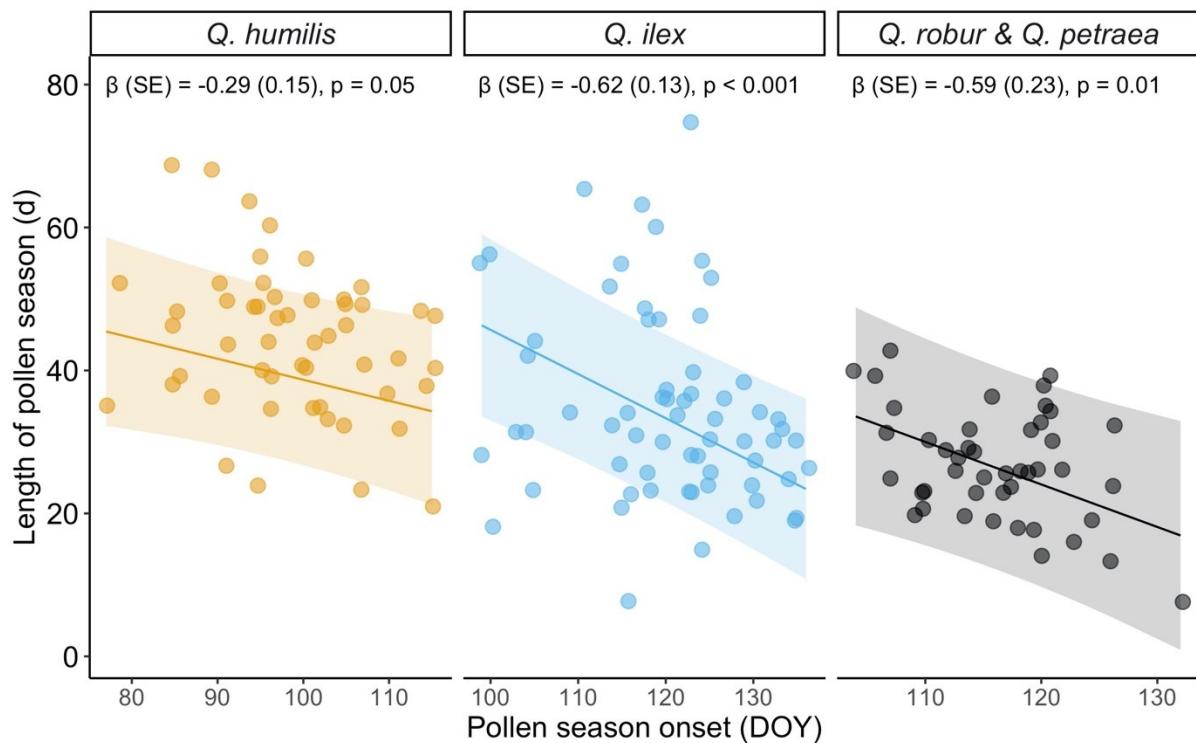
564 Zuur, A., Ieno, E.N., Walker, N., Saveliev, A.A., Smith, G.M., 2009. Mixed effects models
565 and extensions in ecology with R. Springer Science & Business Media.
566


567 Table 1. Model selection. Models are ranked by Akaike's information criterion adjusted for
568 small sample size (AICc), and w indicates model weight. Each model is a Gaussian LMM,
569 with ar1 temporal autocorrelation structure and plot included as a random intercept.

