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Previously published comparative functional genomic data sets from primates using frozen tissue samples, including many

data sets from our own group, were often collected and analyzed using nonoptimal study designs and analysis approaches.

In addition, when samples from multiple tissues were studied in a comparative framework, individuals and tissues were con-

founded. We designed a multitissue comparative study of gene expression and DNAmethylation in primates that minimizes

confounding effects by using a balanced design with respect to species, tissues, and individuals. We also developed a com-

parative analysis pipeline that minimizes biases attributable to sequence divergence. Thus, we present the most comprehen-

sive catalog of similarities and differences in gene expression and DNA methylation levels between livers, kidneys, hearts,

and lungs, in humans, chimpanzees, and rhesus macaques. We estimate that overall, interspecies and inter-tissue differences

in gene expression levels can only modestly be accounted for by corresponding differences in promoter DNAmethylation.

However, the expression pattern of genes with conserved inter-tissue expression differences can be explained by corre-

sponding interspecies methylation changes more often. Finally, we show that genes whose tissue-specific regulatory patterns

are consistent with the action of natural selection are highly connected in both gene regulatory and protein–protein inter-

action networks.

[Supplemental material is available for this article.]

Gene regulatory differences between humans and other primates
are hypothesized to underlie human-specific traits (King and
Wilson 1975). Over the last decade, dozens of comparative geno-
mic studies focused on characterizing mRNA expression level dif-
ferences between primates in a large number of tissues (e.g.,
Enard et al. 2002; Khaitovich et al. 2005; Blekhman et al. 2008;
Brawand et al. 2011; Barbash and Sakmar 2017), typically focusing
on differences between humans and other primates. A few studies
have also characterized inter-primate differences in regulatory
mechanisms and phenotypes other than gene expression levels,
such as DNAmethylation levels, chromatin modifications and ac-
cessibility, and protein expression levels (Cain et al. 2011; Pai et al.
2011; Hernando-Herraez et al. 2013, 2015a,b; Ward et al. 2013;
Stergachis et al. 2014; Zhou et al. 2014; Villar et al. 2015). These
studies often construct catalogs of gene expression levels and other
mechanisms. These catalogs have been useful to better understand
the evolutionary processes that led to adaptations in humans
(Enard et al. 2002; Cáceres et al. 2003; Karaman et al. 2003;
Khaitovich et al. 2004a, 2005; Gilad et al. 2005; Lemos et al.
2005; Blekhman et al. 2008, 2010; Nowick et al. 2009; Babbitt
et al. 2010; Pai et al. 2011; Shibata et al. 2012; Capra et al. 2013;

Khan et al. 2013) and ancestral or derived phenotypes that may
be relevant to human diseases (Cooper and Shendure 2011;
Romero et al. 2012).

One caveat that is shared among practically all comparative
studies in primates is related to difficulty in obtainingmultiple tis-
sue samples from the same individual. To date, there have been no
published comparative studies in primates that have analyzed
multiple tissues sampled from the same individuals across multi-
ple species in a balanced design (Romero et al. 2012). As a result,
regulatory differences between tissues are always confounded
with regulatory differences between individuals (Blekhman et al.
2008; Brawand et al. 2011; Pai et al. 2011; Chen et al. 2019).
In turn, catalogs from these studies cannot be used to compare
tissue-specific regulatory differences between species to inter-
tissue differences in regulatory variation within species (see
“Discussion” in Pai et al. 2011).

Our group and others often use previously published catalogs
of comparative data from primates in the different studies.
Although we do not expect previously observed patterns to
be erroneous, we are aware that data on gene-specific interspecies
regulatory differences, and especially data that pertain to com-
parisons of divergence across tissues, may be inaccurate for
the reasons we discussed above. We thus designed the current
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study to produce a new comprehensive catalog of comparative
gene expression and DNA methylation data from humans, chim-
panzees, and rhesus macaques, attempting to minimize possible
confounders.

