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Abstract 

Electrocorticography (ECoG) is a well-established technique to monitor electrophysiological activity from the surface of the 

brain and has proved crucial for the current generation of neural prostheses and brain-computer interfaces. However, existing 

ECoG technologies still fail to provide the resolution necessary to accurately map highly localized activity across large brain 

areas, due to the rapidly increasing size of connector footprint with sensor count. This work demonstrates the use of a flexible 

array of graphene solution-gated field-effect transistors (gSGFET), exploring the concept of multiplexed readout using an 

external switching matrix. This approach does not only allow for an increased sensor count, but due to the use of active sensing 

devices (i.e. transistors) over microelectrodes it makes additional buffer transistors redundant, which drastically eases the 

complexity of device fabrication on flexible substrates. The presented results pave the way for upscaling the gSGFET 

technology towards large-scale, high-density μECoG-arrays, eventually capable of resolving neural activity down to a single 

neuron level, while simultaneously mapping large brain regions. 

Keywords: Multiplexed µECoGs, graphene solution-gated field-effect transistor, flexible probes, neurosensing 

1. Introduction 

Exploration of novel materials and improved micro- and nano-

fabrication techniques are bringing up a new class of brain-

computer interfaces (BMIs) which promise to revolutionize 

neuroprosthetics and unveil the underlying vast functionalities 

of the brain. Impressive breakthroughs have been recently 

achieved in motor control rehabilitation, understanding the 

mechanisms for learning and formation of memory, treating 

neuropsychiatric disorders (e.g. depression) and synthesizing 

audible speech using machine learning algorithms, 

emphasizing the immense potential BMIs have.[1–10] While 

the presented capabilities to interface with the brain are 

already very impressive, they mostly rely on relatively simple 

epi-cortical electrode arrays with low number of recording 

sites and large inter-site spacing, and are unsuitable for long 

chronic implantation. Higher cognitive functions do typically 

arise from a complex interplay of activity in several brain 

regions at once, therefore a detailed analysis of the neural 

activity underlying such functions would require sensor arrays 

recording from all involved areas with high local resolution in 

each of them. Current commercially available neural sensor 

arrays fail to provide the high sensor counts necessary for such 

endeavor, mostly due to the technologic challenge of 

excessive wiring with increasing array size, which could only 

https://www.google.com/search?sxsrf=ACYBGNRArfO8lEnBFKeLJVnAwy36KxS5lw:1572805385225&q=neuroprosthetics&spell=1&sa=X&ved=0ahUKEwji56XS1M7lAhVIxYUKHccWDukQkeECCC4oAA
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be overcome by the employment of multiplexed read-out 

circuitry. Multiplexing strategies are not new to the field of 

neuro-sensing and have previously been used as a versatile 

tool to manage large amounts of recording sites. Most of the 

emerged technologies are based on a CMOS-compatible 

monolithic integration of recording electrodes and read-out 

electronics to minimize connection distance for preserving 

signal integrity and maximizing the density of recording sites. 

Using rigid silicon substrates, however, restricts such concepts 

to applications in which device flexibility is expendable such 

as depth-probes or MEAs for ex-vivo recordings.[11–14] Yet, 

considering the extensive damage rigid depth-probes cause to 

the brain tissue, sets a clear limitation to the amount of 

insertable shanks and thus the simultaneously mappable brain 

regions. Here, electrocorticography offers a minimally 

invasive alternative with clear advantage on sensor resolution 

over large areas by using flexible µECoG arrays to record 

from the surface of the cortex.[15] Still, so far only very few 

examples of multiplexed µECoG arrays have been realized, 

due to the scarcity of durable materials for low-noise, high-

performance switches compatible with flexible substrates as 

well as the high level of complexity such device fabrication 

requires. An example is the work of Rodgers which utilizes a 

combination of buffer and addressing transistor (ultrathin Si) 

to process the signals of an array of 360 passive platinum 

electrodes.[16, 17] Using passive elements, i.e. electrodes, as 

sensors requires the implementation of an additional 

transducer (buffer transistor) to decouple the electrode from 

the read-out circuitry, which otherwise would lead to load 

currents affecting the electrodes performance. This additional 

complexity can be avoided by directly using active elements 

i.e. transistors to interface with the brain. Such approach has 

recently been explored for organic electrochemical transistors 

(OECTs) with the conductive polymer poly(3,4-

ethylenedioxythiophene):poly(styrenesulfonate) 

(PEDOT:PSS) as channel material.[18, 19] However, it has 

only been used to selectively address different sites, but not 

yet to actually acquire signals in multiplexed operation, which 

might be due to the relatively low carrier mobility in 

PEDOT:PSS prohibiting the rapid switching needed for 

multiplexing. 

