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Abstract: The two-point measurement scheme for computing the thermodynamic work performed
on a system requires it to be initially in equilibrium. The Margenau–Hill scheme, among others,
extends the previous approach to allow for a non-equilibrium initial state. We establish a quantitative
comparison between both schemes in terms of the amount of coherence present in the initial state of
the system, as quantified by the l1-coherence measure. We show that the difference between the two
first moments of work, the variances of work, and the average entropy production obtained in both
schemes can be cast in terms of such initial coherence. Moreover, we prove that the average entropy
production can take negative values in the Margenau–Hill framework.

Keywords: quantum coherence; quantum thermodynamics; work distribution

1. Introduction

In the quest for the understanding of the interplay between thermal and quantum fluctuations
that determine the energy exchange processes occurring at the nano- and micro-scale, the identification
of the role played by quantum coherences is paramount [1,2]. The foundational nature of such
understanding has been the driving force for much research effort, which has started shedding
light onto the role that quantum coherence has in the quantum thermodynamic phenomenology,
from work extraction to the emergence of irreversibility [3–12]. Owing to the success that it has
encountered in classical stochastic thermodynamics, the current approach to the determination of the
statistics of such energetics in the quantum domain is based on the so-called two-point measurement
(TPM) protocol [13–15]: the energy change of a system driven by a time-dependent protocol is
measured both at the initial and final time of the dynamics. The application of the TPM protocol
has led to the possibility to address the statistics of quantum energy fluctuations in a few interesting
experiments [16–20]. Unfortunately, such a strategy has a considerable drawback in that, by performing
a strong initial projective measurement, all quantum coherences in the energy eigenbasis are removed,
de facto washing out the possibility of quantum interference to take place.

This fundamental bottleneck has led to efforts aimed at formulating coherence-preserving
protocols for the quantification of the statistics of energy fluctuations resulting from a quantum
process [21–24]. A particularly tantalising one entails the use of quasi-probability functions to account
for such statistics [21,25–27]. Drawing from the success that quasi-probability distributions have in
signalling non-classical effects in the statistics of light fields, the authors of [21,23] have put forward
the cases for the Margenau–Hill (MH) quasi-probability distribution [28,29] for the energetics of a
quantum process. The MH distribution, which is the real part of the well-known complex Kirkwood
distribution [30], provides the probability distribution for any two non-commuting observables and
can take negative values. In the context of stochastic thermodynamics, the distribution of energy
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fluctuations provided by the MH approach generalises the TPM one by replacing the strong initial
measurement requested by the latter with a weak measurement.

Negative values of the statistics inferred following the ensuing protocol witness strong
non-classicality of the overall process followed by the system [23], which are completely removed
from the picture provided by TPM. In such a context, it is crucial to pinpoint the role that the quantum
coherences either present in the initial state of the system or created throughout its dynamics have in
the setting up of the MH phenomenology. This is precisely the point addressed in this paper, where we
thoroughly investigate the differences between the statistics entailed by the TPM and MH approaches
and relate them to the value taken by well-established quantifiers of quantum coherence [31] over
the initial state of the system, as well as dynamical features of the process that the latter undergoes.
We show that such coherence-depending differences have strong implications for the formulation of
statements on the degree of irreversibility of a non-equilibrium process provided by the MH approach,
and provide a re-formulation of the average entropy production that clearly highlights the contribution
resulting from quantum coherences. This work thus makes the first necessary steps towards the
quantitative understanding of the implications of quantum coherence for the phenomenology of the
statistics of energy fluctuations in the quantum domain.

The remainder of this paper is organised as follows: In Section 2.1, we present a detailed
description of the TPM and MH schemes. Section 2.2 is a brief introduction to coherence theory.
The distance between the first moments of work obtained in both schemes is related to initial coherence
throughout Section 3.1. A similar investigation is carried out for the variances of work and the average
entropy production, which can be found in Sections 3.2 and 3.3, respectively. In Section 4, we draw
our conclusions, while we defer a series of technical details, including the demonstration of the main
results of our work, to the accompanying Appendix.

2. Background

2.1. Quantum Work Statistics

Consider an isolated quantum system initially prepared in an equilibrium state and subjected to
an external force that changes a work parameter λt in time according to a generic finite-time protocol.
The latter includes, at the initial time t = 0 and final time t = τ, projective measurements of the energy
of the system, which result in the values Eλ0

n ≡ E0
n and Eλτ

m ≡ Eτ
m. Here, n and m label the respective

energy levels of the initial and final Hamiltonian H(λ0) ≡ H0, H(λτ) ≡ Hτ of the system. Thermal
and quantum randomness render the measured energy difference Eτ

m − E0
n, which can be interpreted

as the work done on the system through the protocol, a stochastic variable. One can recognize here the
well-known two-point measurement (TPM) scheme for measuring work, whose values are distributed
according to the following probability distribution:

pTPM
τ (w) = ∑

m,n
PTPM

τ [Eτ
m, E0

n]δ[w− (Eτ
m − E0

n)]. (1)