The goal of our study is not to challenge previous conclusions
or document specific differences between the current and previous
data. Instead, we aim to provide a new and more accurate com-
parative catalog of inter-tissue and interspecies differences in
gene regulation between humans and other primates, with sub-
stantial sample and study design documentation. Overall, we be-
lieve that this catalog can be useful for many future applications
and can serve as a new benchmark for regulatory divergence in
primates.

Results

Study design and data collection

To comparatively study gene expression levels and DNA methyla-
tion patterns in primates, we collected primary heart, kidney,

liver, and lung tissue samples from four
human, four chimpanzee, and four rhe-
sus macaque individuals (Fig. 1A; Sup-
plemental Table S1A). From these 48
samples, we harvested RNA and DNA
in parallel (Methods). After confirming
that the RNA from all samples was of ac-
ceptable quality (Supplemental Fig. S1A;
Supplemental Table S1B), we performed
RNA-sequencing to obtain estimates of
gene expression levels. Additional details
about the donors, tissue samples, sample
processing, and sequencing information
can be found in “Methods” and Supple-
mental Table S1.

We estimated gene expression levels
using an approach designed to prevent
biases driven by sequence divergence
across species, similar to the approach
of Blake et al. (2018b). Briefly, we map-
ped RNA-sequencing reads to each
species’ respective genome. To compare
gene expression levels across species,
we only calculated the number of reads
mapping to exons that can be classified
as clear orthologs across all three species
(Supplemental Table S1B). We excluded
data from genes that were lowly ex-
pressed in more than half of the samples
as well as data from one human heart
sample that was an obvious outlier, prob-
ably owing to a sample swap (Supple-
mental Fig. S2A,B). We normalized the
distribution of gene expression levels to
remove systematic expression differences
between species (maximizing the num-
ber of genes with invariant expression
levels across species corresponds to our
null hypothesis) (Methods). Through
this process, we obtained TMM- and
cyclic loess-normalized log2 counts per
million (CPM) values for 12,184 ortholo-

gous genes to be used in downstream analyses (Supplemental Ta-
ble S2).

Elements of study design, including sample processing, have
been shown to impact gene expression data (Gilad and Mizrahi-
Man 2015). Consequently, we tested the relationship between a
large number of technical factors recorded throughout our exper-
iments and the biological variables of interest in our study, namely
tissue and species (Methods; Supplemental Material; Supplemen-
tal Table S3A,B). We found that there were no technical confound-
ers with tissue but two technical factors were confounded with
species: time postmortem until collection and RNA extraction
date (Supplemental Fig. 1B,C). Because of the opportunistic nature
of sample collection, these confounders are practically impossible
to avoid in comparative studies of primates (especially apes). We
discuss possible implications of these confounders throughout
the paper.

Gene expression varies more across tissues than across species

We first examined broad patterns in the gene expression data. A
principal component analysis (PCA) and a separate clustering
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Figure 1. Surveying gene expression and DNAmethylation in diverse tissues across primates. (A) Study
design. (B) Principal components analysis (PCA) of gene expression levels in 47 samples. (C) Normalized
gene expression (quantile-transformed RPKMs) from four donors in the GTEx heart collection (“heart
same individuals”) compared to the lungs from different (“lung different individuals”) and the same do-
nors’ lungs (“lung same individuals”) in AC020922.1. (D) PCA of average methylation levels 250 bp up-
stream and downstream in 47 samples. (E) Density function of the correlation between gene expression
and DNA methylation levels in human–chimpanzee orthologous genes. (F) Density function of the cor-
relation between gene expression and DNA methylation levels in genes orthologous across humans and
rhesus macaques.
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analysis indicated that, as expected (Brawand et al. 2011; Barbosa-
Morais et al. 2012; Merkin et al. 2012), the primary sources of
gene expression variation are tissue (regression of PC1 by tissue =
0.81; P<10−14; regression of PC2 by tissue=0.70; P<10−10) (Fig.
1B; Supplemental Tables S1A,B, S3A,B; Supplemental Fig. S3), fol-
lowed by species (regression of PC2 by species = 0.27; P<10−3)
(Supplemental Tables S1A,B, S3A,B). We then confirmed that,
globally, gene expression levels across tissues from the same indi-
vidual are more highly correlated than gene expression levels
across tissues from different individuals (Supplemental Fig. S2C).
This observation supports the intuitive notion that collecting
and analyzing multiple tissues from the same individual is highly
desirable in functional genomics studies.

