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ABSTRACT 

 Management of discarded tires is a compelling environmental issue worldwide. Although 

several approaches have been developed to recycle waste tire rubbers, their application in solid-

state cooling is still unexplored. Considering the high barocaloric potential verified for elastomers, 

the use of waste tire rubber (WTR) as refrigerant in solid-state cooling devices is very promising. 

Here, we investigated the barocaloric effects in WTR and polymer blends made of vulcanized 

natural rubber (VNR) and WTR, in order to evaluate its feasibility for solid-state cooling 

technologies. The adiabatic temperature change and the isothermal entropy change reach giant 

values, as well as the performance parameters, being comparable or even better than most 

barocaloric materials in literature. Moreover, pure WTR and WTR-based samples also present a 

faster thermal exchange than VNR, consisting in an additional advantage of using these discarded 

materials. Thus, the present findings evidence the encouraging perspectives of employing waste 

rubbers in solid-state cooling based on barocaloric effect, contributing in both the recycling of 

polymers and the sustainable energy technology field. 
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INTRODUCTION 

 Polymers are widespread in our everyday life, with applications in practically all 

branches of science and technology. For this reason, the term “Plastic Age” is sometimes used to 

refer to the recent period. This increasing amount of plastics in industrial products creates a 

serious ecological issue: without proper management of wastes, the long durability of these 

materials results in their accumulation in nature. Besides, the microplastic particles released by 

the polymer decomposition are also environmentally harmful.1 Most of this polymeric material 

worldwide is used in automobile tires: estimates indicate that 1.5 billion of them are 

manufactured each year,2,3 800 million are discarded and this number is expected to grow 2% 

annually.4 A tire is a complex engineering product, mainly composed by elastomers, but also 

containing textiles and metals.5 The production of crosslinked elastomers involves the 

vulcanization process, which prevents this class of polymers to be completely recycled or 

reprocessed, on the contrary of what happens with thermoplastics.6 Considering the growing 

environmental awareness and the possibility of reusing valuable raw materials contained in tires, 

end-of-life strategies for management of used tires are highly demanding.  

 The classified methods for waste tire management of rubbery materials are: landfill, 

energy recovery, recycling, re-use and prevention;7 following the European Union (EU) 

hierarchy,8 from the least to the most desirable. Although land filling is the easiest way to 

discard used tires, the hazardous character of rubber waste makes this practice unacceptable in 

view of the current ecological requirements, being prohibited by EU since 1999.9 Energy 

recovery is the second method for rubber waste management, since tires present a caloric value 

equivalent or higher than coal.10 Re-use of scrap tires by retreading is the most economically 

viable method for waste tire utilization, but its market is still scarce. 10,11 Recycling is the most 

used approach for old tire management, and should be preferred to recovery, since only 30-38% 

of the energy contained in a new tire can be recovered.12,13 To date, several recycling methods 

are being employed,6 most of them involving the grinding of rubber waste in a powder.14,15 

Grinding rubber waste for recycling purposes was first proposed by Goodyear in 1853.16  

 Among waste tire rubber (WTR) recycling approaches, blending the rubber waste 

particles with polymers has been shown to be very effective, allowing to reduce the costs of the 

derived products.4,17 WTR polymer blends were already attempted for the three families of 

polymers: elastomers, thermosets and thermoplastics. In all cases, it is possible to obtain a final 

product with good mechanical characteristics, which can be further improved by reducing the 

particle size of rubber granulates18,19 or enhancing the compatibilization between the blend 

matrix and WTR powder.20–23 Despite this promising potential for recycling verified in WTR-

based polymer blends, their properties in view of solid-state cooling are still unexplored. 