Here, PTPM
τ [Eτ

m, E0
n] is the joint probability to measure the energy values E0

n and Eτ
m,

PTPM
τ [Eτ

m, E0
n] = Tr

[
ΠEτ

m UτΠE0
n
G0ΠE0

n
U†

τΠEτ
m

]
, (2)

where G(λt) ≡ Gt = e−βHt /Zt is a Gibbs state—at the inverse temperature β—of the instantaneous
Hamiltonian H(λt) ≡ Ht = ∑i Et

i Πt
i , Zt = Tr

[
e−βHt

]
is the associated partition function, Πt

i = |Et
i 〉〈Et

i |
is the projector onto the eigenstate |Et

i 〉 of Ht with energy Et
i , and U(τ) ≡ Ut is the unitary propagator

of the evolution.
Suppose now that our initial system was instead in a non-equilibrium state of the form ρne =

G0 +∑i 6=j ρne
ij . It can be noticed that pTPM

τ (w) would remain invariant in this case, since the action of the

first projective measurement, performed through Π0
n, destroys any coherence that could be present in



Entropy 2020, 22, 1223 3 of 16

the initial state. The following question can then be posed: what alternative protocols could be devised
such that the initial state coherence would have an effect on the measured thermodynamic work?

Several strategies beyond the TPM scheme have been pointed out in this line [5–7,21–24,32]. Here,
we will consider the MH scheme for measuring work, which replaces the first projective measurement
of the TPM scheme with a weak measurement [23], and thus allows for initial coherence to survive
along the protocol. For an initial state ρne, the values of work are now distributed according to

pMH
τ (w) = ∑

m,n
PMH

τ [Eτ
m, E0

n]δ[w− (Eτ
m − E0

n)], (3)

where
PMH

τ [Eτ
m, E0

n] = Re
(

Tr[U†
t ΠEτ

m UtΠE0
n
ρne]

)
(4)

is the MH quasiprobability distribution, which can take negative values in the range PMH
τ [Eτ

m, E0
n] ∈

[−1/8, 1] when the state that we consider deviates from equilibrium [21], and goes back to the
distribution associated with a TPM approach for initial equilibrium states.

2.2. Coherence Theory

The coherence of a state can be cast within the framework set by the well-established resource
theory of coherence [31,33–36]. As in every quantum resource theory [37], free states and operations
must be first identified: here, the set I of free states—denoted as incoherent states—includes all the
states δ ∈ S(H) (with S(H) denoting the set of unit-trace and semi-positive definite linear operators on
H) that are diagonal in some fixed basis {|i〉}d−1

i=0 ofH, whereas free operations are those that map the
set of free states to itself and thus cannot generate coherence. The largest class of free operations are the
maximally incoherent operations (MIOs) [33], consisting of all completely positive and trace-preserving
(CPTP) maps M such that M(I) ⊂ I . A subset of MIOs are incoherent operations (IOs) [31],
comprising all CPTP mapsM that admit a Kraus representation with operators Kα such that KαIK†

α ⊂
I for all α. Only after singling out the states and operations that can be performed at no cost can
one investigate how resource states—states with coherence—are to be quantified, manipulated, and
interconverted among each other. Coherence measures [31] are indispensable at this stage; quantifying
the amount of coherence present in a state ρ ∈ S(H), a coherence measure is a functional C : S(H)→
R≥0 that fulfills the following conditions: (i) faithfulness, meaning that C(δ) = 0 for all δ ∈ I , and (ii)
monotonicity, C(ρ) ≥ C(M(ρ)), for all free operationsM.

In particular, throughout this work, we will make use of the l1-coherence measure [31] defined as

Cl1(ρ) = ∑
i 6=j
|ρij|, (5)

which is a valid coherence quantifier under IOs, but not MIOs [38]. Notably, when used on qubit states
parametrised as ρ = 1

2 (1+ a · σ) with a ∈ R3, the Bloch vector associated with ρ, and σ the vector of
Pauli matrices, Equation (5) quantifies the length of the projection a⊥ of a onto the equatorial plane of
the Bloch sphere. Thus, for qubit states with az = 0, we have ax = Cl1(ρ) cos(χ) and ay = Cl1(ρ) sin(χ),
where χ is the angle between a⊥ and the x-axis of the Bloch sphere (cf. Figure 1).
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Figure 1. Equatorial plane of the Bloch sphere at z = 0. The l1-coherence of a state quantifies its
distance from the z-axis.

3. Main Results

As previously stated, the purpose of this work is to provide a quantitative connection between
the TPM scheme and the MH one in terms of quantum coherence. As all the information about a
distribution is encoded in its moments, our approach to the assessment of the link between both
schemes will rely on quantifying the distance between their corresponding moments.