We sought further explicit evidence that incorporating ba-
lanced collection of multiple tissues from the same individuals is
an effective study design. To do so, we used lung and heart data
from theGTExConsortium (TheGTExConsortium2017).We first
identified differentially expressed (DE) genes between lung and
heart; we designated these classifications, which are based on hun-
dreds of samples, as the “truth” (Supplemental Material;
Supplemental Table S3E). Next, we repeatedly identified DE genes
between lung and heart using GTEx data from randomly chosen
sets of just four samples from each tissue. We then compared the
results to DE genes identified from an equivalent analysis of sets
of four samples from each tissue, in which the tissue samples orig-
inated from the same donor. Compared to the designated “truth,”
DE analyses using data from tissue samples that are matched for
donors result in a higher ratio of true positives to false positives
than analyses using tissue samples that are unmatched for donors
(P=0.03) (Supplemental Table S3F). Given the small number of
false positives in both data sets, study design is unlikely to impact
large-scale, highly robust trends across species. However, this study
design choice is particularly important if one is interested in indi-
vidual genes (as shown by an example in Fig. 1C).

Putatively functional tissue-specific gene expression patterns

To analyze the pairwise regulatory differences across tissues and
species, we used the framework of a linear model (Methods). We
first identified (at FDR<1%)3695–7027 (dependingonthecompar-
ison we considered) differences in gene expression levels between
tissues, within each species (Table 1; Supplemental Table S4A–C).
Overall, the patterns of inter-tissue differences in gene expression
levels are similar in the three species, significantlymore so than ex-
pected by chance alone (P<10−16, hypergeometric distribution)
(Supplemental Material; Supplemental Table S5). A range of 17%–

26%of inter-tissueDEgeneshaveconserved inter-tissueexpression
patterns in all three species (Supplemental Table S5). Regardless of
species, we found the fewest inter-tissue DE genes when we con-

trasted liver and kidney, and the largest number of DE genes be-
tween liver and either heart or lung (Table 1; Supplemental Table
S4B). However, because our data were produced from bulk RNA-se-
quencing, wewere unable to determine the impact of cell composi-
tion on the number of inter-tissue DE genes.

We used the same framework of linear modeling to identify
gene expression differences between species, within each tissue
(Supplemental Table S4A). Depending on the tissue and species
we considered, we identified between 799 and 4098 interspecies
DE genes (at FDR=1%) (Table 1). As expected, given the known
phylogeny of the three species, within each tissue we classified
far fewer DE genes between humans and chimpanzees than be-
tween either of these species and rhesus macaques (Supplemental
Table S4B).

It is a common notion that genes with tissue-specific expres-
sion patterns may underlie tissue-specific functions. Previous cat-
alogs of such patterns in primates were always confounded by
the effect of individual variation (because each tissue was sampled
from a different individual). To classify tissue-specific genes using
our data, we focused on genes that are either up-regulated or down-
regulated in a single tissue relative to the other three tissues (within
one ormore species).We define such genes as having a “tissue-spe-
cific” expression pattern, acknowledging that this definition may
only be relevant in the context of the four tissues we considered
here.

Using this approach and considering the human data across
all tissue comparisons, we identified 5284 genes with tissue-specif-
ic gene expression patterns (FDR 1%) (Fig. 2A–D). By performing
similar analyses using the chimpanzee and rhesus macaque data,
we found that the degree of conservation of tissue-specific expres-
sion patterns is higher than expected by chance (P<10−16) (Fig.
2A–D). This observation is robust with respect to the statistical cut-
offs we used (Supplemental Table S6), indicating that many of
these conserved tissue-specific regulatory patterns are likely of
functional significance.