Model	df	LogLik	AICc	ΔAIC	w
Flowering onset + species	7	-586.35	1187.4	0	0.66
Flowering onset + temperature during flowering + species	8	-585.89	1188.7	1.29	0.34
Temperature during flowering + species	7	-594.56	1203.9	16.43	0
Null model (random effect only)	4	-610.17	1228.6	41.18	0

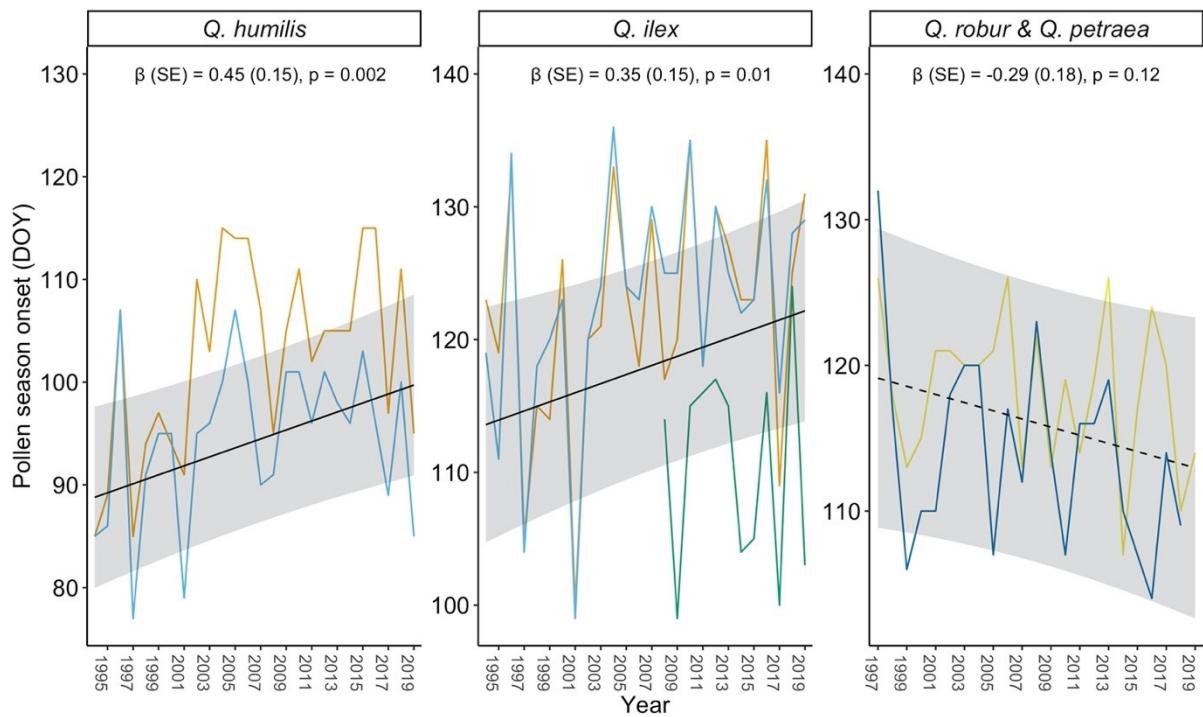
570

571

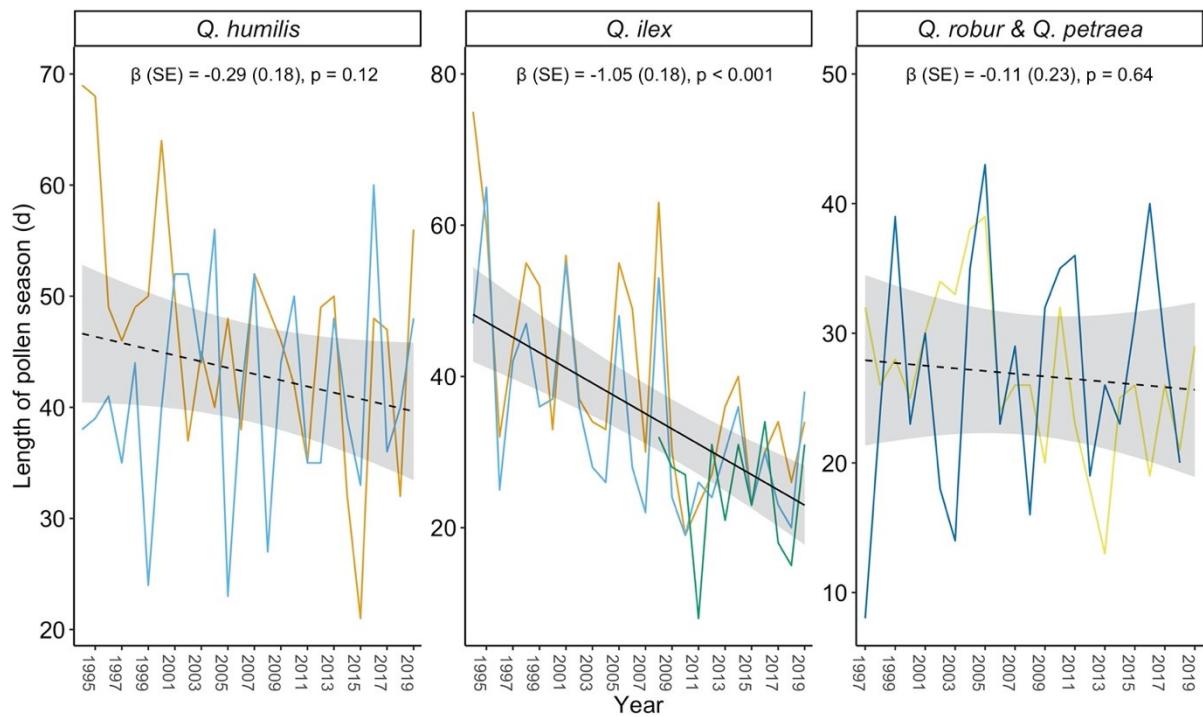

572 Figure 1. Warmer preseason temperatures advance the timing of pollen season onset (day of
 573 the year, DOY). The lines are based on significant LMM predictions, and the shading
 574 indicates the 95% confidence intervals, β shows effect sizes and associated statistics. Points
 575 are the per-site, per-year observations, based on 22-yr in *Q. robur* (2 sites, Poland), 25-yr for
 576 *Q. humilis* (2 sites, Spain), and 25-yr data set of pollen records in *Q. ilex* at two sites and 12
 577 years at one site (all Spain).

578
 579
 580

581 Figure 2. Late pollen seasons are short. The lines are based on significant LMM predictions,
582 and the shading indicates the 95% confidence intervals, β shows effect sizes and associated
583 statistics. Points are the per-site, per-year observations, based on 22-yr in *Q. robur* (2 sites,
584 Poland), 25-yr for *Q. humilis* (2 sites, Spain), and 25-yr data set of pollen records in *Q. ilex* at