3.1. Distance between the Averages of Work

The generating function of pOτ (w) is defined as the Fourier transform GO(η, τ) =
∫

dwpOτ (w)eiηw

with O = TPM, MH. Moments of work are obtained through differentiation with respect to η,
〈wm

τ 〉O = (−i)k dk

dηk GO(η, τ)
∣∣
η=0 [15]. In the TPM scheme, the latter can be written as

〈wm
τ 〉TPM = Tr

[
∆(ρ0)(U†

τ HτUτ−H0)
m
]

, (6)

where ρ0 is the initial state of the working medium and ∆(ρ0) = ∑n Π0
nρ0Π0

n is the fully dephasing
map that suppresses coherences in the energy eigenbasis of the initial Hamiltonian (see notation
in Section 2.1). However, the corresponding quantity within the MH approach has the more
involved form

〈wm
τ 〉MH =

1
2

m

∑
l=0

(
m
l

)
Tr
[{

Hl
τ , (−H0)

m−l
}

ρ0

]
, (7)

which reduces to 〈wm
τ 〉MH = Tr

[
ρ0(U†

τ HτUτ − H0)
m] only for m = 1, 2. It then becomes evident

that the two first moments of work agree for both distributions whenever [U†
τ HτUτ , H0] = 0 or

[ρ0, H0] = 0 [32].
If we then consider cyclic processes such that H0 = Hτ ≡ H = ∑k hk|k〉〈k|, we are led to our

first result.

Theorem 1. For a d-dimensional system undergoing a cyclic process described by a unitary evolution Uτ ,
we have

|〈w〉MH − 〈w〉TPM| ≤
Tr|H|

2
Cl1(ρ0). (8)

The upper bound is tight for qubits, which are such that

max
Uτ

|〈wτ〉MH − 〈wτ〉TPM| =
Tr|H|

2
Cl1(ρ0), (9)

where the maximum is sought over all unitary operations Uτ .

A proof is given in Appendix A. It is worth pointing out that the bound depends on initial time
quantities such as Cl1(ρ0) as well as the Hamiltonian spectrum Tr [|H|], thus clearly highlighting the
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role of initial coherences and the impact of the first initial projective measurement on them brought by
the TPM scheme.

The tightness of the bound in Equation (8) is quickly lost as the dimension of the information
carrier grows. For instance, Figure 2a addresses the case of a system with d = 3 showing the
values taken by the exact (maximum) difference between the average work corresponding to the two
strategies assessed here (red dots)—computed by means of random sampling over the set of initial
states ρ—versus the degree of initial coherence in the state of the system. Such quantity is compared
to the bound in Equation (8) (blue crosses) to show a widening gap as Cl1(ρ0) grows. However,
a linear-like dependence with respect to the amount of coherence can still be appreciated for the actual
maximum distance between average works.

Let us get back to a qubit and consider the case of a sudden Hamiltonian quench, for which
Uτ → 1 in the limit τ → 0. Under such conditions, we have 〈wτ→0〉MH = 〈wτ→0〉TPM, irrespective of
the initial coherence. This reflects the fact that both first moments of work will vanish individually

under a sudden quench when considering cyclic processes—that is, 〈wτ→0〉TPM,MH
U→1−−−→ 0.

(a)

(b)

Figure 2. (a) Maximum absolute distance between the first moments of work obtained via the
Margenau–Hill (MH) scheme and the two-point measurement (TPM) scheme (red dots) and the bound
in Equation (8) (blue crosses) versus initial coherence. (b) Maximum absolute distance between the
second moments of work obtained via the MH scheme and the TPM scheme (red dots) and bound (10)
(blue crosses) versus initial coherence. Each point represents a simulation for a different random initial
state ρ0. Both panels refer to a d = 3 system governed by the Hamiltonian H = (1/

√
3)Diag[1, 1,−2].

3.2. Distance between the Variances of Work

The above analysis at the level of the averages of the work distributions is clearly insufficient to
satisfactorily characterise the statistical implications of the first projective energy measurement which
distinguishes between the TPM and MH schemes. It is in fact well known that measurements induce
quantum fluctuations, which become extremely relevant whenever micro- and nano-scale systems are
considered. Their connection with thermodynamics has recently drawn much attention and their role
as a resource has been clarified [39–41]. Driven by this, we now investigate the relationship between
the variances of the work distribution in the TPM and MH schemes. Somehow contrary to intuition,
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we will find that a definite general hierarchy between the two cannot be established, i.e., (∆wτ)2
TPM is

not greater or smaller than (∆wτ)2
MH for all parameters. Instead, each particular experimental setup

needs to be investigated on its own, as either situation can occur.
Let us first of all focus on the second moment of the work distributions. In the same spirit of

Theorem 1, we prove the following:

Theorem 2. For a d-dimensional system undergoing a cyclic process described by a unitary evolution U(τ),
we have

|〈w2
τ〉MH−〈w2

τ〉TPM|≤
Cl1
2
(ρ0)

(
TrH2+2 max

k
|hk|Tr|H|

)
. (10)

A detailed proof is reported in Appendix B. Once again, the bound Equation (10) just depends
on initial quantities such as the amount of coherences in the initial state ρ0 and the energy spectrum
of the initial Hamiltonian. It is important to stress that, at variance with the bound in Theorem 1,
Equation (10) is not tight, even for qubits. A simple calculation in the case d = 2 in fact shows that,
while the left hand side is identically zero, i.e., |〈w2〉MH − 〈w2〉TPM| = 0, the right hand side does not
vanish. In line with the analysis carried out for the discrepancy between first moments, Figure 2b
illustrates the diverging gap between the bound in Equation (10) and the maximum difference between
second moments for the case of a qutrit (d = 3) system with a growing degree of quantum coherence
in its initial state.