As the brain consists of corrugated soft tissue moving at every 

heartbeat, highly flexible probes are imperative to create 

intimate interfaces for best signal quality and to avoid gradual 

cicatrizing of the neural tissue. In this work, we present 

flexible multiplexed μ-ECoG arrays based on active sensing 

devices, namely graphene solution-gated field-effect 

transistors (gSGFETs). The gSFGET has emerged as one of 

the most promising technologies for brain-machine interfaces 

(BMIs) as it provides essential properties such as 

biocompatibility, chemical stability, mechanical flexibility 

and high signal-to-noise ratio.[20, 21] In particular, it has 

shown great potential for application in µ-ECoG arrays with 

its high sensitivity over a broad frequency range (0.001Hz up 

to 10kHz), making it an efficient transducer of both infra-slow 

and fast neural activity.[20, 22] While the gSGFETs 

suitability to provide high-quality recordings has already been 

proven for up to 16 recording sites in previous publications, 

its potential has never been evaluated for high-density arrays 

of large sensor count. Graphene is commonly considering as 

an ideal material for high-frequency application, as its 

reported mobilities up to 350 000 cm2V-1s-1 for CVD grown 

graphene, can easily surpass materials such as Si and 

PEDOT:PSS with respective mobilities of 1400 cm2V-1s-1  and 

0.01 cm2V-1s-1, which makes it an interesting candidate to 

consider for multiplexed devices.[23, 24] Moreover, we 

demonstrate that by using active sensing devices, the 

integration of multiplexing circuitry, i.e. buffer and switching 

transistors, is unnecessary, thus drastically easing the 

complexity of fabricating flexible multiplexed sensor arrays. 

2. Methods 

2.1 Probe fabrication 

In a first step 10um thick biocompatible Polyimide (PI-2611 

HD MicroSystems) was spun on 4’’ Si/SiO2 support wafers 

and cured under nitrogen atmosphere at 350 °C. The 

perpendicular metal lines of the array (columns/ rows) were 

patterned in two standard lift-off steps (negative photoresist 

AZ5214E, Clariant, Germany) with the metal deposited by e-

beam evaporation (30nm Ti/ 300nm Au, 10nm Ti/ 100nm Au) 

and separated by a 2 µm PI spacer layer. Interconnecting via-

holes through the spacer layer were etched by oxygen plasma 

using a photolithographically defined protective aluminum 

mask (AZ5214E, 300nm Al). Then, single layer graphene, 

grown and transferred by Graphenea, is patterned by 

photolithography (H6512 photoresist) and etched by oxygen-

based reactive ion etching (100W for 1min) to form the 

transistor channel area. A third metal layer (20nm Ni/ 200nm 

Au) is added to form sandwich contacts improving the 

gSGFET’s durability and lowering its contact resistance due 

to work function matching. A subsequent thermal annealing 

step at 300°C in ultra-high vacuum has been found to reduce 

surface contamination from photoresist residues and 

improving the conformality of the Ni-graphene interface, thus 

improving contact resistance and device performance. To 

passivate the metal leads, a 2 µm thick layer of SU8 epoxy 

photoresist (SU-8 2005 MicroChem) was deposited, leaving 

open windows in the channel regions to allow a direct 

electrolyte graphene interface. In a final step, the polyimide 
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was structured by deep reactive ion etching using a photoresist 

etching mask (AZ9260, Clariant) and the flexible probes were 

mechanical peeled from the support wafer. 