 The current refrigeration technology is based on vapor-compression cycles employing 

hazardous gases as refrigerants, which may present global warming potentials up to 2000 times 

that of CO2.
24 Besides, the energetic efficiency of these machines is quite low, reaching only 

30% of the Carnot efficiency.25 Solid-state cooling based on i-caloric materials is considered the 
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most promising approach to replace the conventional cooling systems, by using eco-friendly 

materials with higher energy efficiencies.25–29 i-caloric effects are characterized by temperature 

and entropy changes induced by the application of external fields on a material, where i stands 

for intensive variables. Very recently, giant barocaloric effects, which are driven by the 

application of isostatic pressure, were observed in distinct elastomers: vulcanized natural rubber 

(VNR);30,31 PDMS;32 and acetoxy silicone rubber.33 In all these cases, barocaloric effect values 

are higher than those observed in other classes of materials, such as intermetallics. Besides 

revealing the high barocaloric potential of the elastomers, these results also open an encouraging 

perspective for using waste tire rubber in such applications, since most of the typical tire 

composition is represented by elastomeric materials.5 Moreover, the possibility of combining a 

novel recycling method with an energy saving technology ‒ represented by solid-state cooling ‒ 

make this approach particularly appealing in view of sustainability.  

 Taking into account the discussion above, in the present study, we systematically 

investigated the barocaloric effects in WTR and polymer blends composed by WTR and VNR. 

The experiments were performed in a customized experimental apparatus, previously developed 

by our group.34 The results show the barocaloric effects (adiabatic temperature change and 

isothermal entropy change) and the performance parameters in WTR-based samples are close to 

those values obtained from pure VNR. Moreover, the thermal exchange is significantly faster in 

WTR than in VNR, constituting an additional gain in using waste rubbers. 

 

MATERIALS AND METHODS 

Samples 

 We prepared the VNR samples using commercial pre-vulcanized latex (purchased from 

Siquiplas). The 8-mm-diameter VNR cylinders were cast into a plaster mold, with a latex feed to 

prevent the formation of cavities during the drying process. The density of the samples is 902(7) 

kg m-3, checked by a pycnometer. 

 WTR powder used in the blends was supplied by UTEP Company. The diameters of the 

granules are distributed from ~10 μm to ~3 mm, with the highest concentration within the 0-100 

μm range (~56%), as displayed in Table A1 (Appendix).  

 Polymer blend samples were prepared by mixing ~33% of WTR powder to 67% of latex 

into a cylindrical steel mold. The material was pressed by a piston to remove part of the latex. By 

the height of the piston inside the mold, it is possible to roughly control how much of the latex is 

removed, neglecting the WTR powder going out with the liquid phase. In the final step, the blend 

is allowed to dry naturally for 3 days inside the mold and 7 days in air. The percentage of WTR 

in these 8-mm-diameter cylinders is indirectly determined by calculating the difference of the 

weights before and after the whole process.  
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 WTR powder was also sintered into an 8-mm-diameter cylinder under pressure of 40 

MPa for 30 min at high temperature of 453 K. This sample was only used for DSC measurement.  

Fourier-transform Infrared Spectroscopy 

 Fourier transform infrared spectroscopy (FTIR) characterizations were performed from 

500 to 4000 cm−1 (fixed step of 2 cm−1) using a FTIR spectrometer from PerkinElmer® (model 

Spectrum Two). 

 Fig. A1 (Appendix) displays the FTIR spectra for VNR, pure WTR and WTR 88 wt% 

blend. The peaks between 3100 and 2800 cm-1, observed in all spectra, are attributed to C-H 

stretching vibration and are typical for VNR,35 but are also verified in styrene-butadiene rubber 

compounds.36 The peak at 1537 cm-1, only appearing in the WTR-based samples, corresponds to 

the stretching vibration of double bonds in CH=CH groups, which is a clear indication of partial 

devulcanization during WTR production.37 The presence of the peak at 1710 cm-1, assigned to 

the absorption of carbonyl groups (C=O), results from the milling process.37  

X-ray diffraction 

 X-ray diffraction (XRD) data was obtained at XRD1 beamline38,39 at the Brazilian 

Synchrotron Light Laboratory (LNLS), using X-rays with energy of 12 keV. 