To broadly analyze the biological function of genes with con-
served tissue-specific expression, we performed a Gene Ontology
(GO) enrichment analysis (Supplemental Material). We found
these genes are indeed highly enriched with functional annota-
tions that are relevant to the corresponding tissue (Supplemental
Tables S7A–D, S8). For example, geneswith conserved heart-specif-
ic expression patterns were enriched in GO categories related to
muscle filament sliding (e.g., ACTA1, MYL2) and cardiac muscle
contraction (e.g., MYBPC3, TNNI3).

Functional analysis of gene regulatory differences

We sought further evidence that the classification of genes with
conserved tissue-specific expression patterns is meaningful. To

Table 1. Pairwise DE genes at FDR 1%

DE between tissues (within species) Heart-kidney Heart-liver Heart-lung Kidney-liver Kidney-lung Liver-lung

Human 4224 4776 4037 4248 3695 4701
Chimpanzee 4971 6295 5365 4625 4623 6247
Rhesus macaque 5980 6933 6814 5126 5721 7027

DE between species Heart Kidney Liver Lung

Human versus chimpanzee 2195 799 1364 805
Human versus rhesus macaque 4098 2347 2868 2833
Chimpanzee versus rhesus macaque 2781 2286 3139 1917
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do so, we considered transcription coexpression networks (Stuart
et al. 2003; Zhang and Horvath 2005) based on GTEx data from
heart and lung (Pierson et al. 2015).We found that geneswith con-
served tissue-specific expression patterns are more likely to appear
as nodes in the networks than geneswithout tissue-specific expres-

sion patterns or genes whose tissue-
specific expression patterns are not
conserved (P< 10−5). When we only con-
sidered genes that appear as nodes in the
network, we found that genes with con-
served tissue-specific expression patterns
are more likely to be classified as hubs in
the networks than genes without tissue-
specific expression patterns or genes
whose tissue-specific expression patterns
are not conserved (P< 0.007).

Motivated by these findings, we
focused on gene expression patterns
that are consistent with the action of nat-
ural selection (as described in Blekhman
et al. 2008; Supplemental Material; Sup-
plemental Table S7E). We found that
genes whose expression patterns are con-
sistent with the action of either stabiliz-
ing or directional selection (top 10%)
(Supplemental Table S7F) have more
interactions with other genes in the
network than genes whose expression
patterns are not consistent with the
action of natural selection (bottom
10%; P<0.05 for all comparisons) (Fig.
2E). This observation is fairly robust
with respect to percentile cutoff (Supple-
mental Table 7F).

We repeated a similar analysis using
protein–protein interaction data from
the Human Protein Atlas (Uhlén et al.
2015; Yu et al. 2015; Lindskog 2016;
Thul and Lindskog 2018) in all four tis-
sues. We again found that genes whose
expression patterns are consistent with
selection have more annotated protein–
protein interactions (P<0.05 in all eight
comparisons) (Fig. 2F; Supplemental
Table 7G). These interaction results sug-
gest that functionally important genes
are carefully regulated. Furthermore, this
tight regulation occurs at both the gene
expression andprotein levels inprimates.

Variation in DNA methylation across

tissues and species

We used low-coverage whole-genome
bisulfite sequencing (BS-seq) to study
DNA methylation patterns in each sam-
ple. The bisulfite conversion reaction ef-
ficiency was higher than 99.4% for all
samples (Supplemental Table S1C).
Following sequencing, we mapped the
high-quality BS-seq reads to in silico
bisulfite-converted genomes of the corre-

sponding species. We measured DNA methylation levels in 12.5
million to 22.9million CpG sites per sample, with aminimum cov-
erage of two sequencing reads per site (Supplemental Table S1C).