2.2 Characterization and multiplexing setup 

Custom-build electronics were used for bias control and to 

convert the drain source current signal into voltage by a 

transimpedance amplifier (10k gain). The voltage signal was 

split into DC (frequency < 0.1 Hz) and AC (0.1 Hz 

< frequency > 5 kHz) components. The AC signal is amplified 

by an additional factor of 100 for the noise evaluation. The 

voltage read out was done by a standard data acquisition 

system (National Instruments DAQ-Card, USB-6363). For the 

multiplexed data acquisition, a similar system was used as for 

the probe characterization, however the gain of the AC stage 

was reduced by a factor of 10 to prevent saturation of the 

amplifier’s dynamic range due to mismatch in transistor 

resistance. The digital output lines were used to address the n-

type MOSFET switching matrix by applying either +5V for 

ON- and 0V for OFF-state. All software to control the DAQ-

Card and handle data acquisition is based on self-built python 

code. 

2.3 In-vivo experiments 

Long Evans rats (Charles River) were kept under standard 

conditions (room temperature 22 ± 2 °C, 12:12 h light–dark 

cycle, lights on at 10:00). Food and water were provided ad 

libitum. All experiments were performed in accordance with 

the European Union Directive 2010/63/EU as well as the 

German Law for Protection of Animals (TierSchG) and 

approved by the local authorities (ROB-55.2-2532.Vet_02-

16-170). Three adult rats (2 males, 1 female), 3-8 month of 

age, weighing in the range of 400-600g were used in this 

study. In preparation of electrophysiological measurements, 

they were deeply anaesthetized with MMF (Midazolam 

2mg/kg), Medetomidin 0.15 mg/kg, Fentanyl 0.005 mg/kg) 

and supplemented after 1h with Isoflurane 0.5%-1% and 

Metamizol at 110 mg/kg. After subcutaneous infiltration with 

Bupivacain the skin above the cranium was incised and the 

dorsal skull surface exposed. Craniotomies were performed 

bilaterally, with a maximum width of 5 mm and extending 

anterior-posteriorly between +2 mm and -8mm with respect to 

bregma. The dura mater was opened and carefully resected. 

The craniotomies were subsequently covered with 

prepolymerized PDMS (Sylgard 184, Dow Corning) with 

mixing ratio 1:10 and fastened with Vetbond (3M). In one rat 

an additional 1x1 mm craniotomy was performed over the 

cerebellum for the placement of a reference wire. For 

placement of the recording arrays the PDMS covers were 

flapped open partially and the gSGFET array was placed on 

the right hemisphere while the NeuroNexus array (E32-600-

10-100) was symmetrically positioned on the left hemisphere, 

(between ca -7 to -3 mm from bregma) each partially covering 

the primary visual cortex. Subsequently the PDMS covers 

were flapped back to cover arrays and craniotomies. A 

reference wire (Ag/Ag-Cl) was inserted either in the cerebellar 

craniotomy (n=1) or temporal muscle (n=2). Data from the 

NeuroNexus array was acquired at 25 kHz using the eCube 

recording system (WhiteMatter LLC) while data from the 

gSGFET was acquired using custom build electronics 

described in the previous section. Anesthesia was kept at 0.5% 

isoflurane during the recordings of spontaneous activity and 

cortical spreading depression (CSD) and 2% isoflurane for the 

recording of optically evoked activity with reduced 

spontaneous activity. The CSD event was triggered by 

application of 1uL KCl (3 mMol) with a glass-micropipette 

and Nanoject II injection device (Drummond Scientific) at ca 

4 mm anterior to bregma, approximately 7 mm anterior to the 

closest site on the recording array. The optically evoked 

response was triggered by a contralaterally placed blue LED 

in front of the left eye, which delivered 100 msec light pulses 

every 5 seconds. 

3. Results and discussion 

3.1 Device performance and multiplexing methodology 

Scalable thin-film technology of 8x8 gSGFET sensor arrays 

was fabricated on 7um-thick flexible polyimide (PI) using 4-

inch support wafers. The layout of the probe can be seen in 

Figure 1a and consists of a stack of two metal layers 

constructing the perpendicular lines of the sensor grid with a 

separating PI layer in between. The 64 gSGFET sensors have 

single-layer graphene channels of 50μm x 50μm dimension 

and 400μm inter-site separation (detailed description of probe 

fabrication in experimental section). A picture of the final 

probe, after releasing it from the Si support wafer is shown in 

Figure 1c. In contrast to their solid-state counterparts, 

solution-gated transistors are being modulated through the 

creation of a charge double layer at the interface between 

transistor channel and an electrolyte solution. Potential 

fluctuations in the surroundings (e.g. neural activity) can 

modulate this double layer and result, in turn, in a shift of the 

Fermi level of the channel material, which is detectable as a 

current fluctuation. Graphene’s ability to create a stable 

interface with aqueous solutions in combination with its high 

transconductance, resulting from its large interfacial 

capacitance and carrier mobility, makes the gSGFET an ideal 

device for bio-sensing.[20–22, 25–28] 