 The XRD profile in Fig. A2 (Appendix), corresponding to the pure WTR powder, 

displays the typical amorphous components, corresponding to elastomers usually contained in 

tires (natural and synthetic rubber, carbon black), but also exhibiting various crystalline peaks. It 

is worth mentioning WTR powder is formed by tires from different producers, which may vary 

considerably in compositional materials. Though, the presence of zinc compounds is expected, 

since zinc oxide (ZnO) is commonly used as an activator for the vulcanization reaction.40 We 

also identify the presence of common rubber fillers such as calcium carbonate (CaCO3) and 

silicon dioxide (SiO2)002E. 

Experiments under pressure 

 We performed the compression-decompression experiments in a piston-cylinder carbon-

steel chamber surrounded by a copper coil, which enables the use of cooling/heating fluids (such 

as water and liquid nitrogen). A thermostatic bath (TE 184, Tecnal) was employed to reach 

temperatures above 280 K, by pumping water into the copper coil. Below 280 K, we used 

nitrogen to cool down the chamber. In both cases, two tubular heating elements (NP 38899, HG 

Resistências) were used to provide thermal stability to the system. A manual 15,000-kgf 

hydraulic press (P15500, Bonevau) was used to apply the uniaxial load. A load cell (3101C, 

ALFA Instrumentos) measured the contact force. A Cryogenic Temperature Controller (Model 

335, Lake Shore Cryotronic) carried out the temperature acquisition and control. More details 

about the apparatus can be found in Bom et al.34 

 Direct measurements of barocaloric adiabatic temperature changes were performed in a 

four-step procedure: i) the sample is compressed quasi-adiabatically, causing a fast increase in 
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temperature; ii) temperature cools down to the initial temperature, load is kept constant; iii) 

adiabatic decompression of the sample, causing an abrupt decrease in temperature; iv) sample 

temperature returns to the initial value. These cycles were performed only after temperature 

stabilization. 

Specific heat from Differential Scanning Calorimetry 

 We determined the specific heat (cp) as a function of temperature for the VNR, sintered 

WTR and the polymer blend samples (57, 73 and 88 wt%) using differential scanning 

calorimetry (DSC) data. The DSC measurements were carried out under ambient pressure, with 

heating rate of 10 K min-1 from ~180 K to ~350 K. 

Calculation of time constant of temperature vs. time curves 

 We used the following relationship, describing the variation of the temperature as a 

function of time, to fit the decompression behavior of our experimental curves:41  

                         𝑇(𝑡) = 𝑇0 + (𝑇1 − 𝑇0)𝑒−
(𝑡−𝑡1)

𝜏                                                (1) 

where τ corresponds to the time constant; T0 and T1 are the initial and final temperatures, 

respectively; t is the time parameter and t1 is the final time (when T = T1). This model was fitted 

at the decompression region of temperature vs. time curves within the 333-233 K range 

(examples in Fig. A3 in Appendix). T0 was defined as the inflection point of the exponential 

increase of temperature (𝑇0 = 𝑇(
𝑑2𝑇

𝑑𝑡2 = 0)), and T1 was taken at the beginning of the temperature 

plateau. The data for 223 K were not included due phase transitions occurring at this 

temperature, precluding the fitting. The values obtained from this procedure are listed in Table 

A2 (Appendix). 

 

RESULTS AND DISCUSSION 

Barocaloric effects 

 Fig. 1 shows adiabatic temperature change (ΔTS) values obtained from the barocaloric 

experiments, measured in decompression, as a function of the distinct percentages of WTR, 

including pure VNR (0 wt%). These experiments were performed at the initial temperatures of 

333, 293 and 243 K (Figs. 1a, b and c, respectively), for pressure changes (Δp) of 173(3), 260(8) 

and 390(12) MPa. One can verify a similar pattern in all experimental conditions, where ΔTS 

consistently decreases as WTR content is increased. The large values of temperature change are 

mainly due to the natural rubber content. As the WTR content increases, the natural rubber 

content decreases giving place to others non-rubbery elements also present in the WTR, like 

oxides and other fillers (e.g. carbon black, fibers). Thus, it is expected that these other non-

rubbery elements contribute insignificantly to the barocaloric effect. Therefore, the barocaloric 

effect tends to reduce when WTR content is increased when compared with the VNR. 