We estimated local methylation levels by smoothing the data
across nearby CpG sites (Supplemental Material; Supplemental
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Figure 2. Tissue-specific DE genes (FDR=0.01). The number of conserved tissue-specific DE genes
across all three species is greater than the number expected by chance: (A) heart; (B) kidney; (C) liver;
(D) lung. In each tissue, genes with tissue-specific regulatory patterns that are consistent with the action
of natural selection (top) are more likely to appear in gene coexpression networks (E) and have an in-
creased number of protein–protein interactions (F ) than those that are less consistent with the action
of natural selection (bottom). (∗) P<0.05; (∗∗∗) P<0.001. The x-axes of E and F are cut off at 80 interac-
tions for readability. In both cases, <5% of the data points are beyond this cutoff.
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Figs. S4–S6;Hansen et al. 2012). To facilitate a comparison ofmeth-
ylation levels across species, we annotated 10.5 million ortholo-
gous CpGs in the human and chimpanzee genomes, as well as a
smaller set of 2.4million orthologous CpGs in all three primate ge-
nomes (Supplemental Table S1C–E). To identifydifferences inDNA
methylation levels between tissues and species we again used a lin-
ear model framework (Methods; Fig. 1D). Focusing on DNAmeth-
ylation patterns across tissues within species, we identified
between 7026 and 41,280 differentially methylated regions be-
tween tissues, within species (T-DMRs) (Table 2; Supplemental Ta-
ble S9A; Blake et al. 2018a). Pairwise comparisons between hearts
and lungs showed the lowest number of T-DMRs, regardless of spe-
cies (7026 in rhesusmacaques, 8524 in chimpanzees, 14,208 inhu-
mans), whereas comparisons involving heart and liver showed the
largest number of T-DMRs (22,561 in humans, 28,767 in chimpan-
zee, and 41,280 in rhesus macaques) (Ta-
ble 2). We found that human T-DMRs
overlapped genic and regulatory features
significantly more than expected by
chance. In particular, there is an enrich-
mentof T-DMRs in intergenic regions, in-
trons, 5′ UTRs, 3′ UTRs, and active
enhancers (P< 0.04 for all tests) (as de-
fined by Andersson et al. 2014; Supple-
mental Table S9B).

We found strong evidence for
T-DMR conservation across all three spe-
cies (P<10−16 across all comparisons)
(Supplemental Table S10A). Although
this level of conservation is higher than
expected by chance, we recognize that
in each tissue comparison we performed,
we had incomplete power to identify
T-DMRs and so the true conservation of
T-DMRs is expected to be even higher.
To compare T-DMRs across species more
effectively, we considered DNAmethyla-
tion data from all T-DMR orthologous re-
gions that were classified as such in at
least one species. When we performed
hierarchical clustering using ortholog-
ous DNA methylation data from these
T-DMRs, the data clustered first by tissue,
then by species (Supplemental Fig. S7).
This trend is robust with respect to the
species used to initially locate T-DMRs
(Supplemental Figs. S8, S9). Thus, our re-
sults suggest that in general, inter-tissue
DNA methylation differences within a

species tend to be conserved, consistent with the observations of
previous studies (Martin et al. 2011; Molaro et al. 2011; Pai et al.
2011; Hernando-Herraez et al. 2013, 2015b).

We next focused specifically on tissue-specific DMRs, as these
may contribute to tissue-specific function. In contrast to differenc-
es inDNAmethylation between any pair of tissues, a tissue-specific
DMR is defined as having a similarmethylation level in three of the
tissues we considered, but a significantly different DNA methyla-
tion level in the remaining tissue. We found that there were
more DMRs specific to liver (3278 to 11,433 DMRs depending on
the species) than to kidney (2300 to 3957 DMRs), heart (1597 to
2969 DMRs), or lung (453 to 5018 DMRs) (Fig. 3A–D; Supplemen-
tal Table S10B). Tissue-specific DMRs are highly conserved regard-
less of the comparisons we made (P<10−13 for all comparisons, at
least 25% bp overlap was required to be considered shared).