The difference between variances can be simply calculated as (∆wτ)2
MH − (∆wτ)2

TPM =

−〈wτ〉2MH + 〈wτ〉2TPM. These two considerations allow to show that the above difference does not have
a definite sign in general. To show this, let us restrict for simplicity to the case of a qubit undergoing
an evolution described by

Uτ =

(
cos τ sin τ

− sin τ cos τ

)
. (11)

Then, it is straightforward to prove the following

Corollary 1. For a d = 2 system undergoing a cyclic process described by a real unitary evolution Uτ , we have

(∆wτ)
2
MH − (∆wτ)

2
TPM =

− f (ρ0)[ f (ρ0) + 2 sin(τ)2az(h0 − h1)],
(12)

where f (ρ0) = (h0 − h1)Cl1(ρ0) sin(2τ) cos(χ)/2.

As we see in Figures 3 and 4, the difference between the variances can be either negative or
non-negative, so it is not possible to determine which one is larger in general. Restricting to pure real
qubits (ay = 0 → cos(χ) = ±1 and az = ±

√
1− a2

x) for ease of calculation helps us discern which
distribution is more uncertain depending on the values of ax, as shown in Figure 3 and summarised in
Table 1 (further details about the corresponding analysis can be found in Appendix C). The results
demonstrate that knowing the value of Cl1(ρ0) does not suffice to ascertain which variance is larger:
rather, it is the sign of cos(χ) = ±1 that eventually dictates their ordering.

Considering the whole set of pure qubits (ay 6= 0→ cos(χ) 6= ±1 and a2
x + a2

y + a2
z = 1) would

certainly require a much more involved analysis; however, this exceeds the present purposes, which are
just to point out that the contribution of cos(χ), consistently with what was claimed for real qubits,
can never be neglected when assessing the relative uncertainty between distributions (see Figure 4,
where the difference between variances is shown to change significantly for different values of χ).
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Figure 3. We plot the discrepancy (∆w)2
MH − (∆w)2

TPM between the variances of the TPM and MH
distributions for pure states of d = 2 systems with Bloch vector (ax, 0,

√
1− a2

x) against ax. We have
taken H0 = Hτ = σz and the dynamics described by Equation (11). We have taken τ = 0.1 (red),
τ = π/5 (magenta), τ = π/4 (green), and τ = 3π/4 (blue).

(a) (b)

(c) (d)

Figure 4. We correlate the value of the discrepancy (∆wτ)2
MH − (∆wτ)2

TPM between the variances of
the TPM and MH distributions to the specific point on the Bloch sphere that represents a pure state
of d = 2 systems. We have used H0 = Hτ = σz, the unitary propagator in Equation (11), and τ = 0.1
(panel (a)), τ = π/4 (panel (b)), τ = π/2− 0.01 (panel (c)), and τ = 3π/4 (panel (d)).
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Table 1. Relation between the variances of the MH and the TPM schemes for a two-level system
with a Bloch vector with ay = 0 and dynamics ruled by Equation (11). In Table (a), we have taken
sgn(az) = sgn(tan τ), while Table (b) is for sgn(az) 6= sgn(tan τ).

sgn(az) = sgn(tan τ)

ax∈[−1,−2az tan τ] ax∈[−2az tan τ, 0] ax ∈ [0, 1]

(∆w)2
MH ≤ (∆w)2

TPM (∆w)2
MH ≥ (∆w)2

TPM (∆w)2
MH ≤ (∆w)2

TPM

(a)

sgn(az) 6= sgn(tan τ)

ax ∈ [−1, 0] ax ∈ [0,−2az tan τ] ax ∈ [−2az tan τ, 1]

(∆w)2
MH ≤ (∆w)2

TPM (∆w)2
MH ≥ (∆w)2

TPM (∆w)2
MH ≤ (∆w)2

TPM

(b)

3.3. Study of the Entropy Production

We conclude our analysis by exploiting the above results concerning the work statistics in order
to investigate the consequences of initial coherence onto the average entropy production. The latter
quantity represents in general a measure of irreversibility and quantifies the amount of work that
is dissipated when driving a closed system out of equilibrium. The well-known second law of
thermodynamics dictates that the entropy production, defined as the difference between the average
work and the free energy difference, is always a non-negative quantity, i.e.,