585 two sites and 12 years at one site (all Spain).


586

587


588

589 Figure 3. Temporal changes in the timing of pollen season onset. The colored lines represent
 590 sites, prediction lines are based on an LMM, and the shading indicates the 95% confidence
 591 intervals, β shows effect sizes and associated statistics. The model was based on a 22-y data
 592 set at two sites in Poland (Poznań, yellow; Rzeszów, blue) for *Q. robur* and *Q. petraea*, 25-y
 593 data set for *Q. humilis* (two sites, Spain), and 25-y data set of pollen records at two sites
 594 (Barcelona, orange; Bellaterra, light blue) and a 12-y data set at one site (Huecas, green) for
 595 *Q. ilex*.

596
 597
 598
 599
 600

601 Figure 5. Temporal changes in the length of the pollen seasons. The colored lines represent
 602 sites, prediction lines are based on an LMM, and the shading indicates the 95% confidence
 603 intervals, β shows effect sizes and associated statistics. The model was based on a 22-y data
 604 set at two sites in Poland (Poznań, yellow; Rzeszów, blue) for *Q. robur* and *Q. petraea*, 25-y
 605 data set for *Q. humilis* (two sites, Spain), and 25-y data set of pollen records at two sites
 606 (Barcelona, orange; Bellaterra, light blue) and a 12-y data set at one site (Huecas, green) for
 607 *Q. ilex*.

608
 609
 610
 611