Table 2. Pairwise differentially methylated regions (DMRs) in autosomal chromosomes

Tissue DMRs (within species) Heart-kidney Heart-liver Heart-lung Kidney-liver Kidney-lung Liver-lung

Human 30,291 (1.7%) 22,561 (1.3%) 14,208 (0.8%) 17,910 (1.1%) 16,521 (1.0%) 12,842 (0.8%)
Chimpanzee 17,699 (1.1%) 28,767 (1.7%) 8524 (0.5%) 23,847 (1.4%) 12,076 (0.7%) 22,107 (1.3%)
Rhesus macaque 23,023 (1.5%) 41,280 (2.7%) 7026 (0.5%) 35,910 (2.4%) 15,889 (1.1%) 32,636 (2.1%)

Species DMRs Heart Kidney Liver Lung

Human versus chimpanzee 14,504 (1.1%) 10,667 (0.8%) 9476 (0.8%) 8617 (0.7%)
Human versus rhesus macaque 25,539 (5.3%) 21,292 (4.5%) 21,639 (4.5%) 17,696 (3.9%)

Cutoff recommended by Hansen et al. (2012) (percentage out of total pairwise methylated regions).

A B

C D

E F

Figure 3. Tissue-specific DMRs (FDR =0.01). The number of conserved tissue-specific DMRs is greater
than expected by chance: (A) heart; (B) kidney; (C ) liver; (D) lung. Genes with the closest TSSs to con-
served tissue-specific DMRs are enriched for relevant functional annotations in hearts (E) and livers (F).
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In all four tissues, >59% of conserved DMRs are hypometh-
ylated in a tissue-specific manner. We evaluated the overlap be-
tween tissue-specific DMRs and genomic regions marked with
H3K27ac, a mark often associated with active gene expression
(The ENCODE Project Consortium 2012). We found that con-
served hypomethylated tissue-specific DMRs were annotated
with H3K27ac more frequently than tissue-specific DMRs identi-
fied only in humans (P< 0.001, difference of proportions test)
(Supplemental Material; Supplemental Table S10C). We then
asked about the potential impact of these conserved hypometh-
ylated tissue-specific DMRs on the expression of nearby genes. We
found that genes with the closest TSSs to conserved tissue-specific
DMRs are highly enrichedwith relevant functional annotations in
hearts and livers (the tissues with the largest numbers of conserved
hypomethylated tissue-specific DMRs) (Fig. 3E,F; Supplemental
Table S10D; Supek et al. 2011). For example, conserved heart-spe-
cific DMRs are closest to genes in cardiovascular-related pathways,
including ventricular cardiac muscle cell development, canonical
Wnt signaling pathway, and the MAPK7 cascade. Overall, these
observations suggest that conserved tissue-specific DMRs are likely
to underlie tissue-specific gene regulation in primates.

Interspecies differences in gene expression and DNA methylation

levels

Our comparative catalog can be used to identify DNAmethylation
differences that could potentially explain gene expression differ-
ences across species and tissues. To do so, we first identified
7,725 orthologous genes with expression data and corresponding
promoter DNA methylation data in humans and chimpanzees,
and 4155 orthologous genes with the same information for all
three species. We then determined to what extent divergence in
DNA methylation levels could potentially underlie interspecies
differences in gene expression by comparing the gene expression
effect size associated with “species” before and after accounting
for methylation levels. To determine significant effect size differ-
ences, we applied adaptive shrinkage (Stephens 2017)—a flexible
empirical Bayes approach for estimating false discovery rate
(Methods).Wenote that thismediation approach does not consid-
er the possibility that a third, unobserved eventmay be causally re-
sponsible for both the DNA methylation and expression patterns.