〈Στ〉TPM ≡ 〈wτ〉TPM − ∆F ≥ 0 (13)

with ∆Fτ = β−1 ln Z0
Zτ

and Zt = Tr
[
e−βHt

]
. However, occasional violations to the second law can take

place due to the work fluctuations. Remarkably, the above inequality can be turned into an equality;
this milestone result, known as the Jarzynski equality [42], states that

〈e−β(wτ−∆Fτ)〉TPM = 1, (14)

from which Equation (13) is recovered by simple application of Jensen’s inequality. Crucially,
these results rely on the assumption that the system was initially prepared in a thermal state by
contact with a bath at inverse temperature β, i.e., ρ0 = G0 ≡ Z−1

0 e−βH0 . This state, which is clearly
incoherent with respect to the initial Hamiltonian, implies that both the TPM and the MH schemes
would provide the same answer for the work distribution, as the first energy projective measurement
entailed by the TPM approach would not affect the subsequent work statistics. We thus chose for
convenience and clarity to use the subscript TPM in order to distinguish from the MH scenario when
initial states with finite coherence in the energy eigenbasis are considered.

For an arbitrary initial state ρ0, however, a modified version of the Jarzynski equality has been
shown to hold [21]

〈e−β(wτ−∆Fτ)〉MH = Re
(

Tr[γτG−1
0 ρ0]

)
≡ ξτ , (15)

where γτ ≡ U†
τGτUτ . Equation (14) is recovered for ρ0 = G0. The consequences of the first

projective measurement involved in the TPM scheme, whenever the system possesses initial coherence,
can therefore be seen by comparing Equations (15) and (14). In what follows, we will, in particular,
complement the analysis carried out in this respect in [21] by studying the average entropy production
in the MH scheme, showing that the latter can become negative without being in contradiction with
the second law of thermodynamics (which only applies when a TPM scheme is applied).

Thanks to the convexity of the function appearing in Equation (15), one can still apply Jensen’s
inequality to obtain

〈Στ〉MH = β(〈wτ〉MH − ∆Fτ) ≥ − ln ξτ , (16)
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which remarkably does not preclude a negative average entropy production (indeed, ln ξτ can be
arbitrarily large [21]). This happens to hold for small enough β, as we can see in Figure 5a,b, where
we have plotted the minimum average entropy production as a function of β, for a suitable qubit
evolution, both in the MH and the TPM schemes. From Figure 5b, we also note that both schemes seem
to converge for β→ ∞, which is due to the fact that the coherence of ρ gets smaller as β increases.

(a)

(b)

Figure 5. (a) We plot the average entropy production 〈Στ〉 versus time for β = 0.2, ω = 0.8. The
behavior corresponding to the MH (TPM) scheme is shown by the green (red) curve. (b) We show
minω〈Στ〉 for the MH and TPM schemes (green and red curves, respectively), and − log ξ (blue curve)
versus β for τ = 3π/4.

For both panels, we have taken a qubit prepared in state ρ =

(
1− α2 ωα

√
1− α2

ωα
√

1− α2 α2

)
with

α2 = eβ/Tr[e−βH0 ], ω ∈ [0, 1] and H0 = σz, undergoing an evolution given by a real unitary ruled by
Equation (11) with Hτ = σz/2.

In order to get a deeper analytical insight of the regions where 〈Στ〉MH < 0, we go to the linear
response regime [43]. Here, we prove the following:

Theorem 3. In the MH scheme, the average entropy production in the linear response regime amounts to

〈Στ〉LR
MH = β〈wτ〉MH −

β2

2
Re
{

Tr
(

ρ0[H0, U†
τ HτUτ ]

)}
− β2

4
Tr[H2

0 − H2
τ ].

(17)

For two-dimensional systems undergoing a process described by a real unitary evolution, H0 = σz and Hτ = kσz

(k ∈ R), this yields
〈Στ〉LR

MH − 〈Στ〉LR
TPM = βk sin(2τ) cos(χ)Cl1(ρ0), (18)

where 〈Στ〉LR
TPM = β2(∆wτ)2

TPM/2.

From Equation (18), we see again that both approaches are only equivalent when the initial state is
in equilibrium (meaning that Cl1(ρ0) = 0). Moreover, we notice that considering a cyclic process (k = 1)
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would allow us to recover the relation between the first moments of work obtained in Theorem 1.
Finally, we observe that, under a sudden quench, both approaches agree irrespective of the initial state.
This must be the case, since it has to be ensured that for k = 1 (cyclic processes), both first moments of
work vanish under a sudden quench, as argued in Section 3.1,

〈Στ〉 = β〈wτ〉 = βTrρ(U†
τ HUτ − H)

U→1−−−→ 0. (19)

We are now equipped to prove the achievability of 〈Στ〉MH < 0.

Corollary 2. In the MH scheme, the average entropy production can take negative values, in contrast to what
happens in the TPM scheme:

〈Στ〉MH ∈ R, whereas 〈Στ〉TPM ∈ R+ ∪ {0}. (20)

Let us mention that Corollary 2 is independent of the fact that the MH distribution may present
negativities. What is more, the ordering of the variances of work obtained in both schemes (see Table 1)
cannot explain this result either (more details on these facts can be found in Appendix F).