Nevertheless, the rate of decrease is quite low, even for samples with pure WTR powder (100 
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wt%). The maximum ΔTS reduction in comparison with pure VNR is 25%, obtained at 243 K for 

Δp = 260 MPa; the average ΔTS loss for the entire set of samples is ~21%. Although this 

reduction is significant, the ΔTS values measured in WRT-based samples are still within the 

range of giant barocaloric changes, suggesting the use of WTR powder as refrigerant in 

barocaloric devices is technically viable. 

 

Figure 1. Direct measurements of ΔTS in decompression as a function of WTR weight percentages within 

the samples. The experiments were performed at the initial temperatures of 333 K (a), 293 K (b) and 243 

K (c), for pressure changes of 173(3), 260(8) and 390(12) MPa. We estimate an error of 3% for pressure.  
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 Furthermore, we investigated the ΔTS of WTR-based samples, on decompression, within 

the 223-333 K temperature range (Δp = 173, 260 and 390 MPa). Figs. 2a and 2b show ΔTS as a 

function of initial temperature, corresponding to the WTR 88 and 100 wt% samples, 

respectively. Qualitatively speaking, both samples present the same trend: for lower 

temperatures, ΔTS tends to decrease; above a temperature threshold, the curve changes its slope 

and ΔTS varies in a lower rate. Moreover, analyzing ΔTS x T curves, it is possible to notice this 

threshold shifts to higher temperatures as applied pressure increases. This behavior is consistent 

with the glass transition occurring in elastomers, already reported for VNR.31 Below the glass 

transition temperature (Tg), the movements of polymer chains are largely limited, reducing the 

number of accessible states of the system, decreasing the barocaloric effect as a consequence. 

Considering WTR is mainly composed by elastomeric material, this mechanism can also explain 

the results in Fig. 2. Finally, ΔTS values for the 88 wt% sample are consistently higher in 

comparison with the 100 wt% sample, reaching the maximum ΔTS of ~21 K (for pressure change 

of 390 MPa at 323 K). 

Figure 2. Direct measurements of ΔTS in decompression as function of initial temperature, for samples 

with 88 wt% (a) and 100 wt% (b) of WTR. The experiments were performed within the 223-333 K 

temperature range for pressure changes of 173(3), 260(8) and 390(12) MPa. 

 

 The isothermal entropy changes (ΔST) associated to the barocaloric experiments can be 

indirectly determined using the following thermodynamic relation:42  

                                                  ∆𝑆𝑇  (𝑇, ∆𝑝 ) = −
𝑐𝑝(𝑇)

𝑇
∆𝑇𝑆(𝑇, ∆𝑝)                                      (2) 



 8 

where cP(T) is the specific heat at constant pressure. In our study, we obtained cP(T) from 

differential scanning calorimetry (DSC) measurements. ΔST obtained by this method for the 88 

and 100 wt% samples is shown in Fig. 3, where ΔST is plotted as a function of temperature, 

within the 223-333 K range and for Δp = 173, 260 and 390 MPa. Considering this calculation 

was based on the directly measured ΔTS (Fig. 2a) and cp(T) presents a linear behavior within the 

considered temperature range, we can verify the qualitative behavior is the same in both data 

sets. For 390 MPa, the maximum values of ~95 J.kg-1.K-1 (WTR 88 wt%) and ~75 J.kg-1.K-1 

(WTR 100 wt%) are comparable to the giant values obtained for VNR31 and PDMS.43 

Figure 3. Isothermal entropy change as a function of temperature calculated using eq. 2 and ΔTS data. The 

curves correspond to the WTR 88 wt% (a) and 100 wt% (b) samples, within the 223-333 K temperature 

range for pressure changes of 173(3), 260(8) and 390(12) MPa. 