Considering DE genes between humans and chimpanzees (in
at least one tissue), we found that between 11% and 25% of genes
(depending on tissue) showed a difference in the effect of species
on gene expression levels once average promoter methylation lev-
els were accounted for (significant difference in effect size classi-
fied at FSR 5%, represented by red in Supplemental Fig. S10;
Supplemental Table S11A). As a control analysis, we considered
only the genes that were not originally classified as DE between
humans and chimpanzees, and we found that the difference in
the effect size of species on gene expression levels was reduced in
<1% of genes once DNA methylation was accounted for (FSR
5%) (Supplemental Fig. S10; Supplemental Table S11A); thus, our
approach is well calibrated.

We applied the same approach to the human and rhesus ma-
caque data and found that the percentage of genes for which gene
expression differences could potentially be explained by DNA
methylation differences ranges from 21% in the lung to 40% in
the liver (Supplemental Fig. S11; Supplemental Table S11B). This
observation may reflect the more extreme gene expression differ-
ences between humans and rhesus macaques than between hu-
mans and chimpanzees (before accounting for DNA methylation

levels, P<0.003 in all tissues, t-test comparing the absolute values
of the effect sizes for both groups of DE genes).

Next, we examined the genes in which DNAmethylation dif-
ferences may underlie inter-tissue gene expression differences (ex-
ample in Fig. 4A–C). Using adaptive shrinkage, we found that 9%–

17% of inter-tissue gene expression differences could potentially
be explained by DNA methylation differences across tissues (FSR
5%). When we performed the control analysis and considered
only data from genes that were not DE between tissues, <1% of ef-
fect sizes differed once we accounted for the DNA methylation
data (Fig. 4F; Supplemental Table S11C–E).

Finally, we focused on regulatory patterns that aremost likely
to be functional—namely, conserved inter-tissue gene regulatory
differences. These differences were more likely to be explained
by variation in DNA methylation levels than nonconserved in-
ter-tissue gene expression differences (minimum difference is
7%, P<0.005 for all comparisons; at FDR <5% and FSR <5%)
(Fig. 4D,E,H; Supplemental Table S11C–E). This observation is ro-
bust with respect to the FDR and FSR cutoff used (Supplemental
Table S11C–E). Indeed, the correlation between DNAmethylation
and gene expression data is higher for genes with conserved inter-
tissue expression patterns compared to genes whose expression
patterns are not conserved (Fig. 1E,F).

One way to maintain conserved inter-tissue gene expression
differences could be through DNA methylation level differences.
We compared the genes whose variation in inter-tissue gene ex-
pression can potentially be explained by variation inDNAmethyl-
ation levels (assuming no independent effect of an unobserved
factor) to all genes with conserved inter-tissue expression differ-
ences. We found that these genes are enriched for “essential tissue
functions” (Supplemental Table S11F). For example, the heart
genes are enriched for cardiac and smooth muscle contraction,
whereas those in liver are enriched for regulation of cholesterol
transport and hormone secretion (Fig. 4G; Supplemental Table
S11F). These observations suggest that DNA methylation levels
maymark or even drive differences in the expression levels in func-
tionally relevant genes.

Discussion

We designed a comparative study of gene regulation in humans,
chimpanzees, and rhesus macaques that minimized confounding
effects and bias. Consistent with previous studies, we found a high
degree of conservation in gene expression levels when we consid-
ered the same tissue across species (Barlow 1993; Brawand et al.
2011; Sharp et al. 2011; Lin et al. 2014; Gallego Romero et al.
2015). We also found evidence for conservation of tissue-specific
DMRs. Our observations are qualitatively consistent with those
of previous studies that mostly used microarrays to measure DNA
methylation levels (Pai et al. 2011; Hernando-Herraez et al.
2015b; Tsankov et al. 2015), however, the high resolution of our
BS-seq data allowed us to examine a much larger number of CpG
sites. Thus, we were able to show that although DNAmethylation
can potentially explain a modest proportion of expression differ-
ences between tissues (Pai et al. 2011), it is more likely to impact
conserved tissue-specific gene expression levels.