4. Conclusions

Throughout this work, we have studied the TPM and the MH distributions of work from a
systematic comparative approach, being able to assess the difference between both of them in terms of
quantum coherence. In particular, we have shown that the difference between the first and second
moments of work obtained in both schemes is upper-bounded by the initial coherence, as quantified
by the l1-coherence measure. Regarding the variances of work, we have proved that it is not possible to
establish which one is larger in general, since their difference is fundamentally sensitive to the specific
configuration of the experiment. Moreover, when restricting to a specific qubit setting, the difference
between variances can again be cast via the l1-coherence of the initial state. This holds as well for
the average entropy production, which, in addition, can take negative values, contrary to what is
prescribed in the TPM framework.

Our work sheds light on the formal connection between the theory of quantum coherence and
recent attempts at going beyond the limitation of the TPM to unveil the statistics of energy fluctuations
resulting from quantum processes. Such connection, which is becoming increasingly apparent in light
of recent work [3,4,7,8], is likely to embody the leit motif of future endeavours aimed at pinpointing the
potential advantages of quantum (thermo-)devices.
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Appendix A. Proof of Theorem 1

Here, we provide details on the steps to go through in order to prove the statement made in
Theorem 1. We provide such details by addressing Equations (8) and (9) independently.

• Equation (8): The parameterisation of qudit states and unitaries makes finding an exact expression
for the absolute difference between average works a difficult task to tackle. However, one can still
find an upper bound to such difference as follows:

|〈wτ〉MH − 〈wτ〉TPM| =
∣∣∣∣∣∑i 6=j

ρij〈j|U†
τ ∑

k
hk|k〉〈k|Uτ |i〉

∣∣∣∣∣
≤ ∑

i 6=j
|ρij|∑

k
|hk||〈j|U†

τ |k〉〈k|Uτ |i〉|

≤ 1
2 ∑

i 6=j
|ρij|∑

k
|hk| =

1
2

Tr|H|Cl1(ρ0),

(A1)

where we have used the triangle inequality and the fact that the coherence of the pure state
U†

τ |k〉〈k|Uτ can never be larger than 1/2 to achieve the final upper bound.
• Equation (9): When restricting our attention to qubits, we can parameterise unitary operations as

Uτ = ei ϕ
2

(
eiϕ1 cos τ eiϕ2 sin τ

−e−iϕ2 sin τ e−iϕ1 cos τ

)
, which generalises Equation (11). This gives us

|〈wτ〉MH − 〈wτ〉TPM| =

=

∣∣∣∣∣∣∑i 6=j
ρij〈j|U†

τ ∑
k

hk|k〉〈k|Uτ |i〉

∣∣∣∣∣∣ =
∣∣∣∣∣∣∑i 6=j

ρij ∑
k=0,1

hkγ
(k)
ji

∣∣∣∣∣∣ =
∣∣∣∣∣∣∑i 6=j

ρij

(
h0γ

(0)
ji − h1γ

(0)
ji

)∣∣∣∣∣∣
= |h0 − h1|

∣∣∣ρ01γ
(0)
10 + ρ10γ

(0)
01

∣∣∣ = |h0 − h1|
2

∣∣∣∣sin(2τ)
√

a2
x + a2

y cos
(

arctan
ay

ax
+ ϕ2 − ϕ1

)∣∣∣∣
=
|h0 − h1|

2
|sin(2τ)|| cos(χ + ϕ2 − ϕ1)|Cl1 (ρ0) =

Tr|H|
2
| sin(2τ)|Cl1 (ρ0)| cos(χ + ϕ2 − ϕ1)|,

(A2)

where γ(k) := U†
τ |k〉〈k|Uτ and we have used that, for qubit unitaries, γ

(1)
ji = −γ

(0)
ji . For a fixed

Hamiltonian H, such difference is maximised by choosing ϕ2 − ϕ1 = −χ and τ = π/4.

Appendix B. Proof of Theorem 2

We now pass to the proof of the statement in Theorem 2, for which we need to go through the
following steps.

• Equation (10): By using the triangle inequality, the definition of γ(k) given above and the fact that
γ
(k)
ji ≤ 1/2, we can also provide the following upper bound

|〈w2
τ〉MH − 〈w2

τ〉TPM| ≤ ∑
i 6=j
|ρij|∑

k
|h2

k ||γ
(k)
ji |+ ∑

i 6=j
|ρij|∑

l
|hl ||hi||γ

(l)
ji |+ ∑

i 6=j
|ρij|∑

m
|hj||hm||γ(m)

ji |

≤ 1
2

Cl1 (ρ0)TrH2 +
1
2

Cl1 (ρ0)max
k
|hk|Tr|H|+ 1

2
Cl1 (ρ0)max

k
|hk|Tr|H|.