Figure 1. Multiplexed gSGFET μECoG-array: a. Layout and cross section of flexible ECoG array with 64 gSGFETs showing the grid 

construction with two metal layer and tapered via-holes (Figure S1 in supporting information) crossing the PI interlayer. b. gSGFET’s transfer 

curve showing the change of drain-source current with applied gate bias (Ids-Ugs, measured at Uds=100mV), its transconductance (Gm-Ugs) 

and the device’s equivalent gate noise (Urms-Vgs). Also, the respective distribution of each parameter at peak Gm (bias point yielding highest 

absolute transconductance) across the array is being shown in the adjacent color map. c. Picture of flexible probe after release from Si support 

wafer. d. Schematic of discrete multiplexing setup using a DAQ-card for bias control and read-out (blue) and a custom-build PCB board for 

switching (yellow), filtering and current-to-voltage conversion (red). e. Acquired DC and AC raw signal for one column showing eight 

distinct current levels corresponding to the transistors in each row, which repeat for every cycle (grey dashed line). Due to the high gain 

(100k) applied to the AC component of the signal, the dynamic amplifier range sets a limit to the allowable current mismatch between devices, 

before amplifier saturation occurs (solid red line). f. From the 10 data points taken for each transistor per cycle, an average value of the last 

5 points is taken, to yield one sample in the final reconstructed signal for each sensor. 



Figure 1b shows a performance and homogeneity assessment 

of the gSGFET array. The transfer curve, namely the change 

of drain-source current Ids with applied gate bias Ugs is 

presented as an averaged value and for all 64 individual 

devices, with the boxplot indicating the variation of charge 

neutrality point (CNP). Also, the transconductance Gm is 

shown (normalized to each transistor’s CNP), which is defined 

as the first derivative of Ids over Ugs. Of crucial importance to 

any sort of sensor array is the signal-to-noise ratio (SNR) and 

its homogeneity across recording sites. The SNR in the 

gSGFET is mainly affected by two physical parameters: the 

transconductance, which sets the transistor’s sensitivity to 

signal fluctuations at the gate and the intrinsic device noise 

integrated over the relevant frequency range Irms. A common 

figure of merit to quantify the gSGFET’s SNR is the Urms 

value (Irms/Gm), which represents the equivalent gate noise 

below which signals are undetectable. As can be seen, the Urms 

values of the gSGFETs on the array, are around 40 μVrms (for 

the frequency band from 1Hz to 100Hz), which allows the 

detection of local field potentials (typical amplitude above 

100μV) from the surface of the brain. The distribution across 

the array of each parameter (Ids, Gm, Urms), calculated at the 

bias point of highest absolute transconductance (peak-Gm), 

where the device shows lowest Urms, is shown in the 

corresponding color maps. With yields above 90% on a 4-inch 

wafer (each wafer carrying 14 probes) and large, evenly 

distributed SNR across all recording sites, the gSGFET 

technology shows high maturity and homogeneity, which is a 

key requirement to enable multiplexed addressing schemes.  

The most common type of multiplexing is time-division 

multiplexing (TDM), which refers to a technique of 

sequentially addressing the columns of a sensor array, while 

continuously measuring from its rows. Such addressing is 

normally being achieved by switches, which can be placed 

either directly on the array or externally.[14, 17, 18] While 

placing the switches directly on the array has the advantage of 

reducing inter-site crosstalk it requires complex fabrication of 

flexible switching technology, as  previously mentioned.[17] 

Complementing arrays of passive sensing elements (i.e. 

electrodes) with an external addressing configuration is 

challenging, as their recorded voltage signal is prone to pick 

up noise; if the preamplifier is placed far from the electrode, 

additional buffer transistors are required to convert the signal 

into current and feed it to the read-out circuitry. The use of 

active sensing elements (i.e. transistors) offers a great benefit 

here, as they feature an intrinsic voltage-to-current 

conversion, making the recorded signal more robust to noise. 