 

Performance parameters 

 Following the normalization of i-caloric effects recently proposed,44 we calculated the 

normalized ΔTS (|ΔTS/Δp|) and plotted against temperature (Fig. 4a) for VNR, WTR 88 and 100 

wt% samples, in order to provide a proper evaluation of their barocaloric performance. It is 

worth mentioning that the best materials are located at the top right corner of the plot, the 

materials exhibiting high normalized values with high temperature change. One can see the 

dataset corresponding to VNR presents |ΔTS/Δp| values consistently higher than those of WTR-

based samples. Nevertheless, the values reached by the WTR 100 wt% (55.6 K.GPa-1 at 333 K) 

are still remarkable, comparable or superior to other barocaloric materials in literature, as 

displayed in the graph.32,45–48  
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 It is also important to analyze and compare the normalized refrigerant capacity (NRC) for 

barocaloric effect, which is defined as:31,33 

                                                   𝑁𝑅𝐶 (∆𝑇ℎ−𝑐 , ∆𝑝) = |
1

∆𝑝
∫ ∆𝑆𝑇(𝑇, ∆𝑝)𝑑𝑇

𝑇ℎ𝑜𝑡

𝑇𝑐𝑜𝑙𝑑
|                                 (3) 

where ΔTh-c is the difference between the hot reservoir (Thot) and the cold reservoir (Tcold). Fig. 

4b shows the NRC curves calculated for Δp = 173 MPa, using the ΔST determined from eq. (2). 

We have fixed the hot reservoir at 315 K for all samples. The initial values in the three curves are 

very close, but this difference increases for higher ΔTh-c. The maximum NRC value for WTR 

samples are lower than VNR at ΔTh-c = 50 K, but once again higher than other materials with 

giant barocaloric effect.32,45,48 

 The whole analysis developed in this study reveals an encouraging scenario involving the 

use of waste rubbers in solid-state cooling applications. The values observed for both ΔTS and 

ΔST and for the performance parameters, |ΔTS/Δp| and NRC, clearly demonstrate WTR-based 

samples exhibit the required characteristics to act as refrigerants in barocaloric devices, 

surpassing most of the best barocaloric materials in literature. 

 An additional advantage in terms of performance obtained from WTR is its faster thermal 

exchange in comparison with VNR. A good way to evaluate the thermal exchange is to analyze 

the temperature-time data of our direct ΔTS measurements and calculate, using Eq. 1 (Materials 

and Methods), the time constant (τ) of the curve after the pressure is released.41 Fig. 5 shows the 

time-constant (τ) vs. WTR content for Δp = 173 MPa at T = 273 K. We observe a significant 

decrease of the time constant (τ) as the WTR content is increased in the samples. The time-

constant drops from 25.6 s, for VNR, to 14.4 s, for WTR. But already at 88 wt% of WTR the 

value is 16.5 s. Taking other temperature, for the same pressure change (Table A2, Appendix), 

the average τ decrease in WTR 100 wt% sample, in comparison with pure VNR, is 11.1 s (~48 % 

lower). These results show that the heat flows faster from WTR during the barocaloric process. 

This effect can be explained by the relatively high concentration of carbon black49,50 and other 

fillers in WTR powder. Bearing in mind the slow thermal exchange is still a challenge for 

elastomeric materials in view of cooling applications, the perspective of using WTR as 

refrigerant would concomitantly address this issue, besides its eco-friendly appeal. Finally, the 

particle size of WTR powder employed in our study was not controlled, and the VNR+WTR 

blends did not receive any post-synthesis processing. Nevertheless, several studies show the 

precise control of particle size and blending conditions can highly improve the characteristics of 

the synthesized blends.4,17 Thus, we can expect even better caloric performances of VNR+WTR 

blends in further studies involving a systematic optimization of synthesis and processing. 
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Figure 4. Performance parameters for VNR, WTR 88 and 100 wt% samples. (a) |ΔTS/Δp| vs.  ΔTS. The 

solid symbols correspond to the measured data for |Δp| = 173 MPa; the maximum and minimum 

temperatures of these data sets are indicated. The open symbols represent the following values from 

literature: PDMS (|Δp| = 173 MPa),32 Mn3GaN (|Δp| = 93 MPa),45 La-Fe-Si-Co (|Δp| = 200 MPa),46 Mn-