(A3)
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• When focusing on qubits, we have

|〈w2
τ〉MH − 〈w2

τ〉TPM| =
∣∣∣∣∣∑i 6=j

ρij〈j|U†
τ H2Uτ −U†

τ HUτ H − HU†
τ HUτ |i〉

∣∣∣∣∣
=

∣∣∣∣∣∑i 6=j
ρij

(
∑
k

h2
kγ

(k)
ji −∑

l
hlhiγ

(l)
ji −∑

m
hjhmγ

(m)
ji

)∣∣∣∣∣
=

∣∣∣∣∣∑i 6=j
ρij

[
γ
(0)
ji (h2

0 − h0hi − hjh0) + γ
(1)
ji (h2

1 − h1hi − hjh1)
]∣∣∣∣∣

=

∣∣∣∣∣∑i 6=j
ρijγ

(0)
ji

(
h2

0 − h0hi − hjh0 − h2
1 + h1hi + hjh1

)∣∣∣∣∣
=
∣∣∣(ρ01γ

(0)
10 + ρ10γ

(0)
01 )(h2

0 − h2
0 − h1h0 − h2

1 + h1h0 + h2
1)
∣∣∣ = 0.

(A4)

Appendix C. Derivation of Table 1

We now give an assessment of the relations reported in Table 1. The first thing to notice is
that (∆wτ)2

MH − (∆wτ)2
TPM has roots at ax = 0 and ax = −2az tan τ, which means that there are

two points at which the variances coincide. The first one comes from the equivalence between
both schemes when we consider vanishing initial coherence. Moreover, for ax = ±1, we have
(∆wτ)2

MH − (∆wτ)2
TPM = −(h0 − h1)

2 cos(τ)2 sin(τ)2 < 0. Let us now consider az > 0 and tan τ > 0.
First, due to Bolzano’s theorem, the difference between variances for ax ∈ [−1,−2az tan τ] has to
be negative; as it is already negative at ax = −1, having a positive difference within such interval
would mean that there should be another root inside it, which is not the case. Second, for the same
reason, the difference between variances should have a fixed sign for ax ∈ [−2az tan τ, 0]. In particular,
such difference must be positive as

∂[(∆wτ)2
MH − (∆wτ)2

TPM]

∂ax

∣∣∣∣∣
ax=−2az tan τ

= 2(h0 − h1)
2az sin(τ)4

(
1

tan τ
+ 4 tan τ

)
> 0. (A5)

Finally, we have that the difference between variances is negative for ax ∈ [0, 1], again due to Bolzano’s
theorem. The same arguments can be applied to the rest of the cases, i.e., sgn(az) = sgn(tan τ) and
sgn(az) 6= sgn(tan τ).

Appendix D. Proof of Theorem 3

Let us now move to the proof of Theorem 3.

• Equation (17): The Jarzynski equality [42] 〈e−β(wτ−∆Fτ)〉TPM = 1 is only fulfilled when the
initial state is at equilibrium. For an arbitrary initial state ρ, the following fluctuation Theorem
applies [21]

〈e−β(wτ−∆Fτ)〉MH = Re
(

Tr[γτG−1
0 ρ0]

)
≡ ξτ , (A6)

where Gλ =
e−βHλ

Tr[e−βHλ ]
is a Gibbs state and γτ = U†

τGτUτ . From here, we get that the free energy

difference in the MH scheme is given by

∆Fτ = −(ln〈e−βwτ 〉MH − ln ξτ)/β. (A7)
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We use this result in the definition of entropy production Σ = β(w− ∆F) and use a cumulant
expansion of 〈e−βwτ 〉MH to find [44]

〈Στ〉MH = ∑
n≥2

(−1)n

n!
κ
(n)
τ (β)βn − ln ξτ , (A8)

where κ
(n)
τ are the cumulants of the MH work distribution. Note that we do not take the average

of ln ξτ , as it does not contain any stochastic variable wτ .

In the linear response regime, the first term yields β2

2 (∆wτ)2
MH [44], where (∆wτ)2

MH = κ
(2)
τ (β) is

the variance of the MH distribution of work. Expanding the second term gives

ln ξτ ≈
β2

4
Tr[H2

0 − H2
τ ]− β〈wτ〉MH +

β2

2

{
(∆wτ)

2
MH + Re

(
Tr[ρ0[H0, U†

τ HτUτ ]]
)}

. (A9)

Thus, the average entropy production in the linear response regime amounts to

〈Στ〉LR
MH = β〈wτ〉MH −

β2

2
Re
(

Tr[ρ0[H0, U†
τ HτUτ ]]

)
− β2

4
Tr[H2

0 − H2
τ ]. (A10)

• Equation (18): Let us now have a close look at qubits. For convenience, we consider a qubit

prepared in the state ρ = 1
2

(
1− az ax − iay

ax + iay 1 + az

)
, with a ∈ R3,

1− az

2
=

e−β

Tr[e−βH0 ]
and H0 = σz.