A schematic representation of the addressing and acquisition 

methodology is shown in Figure 1d. For this purpose, a 

custom-build PCB board consisting of two main functional 

blocks has been developed using discrete electronics. One 

functional block performs the filtering and amplification of the 

simultaneously acquired AC and DC signals; the other block 

selects the row to which the bias difference is applied to, using 

the external switching matrix for addressing. Figure 1e 

illustrates the acquired AC and DC raw input signals for a 

column of eight gSGFETs and how they can subsequently be 

used to reconstruct the original signal at each site (Figure 1f). 

Resistance mismatch between different transistors leads to 

current jumps when switching between transistors, which 

results in the different DC levels in the acquired signal (each 

gSGFET corresponds to one color in Figure 1e). The vertical 

dashed grey line in Figure 1e indicates the point at which all 

eight rows were addressed and a new readout cycle begins. At 

each site a total of 10 points is taken at 100 kHz sampling 

speed; we discard the first 5 to avoid any switching artefacts 

and average the rest to a single data point resulting in 1.25 kHz 

effective sampling rate. It should be here emphasized that 

array homogeneity carries an additional importance in 

multiplexed operation owing to two reasons. First, the trade-

off between applicable AC signal gain and transistor 

resistance mismatch; as previously mentioned, current jumps 

can exceed the dynamic range of the amplifier (indicated in 

Figure 1e) leading to saturation and signal loss. Second, the 

switching artefacts scale with the level of mismatch between 

devices, requiring longer stabilization times before reliable 

data points can be collected. 

3.2 Scalability and in-vitro assessment 

With the goal of creating a high-density, large-scale sensor 

array, an important discussion to undertake is the one on 

scalability of this technology. The most important aspects to 

consider here are the transient response of the transistor, which 

limits the achievable switching speeds, and the increase of 

inter-site crosstalk with array size and track resistance. To 

obtain distortion-free, high-quality recordings in multiplexed 

operation, it is important to allow sufficient stabilization time 

after switching, for the transistor to adjust to the changed 

drain-source bias conditions. This stabilization time is device 

specific and generally scales with channel length and carrier 

mobility. Owing to the high carrier mobility of graphene, 

which is for our devices 1000-2000 cm2V-1s-1  but can 

potentially reach up to 350 000 cm2V-1s-1, the transient 

response of the gSGFET is extremely short (Figure 2a) 

compared to other technologies (e.g. transistors based on 

silicon or conducting polymers).[23] The ON-state is reached 

before 1µs, which is the time resolution of the used 

measurement equipment (NI DAQ-Card X-Series 6363); for a 

channel length of 50μm and a carrier mobility of 2000 cm2V-

1s-1 the actual stabilization time from a time-of-flight 



Journal XX (XXXX) XXXXXX Author et al  

 6  
 

estimation is expected to be in the range of hundred 

nanoseconds. Such fast device stabilization can eventually 

allow switching speeds beyond 1MHz (our current 

configuration is limited by the electronics to 10kHz). Thus, 

much larger arrays could be operated this way while 

maintaining enough sampling speed (>10kHz) to record even 

high frequency activity such as spikes. Due to the solution-

gated nature of the device, a small drift occurs during the ON-

state of the device which is tentatively associated to the 

migration of ions when the bias conditions in the channel 

change under switching. This phenomenon happens at a much 

slower time scale due to the low ionic mobility; however, it 

does only create a minor inaccuracy in the measured DC 

current and does not impact the AC recordings. 

As previously stated, the use of external switches bears the 

disadvantage of not allowing to cut the connections to non-

addressed sensors within the array, which leads to the so-

called crosstalk. The lack of on-site switches opens alternative 

current pathways leading to current contribution from adjacent 

sites which carry signals from the respective gates and are 

wrongly attributed to the measured sensor (see Figure 2b). 