Co-Ge-In (|Δp| = 300 MPa),47 and MnNiSi-FeCoGe (|Δp| = 250 MPa).48 (b) Normalized refrigerant 

capacity curves as a function of ΔTh-c, for |Δp| = 173 MPa (solid symbols). The hot reservoir was fixed at 

315 K for the three measured samples. Values from literature (open symbols): PDMS (Thot = 315 K and 

|Δp| = 173 MPa), Mn3GaN (Thot = 295 K and |Δp| = 139 MPa), and MnNiSi-FeCoGe (Thot = 335 K and 

|Δp| = 270 MPa). The dotted lines are guides for the eyes. 
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Figure 5. Time constant τ as function of the WTR content for |Δp| = 173 MPa and T = 273 K. The values 

of τ were obtained from the direct ΔTS measurements. 

 

 

CONCLUSIONS 

 A systematic investigation of the barocaloric characteristics of polymer blends made of 

VNR and WTR revealed that WTR-based samples present a slight reduction in the barocaloric 

effect in comparison with pure VNR. Nevertheless, the measured values are still within the giant 

barocaloric range: the maximum ΔTS is 23.2 K (57 wt% WTR, at 333K for Δp = 390 MPa) and 

the maximum ΔST is 95 J.kg-1.K-1 (88 wt% WTR, at 333 K for Δp = 390 MPa). Also, the 

performance parameters are impressive, comparable or better than several barocaloric materials 

reported in the last years. In addition, WTR samples exhibit a faster thermal exchange than VNR, 

which may represent a great advantage for barocaloric cooling devices. All these findings 

evidence the promising potential of WTR in view of solid-state cooling applications, fostering a 

new alternative for recycling of waste tire rubber, besides contributing significantly to the field 

of sustainable energy technology. 
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APPENDIX: ADDITIONAL FIGURES AND TABLES 

 

 

Fig. A1: FTIR spectra for pure WTR, WTR 88 wt% polymer blend and VNR. 

 

 

 

Fig. A2: X-ray diffraction pattern for pure WTR, with phase identification. X-ray wavelength: 1.033 Å. 
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Fig. A3: Temperature vs. time experimental curves for (a) VNR and (b) pure WTR during a 

decompression cycle at 313 K for Δp = 173 MPa (blue open circles). The red dashed lines correspond to 

the fittings of data using eq. 1, where the initial temperature used in the model (T0) and the calculated 

time constants (τ) are indicated. 

 

Table A1: Size distribution of granules in WTR powder, determined by optical microscopy. 

Diameter 

(μm) 

Frequency 

(%) 

0 - 100 

100 - 200 

200 - 300 

300 - 400 

400 - 500 

> 500 

56.46 

21.79 

9.04 

4.68 

2.77 

5.26 
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Table A2: τ values calculated for VNR and pure WTR from temperature vs. time experimental curves. 

The relative gain corresponds to the percentage decrease in τ for WTR in comparison with VNR, at the 

same experimental conditions. 

Temperature (K) τWTR (s) τVNR (s) Relative gain (%) 

333 17.94 28.47 36.99 

323 19.28 24.68 21.86 

313 15.16 25.30 40.07 

303 13.89 22.24 37.57 

293 12.15 24.18 49.78 

283 11.92 24.88 52.12 

273 14.42 25.56 43.58 

263 10.36 20.13 48.55 

253 6.47 20.42 68.31 

243 8.35 19.99 58.21 

233 7.37 23.38 68.48 
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