This ensures that, for small enough β, az will also be small:

1− az

2
≈ 1− β

2
→ az ≈ β. (A11)

Let us suppose the qubit is subjected to a real unitary transformation Uτ such that Hτ = kσz,
for k ∈ C. The average entropy production in the linear response regime is then given by
Equation (17)

〈Στ〉LR
MH = axβk sin(2τ)− 2azβk cos(τ)2 +

β2k2

2
+ azβk− β2

2
+ azβ

≈ βk sin(2τ) cos(χ)Cl1(ρ0)− 2β2k cos(τ)2 +
β2k2

2
+ β2k− β2

2
+ β2

= βk sin(2τ) cos(χ)Cl1(ρ0)− 2β2k cos(τ)2 +
β2k2

2
+ β2k +

β2

2
,

(A12)

where we have used that, for small β, az ≈ β. As shown in [44], the TPM average entropy
production in the linear response regime, where the initial state is set to be in equilibrium, is given

by 〈Στ〉LR
TPM = β2

2 (∆wτ)2
TPM. Let us compute it for our qubit evolution

〈Στ〉LR
TPM = 2β2k(1− cos(τ)2)− 2a2

z β2k2 sin(τ)4 + 2a2
z β2k2 sin(τ)2

− 2a2
z β2k sin(τ)2 − a2

z β2k2

2
+

β2k2

2
+ a2

z β2k− β2k− a2
z β2

2
+

β2

2

≈ −2β2k cos(τ)2 +
β2k2

2
+ β2k +

β2

2
,

(A13)

where we have neglected the terms in a2
z β2 ≈ β4. Therefore,

〈Στ〉LR
MH = βk sin(2τ) cos(χ)Cl1(ρ0) + 〈Στ〉LR

TPM. (A14)
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(a) (b)

(c) (d)

Figure A1. Qubit in the initial state where α2 =
eβ

Tre−βH(λ0)
, 0 ≤ ω ≤ 1 and H(λ0) = σz, undergoing

an evolution given by a real unitary Uτ =

(
cos(τ) sin(τ)
− sin(τ) cos(τ)

)
and H(λτ) = 1

2 σz. (a) 〈Στ〉 versus

initial coherence, β = 0.2, τ = 3π
4 . MH scheme (green) and TPM scheme (red). (b) 〈wτ〉MH (green),

〈wτ〉TPM (blue line), ∆Fτ,MH (red), and ∆Fτ,TPM (blue circles) (naturally, they both agree), versus initial
coherence, β = 0.2, τ = 3π

4 . (c) 〈Στ〉 versus initial coherence, β = 0.2, τ = 3π
4 . MH scheme (green) and

TPM scheme (red). Negativity of the MH distribution, computed as minmn ReTr(U†
τ |n〉〈n|Uτ |m〉〈m|ρ0)

(blue). (d) 〈Στ〉 versus initial coherence, β = 0.2, τ = 3π
4 . MH scheme (green) and TPM scheme (red).

〈e−βwτ 〉MH (magenta) and ξτ (blue).

Appendix E. Proof of Corollary 2

Consider the qubit case for which Equation (18) holds. For k = 1
2 , τ = 3π

4 and χ = 0, we have that

〈Στ〉LR
MH = − β

2
Cl1(ρ0) +

5β2

8
, (A15)

which becomes negative for Cl1(ρ0) >
5β
4 . For example, for β = 0.2, the average entropy production is

negative when Cl1(ρ0) > 0.25, as it is shown in Figure A1a.

Appendix F. Why Can 〈Στ〉MH Be Negative?

Let us look closely into the case where β→ 0. In Figure A1a, we can see how the average entropy
production changes with the initial coherence. As expected, in the TPM scheme, the entropy remains
constant, while in the MH scheme, it decreases, being even able to take negative values. The same can
be noticed in Figure 5a. Indeed, for small enough β, the average work calculated in the MH framework
can be smaller than the free energy, and even negative (cf. Figure A1b). This immediately suggests
why the average entropy production can be negative in the MH scheme: while ∆Fτ is not sensitive to
coherence and thus remains constant, 〈wτ〉MH keeps on decreasing as the initial coherences increase.

What is more, this fact does not seem to be due to the MH presenting negativities: in Figure A1c,
we see that the violation may persist under a non-negative MH distribution. Non-negativities still allow
for well-defined logarithms ln〈e−βwτ 〉MH and ln ξτ , since 〈e−βwτ 〉MH and ξτ are positive, respectively
(see Figure A1d). Moreover, the ordering between the variances of work obtained in the MH and the
TPM schemes does not seem to provide an explanation on why the average entropy production can be
negative in the MH scheme; according to Table 1, the higher uncertainty of the MH scheme compared
to that of the TPM scheme ((∆wτ)2

MH ≥ (∆wτ)2
TPM) would occur within the interval 0 ≤ Cl1(ρ0) ≤ 0.4.

However, the average entropy production in that interval can take any sign. Furthermore, (∆wτ)2
MH ≤
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(∆wτ)2
TPM holds for 0.4 ≤ Cl1(ρ0) ≤ 1, where the average entropy production is always negative

(see Figure A1a).
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