Such crosstalk can be strongly reduced and, in the ideal case 

of vanishing track resistance, even fully suppressed by setting 

the bias point of the non-addressed rows to the same voltage 

as the data lines, thus preventing any current flow through 

non-addressed lines.[18] However, in real-world applications 

the issue of finite track resistance cannot be completely 

avoided, as the requirements of high sensor density and probe 

flexibility limit the allowed width and thickness of the metal 

lines. The presence of these additional resistances create local 

potential drops, driving current through otherwise suppressed 

pathways whose amplitude depends on the ratio between track 

resistance (Rtrack) and transistor resistance (RgSGFET) as well as 

the number n of columns and rows in the array. To quantify 

crosstalk in the gSGFET array experimentally, lateral Ag-

gates and confined pads of solid polyelectrolyte were placed 

at each gSGFET of a 2x2 array by means of inkjet printing 

(Figure 2c). This approach allows for selective gate control, 

which is not possible in a shared liquid electrolyte. Figure 2d 

shows the measured signal at each of the transistors, with a 

test signal (sine wave of 10Hz frequency and 30mV 

amplitude) only being applied to one of them (black circle in 

Figure 2c). Sensors on the same column (red curve in Figure 

2d) or row (dark-red curve in Figure 2d) as the applied signal 

are the ones with the largest impact of crosstalk, showing a 

crosstalk level of -40dB at peak transconductance compared 

to the signal amplitude. 

Diagonally placed sensors (orange curve in Figure 2d) are 

much less affected; however, in the latter case the exact level 

of crosstalk cannot be extracted with accuracy because the 

signal lies below the floor noise of the electronics. To validate 

this estimation of the crosstalk, we compared the experimental 

data with the results obtained from a PSpice simulation of a 

gSGFET array in which we used a standard p-type MOSFET 

element tailored to fit the gSGFET’s transfer curve (Figure 

S2a-b in supporting information). Figure 2e shows the 

aggregated crosstalk on a single site depending on the track 

resistance and the array size, assuming identical signals on all 

remaining sites of the array which sum up to the total crosstalk 

value. The PSpice model validates the expected near-linear 

relation with both track resistance and array size. For a 2x2 

array with 20Ω track resistance and a gSGFET resistance of 

1,25kΩ, both the experiment and the simulation model yield a 

crosstalk of -40dB. Extrapolating to an array of size 32x32 

(1024 sensors), a crosstalk lower than -20dB can be obtained 

by reducing the track resistance below 5 Ω or by increasing 

the resistance of the gSGFET. Such track resistance reduction 

could be achieved by increasing metal track thickness, using 

higher number of stacked metal layers and, most importantly, 

relaxing constraints on probe dimensions. While the ECoG 

array in this work was designed for application in rodents, 

which imposes strict size restrictions due to the dimensions of 

the craniotomy, many other application (e.g. neural probes for 

large animals or humans) would loosen those significantly. 

To validate the fidelity of the gSGFET recordings in the 

multiplexed operating mode, the recording quality must be 

compared to the one obtained in steady, non-multiplexed 

operation. For instance, the rapid switching between devices 

can potentially increase the noise or generate artefacts in the 

multiplexed operation mode. Figure 2f compares recordings 

of an artificially generated electrocardiogram signal (ME-W-

SG, Multichannel Systems), containing components of 

different frequencies. The multiplexed and non-multiplexed 

representation of both test signals are nearly identical, 

suggesting that the rapid sequential addressing by the 

multiplexed mode does not generate any visible artefacts, 

neither in the low nor in the mid frequency band. The root-

mean-square value of both recordings is also compared, 

showing equivalent SNR ratio (Figure 2g) in both acquisition 

modes. 



Figure 2. Scalability and in-vitro assessment: a. Transient response of gSGFET when switched between ON and OFF state, showing short 

stabilization time of the device. Response below 1µs cannot be resolved due to sampling rate limitation of the setup (1MHz). b. Origin of 

crosstalk in array without on-site switches and finite track resistance. Biasing to Udrain of non-addressed columns significantly decreases the 

amount of crosstalk. c. Location of measured gSGFETs on a 2x2 probe for crosstalk evaluation, utilizing inkjet printing to pattern confined 

gates consisting of Ag and polyelectrolyte pads. d. Crosstalk versus gate bias when applying a test signal (sinewave 30mV, 10Hz) to a single 

gSGFET and measuring the signal on each of the adjacent sensors. The devices in the same column and row as the one, to which the test 

signal is applied to, show a crosstalk of -40dB while the device on the diagonal shows crosstalk lower than -50dB (below floor noise of 

electronics). e. Simulated (PSpice) crosstalk for a 2x2, 8x8 and 32x32 arrays in dependence of the track resistance. The aggregated crosstalk 

value is presented assuming a superposition of identical signals on all but the probed sensor. f. Recordings of one gSGFET on the same 8x8 

μECoG-array, acquired in either multiplexed or steady (non-multiplexed) acquisition. An artificial electrocardiogram signal was used to 

compare the fidelity of both acquisition modes. In both cases, the same averaging method was applied (cycles of 10 points, discarding first 5 

points and averaging last 5 points), to ensure comparability. g. For each acquisition mode, the root-mean-square (RMS) value is calculated 

as the mean value of all 8 gSGFETs on one column, indicating the signal-to-noise ratio of the recorded signal.  
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3.3 In-vivo validation 

Having confirmed the recording fidelity of the gSGFET in the 

multiplexed operation compared to the standard non-

multiplexed acquisition mode, we demonstrate the unimpaired 

sensitivity of the multiplexed μECoG-array towards biological 

signals. Electrocortiography is primarily used to record local 

field potentials (LFPs) from the surface of the brain, which 

originate from spatio-temporal summation of transmembrane-

currents generated by synaptic and active conductances, 

excluding the action potentials.[29, 30] The characteristic 

spectral content of the LFP signal reflects the time scale of 

network synchronization and ranges from <1Hz to hundreds 

of Hz. Figure 3a shows a time trace of spontaneous LFP 

activity in an anesthetized Long Evans rat, recorded in an 

acute in-vivo experiment using an array of gSGFETs operated 

in the multiplexed mode (more details in methods section). 

Under deep anaesthesia, such cortical LFP reflects slow 

oscillations that are highly coherent across the whole cortical 

mantle; indeed, no significant differences in signal shape can 

be seen across all the 64 sensors in the array.[31] To 

benchmark the recording capabilities of the gSGFET array 

against other state-of-the-art technologies, a NeuroNexus 

ECoG array (with 32 circular platinum electrodes of 100μm 

diameter) was simultaneously placed on the opposite 

hemisphere (Figure S3 in supporting information). Figure 3c-

d show recordings and corresponding spectrograms from an 

electrode and a gSGFET, displaying the expected 

synchronicity in activity of both hemispheres. Filtering the 

signals from 0.1Hz to 200Hz (dark-blue and red curve in 

Figure 3c), a clear difference in signal shape can be noticed. 

This difference reflects the high-pass filter of the AC-coupled 

headstage used for passive ECoG recordings (see 

Experimental Section), which is necessary to prevent 

amplifier saturation due to drifts; also the high impedance of 

passive ECoG electrodes at low frequency leads to reduced 

gain in such signals, which  results in an attenuation of the 

infraslow frequency content in the LFP signal.[22] Removing 

these low-frequency components from the gSGFET signal 

(green curve in Figure 3c), it is possible to validate that both 

technologies show very similar recordings of the LFP activity 

as can also be seen in the corresponding spectrograms. 

Visually evoked LFP activity exhibits a well-defined spatial 

topography and thus can be used for validating the mapping 

capabilities of the multiplexed gSGFET technology.[32] 

Figure 3b shows the averaged response over 10 consecutive 

evoked events recorded with an array of gSGFETs in the 

multiplexed mode. Visually evoked activity typically exhibits 

a clear response with a delay of 40 ms after both the ON- and 

OFF-switching of the stimulus (Figure 3e). The recordings 

show a main peak (ON response) lasting until 70 ms after the 

stimulation with and peak amplitude of 500 μV. Hence, signal 

shape and amplitude are in nice agreement with previously 

reported results of non-multiplexed gSGFETs.[20] Further, 

Figure 3f presents the spatial distribution of both amplitude 

and time-delay of the ON-peak. The earliest response is 

detected on the lower end of the array which represents 

sensors directly placed on the primary visual cortex (V1) 

where the activity originates, and spreads then radially 

towards other higher visual cortical areas. However, highest 

peak-amplitude is measured in the centre-left region 

(secondary visual cortex, V2) which likely reflects a different 

magnitude and proximity current dipole, that gives rise to the 

surface LFP (LGN input to LIV in V1 vs V1 input to L2/3 

pyramidal cells in V2).[33] 

In addition, to its capability to record LFPs, the gSGFETs 

exhibit a unique sensitivity towards slow and infra-slow 

(below 0.1Hz) signals, which in the case of passive electrode 

recordings are hidden by baseline drifts and the impedance-

related loss of gain at low frequency.[22] In order to confirm 

that multiplexed acquisition preserves signal quality in this 

frequency band, we have investigated recordings of a cortical 

spreading depression (CSD). CSDs emerge due to a cellular 

depolarization of neurons and astrocytes which is associated 

to brain injury and migraines among others.[34] Here, the 

CSD was artificially triggered by injecting KCl into the cortex 

that caused a slowly propagating wave moving across the 

cortex. Figure 3g depicts the recording of a gSGFET in the 

array. The DC component of the signal shows the 

characteristic large shift of 15mV amplitude. The AC 

component and its corresponding spectrogram (Figure 3h) 

reveals a silencing of the high-frequency activity during the 

event, caused by the cellular depolarization and which is 

characteristic for the CSD. The maps below (Figure 3i) show 

the respective position of the depolarising wave at different 

times after KCL injection, moving from the top right to the 

bottom left at about 7mm per minute speed. 



Figure 3. In-vivo validation of multiplexed gSGFET µECoG-array: a. Map of spontaneous LFP activity showing near identical shape across 

all sites. b. Map of visually evoked activity averaged over 10 consecutive events (dashed red line indicates timing of optical stimulus; dashed 

black curves are interpolated values from neighbouring sites for non-functioning sensors. c. Recording trace derived from AC-coupled 

passive ECoG-array (NeuroNexus, platinum electrode) as well as DC and AC-filtered gSGFET’s. Note prominent infraslow oscillations (0.1-

0.4Hz), which are not visible in the AC electrode recordings. d. Corresponding spectrograms of both, NeuroNexus and gSGFET recordings. 

e. Visually evoked response recorded on a single sensor (dashed grey box in Figure 3b), with an ON- and OFF-response of 50 ms delay and 

500μV peak amplitude. f. Array maps displaying the distribution of amplitude and time-delay of the ON-peak response across all sites. While 

the shortest delay is measured for the sensors placed directly on the primary visual cortex (V1), the highest peak-amplitude is seen in the 

secondary visual cortex (V2). g. DC-signal (blue, lowpass-filtered below 20Hz) and AC signal (red, bandpass-filtered between 1-20Hz) of a 

single gSGFET during the cortical spreading depression (CSD). A strong DC shift of -15mV occurs simultaneously with a silencing of high-

frequency activity, which is characteristic for a CSD. h. Corresponding spectrogram of CSD event to validate the silencing. i. Array map 

showing the propagating front of the spreading depolarization wave across the array from the right upper to the left lower corner.  



4. Conclusion 

This work demonstrates the compatibility of graphene 

solution-gated field-effect transistors (gSGFETs) with time-

division multiplexed acquisition mode, utilizing a strongly 

simplified addressing concept to overcome the hurdle of 

excessively complex device fabrication. The superiority of 

graphene over silicon and organic polymers for high-speed 

applications makes the gSGFET an ideal device for 

multiplexed sensor arrays. In-vitro and in-vivo assessments 

confirm the fidelity of broad-band signal representation (infra-

slow oscillations and local field potentials) in multiplexed 

operation, with signal quality comparable to the state-of-the-

art of commercially available neuro-sensors. Consequently, 

next to their potential as efficient transducers of neural 

activity, gSGFETs show great promise as a building block for 

multiplexed brain-machine interfaces of high sensor count. 

Thus, this work represents an important cornerstone in the 

development of large-scale, flexible gSGFET μECOG arrays 

capable of providing high resolution mappings of neural 

activity to control neuroprosthetics and to help exploring the 

operation and functionalities of the brain. 
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