We created andmade available the most comprehensive, and
likely most accurate comparative catalog of gene expression and
methylation levels in humans, chimpanzees, and rhesus ma-
caques. Comparative functional genomic studies in primates, in-
cluding from our own laboratory, often are not designed to test
specific hypotheses. Rather, many of these comparative genome-
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scale studies aim to build catalogs of similarities and differences in
gene regulation between humans and other primates. These cata-
logs have been shown to be quite useful; for example, they can be
used to identify interspecies regulatory changes that have likely
evolved under natural selection (Enard et al. 2002; Cáceres et al.
2003; Karaman et al. 2003; Khaitovich et al. 2004a, 2005; Gilad
et al. 2005; Lemos et al. 2005; Blekhman et al. 2008, 2010;
Nowick et al. 2009; Babbitt et al. 2010; Pai et al. 2011; Shibata
et al. 2012; Capra et al. 2013; Khan et al. 2013), and thereby

help us better understand the evolutionary processes that led to
adaptations in humans. These catalogs are also used to establish in-
formed models of the relative importance of changes in different
molecular mechanisms to regulatory evolution (Khaitovich et al.
2004b; Warnefors and Eyre-Walker 2012) and to inform us about
ancestral or derived phenotypes that may be relevant to human
diseases (Cooper and Shendure 2011; Gallego Romero et al.
2015). Ultimately, comparative catalogs of gene regulatory pheno-
types are used to develop and test specific hypotheses regarding

A B C

D E

G H

F

Figure 4. Inter-tissue DNA methylation and gene expression levels (FDR =0.05 and FSR =0.05). (A–C) A representative example of the PRKACA gene in
which the variation of methylation levels (A) may explain the differences in gene expression levels (B) between human heart and kidney. (C) The residuals of
normalized gene expression levels after regressing out methylation levels. (D–G) Next, we compared the tissue effect sizes before and after controlling for
DNAmethylation levels in inter-tissue DE and non-DE genes, separately. Genes in red are significant at S-value <0.05. Effect size differences in conservedDE
genes in human heart relative to human kidney (D), nonconserved DE genes in human heart relative to human kidney (E), and non-DE genes in human
heart and human kidney (F ). (G) The conserved DE genes are enriched for heart-related function. (H) Variation in DNAmethylation is more likely to explain
variation in conserved DE genes than nonconserved DE genes (DE in the human tissues listed, but not in the same tissues in chimpanzees).

Blake et al.

256 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on January 20, 2021 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


the connection between interspecies regulatory changes and phys-
iological, anatomical, and cognitive phenotypic differences be-
tween species.

In this study, we used a comparative catalog to identify spe-
cies-specific and, in particular, tissue-specific regulatory patterns,
because these genes are often drug targets (Dezső et al. 2008) and
are likely important for the evolution of human traits (Blekhman
et al. 2008). We showed that genes with conserved tissue-specific
regulatory patterns have more regulatory interactions and pro-
tein–protein interactions than genes whose regulatory patterns
are not conserved or are not tissue-specific. These patterns became
even more pronounced when we focused on genes whose expres-
sion patterns are consistent with the action of natural selection.
Together, these observations consistently support the inference
that when genes perform an important function that needs to be
carefully regulated, evolution can act onmultiple levels of the reg-
ulatory cascade in primates.

Focusing on species-specific patterns of tissue-specific gene
regulation, our observations canhelp formulate specific functional
hypotheses regarding human-specific adaptations. For example,
genes with tissue-specific gene regulation identified only in hu-
mans are enriched for GO pathways that may contribute to hu-
man-specific features, including sodium ion import across the
plasma membrane in kidneys (e.g., SLC9A3 and TRPM4), the gly-
cogen biosynthetic process in livers (e.g., PGM1 and AKT1), and
paraxial mesoderm morphogenesis in lungs (e.g., MST1R and
MAP9).

Consideration of study design and record keeping

Regardless of the model system used and the types of data that are
collected, study design is critical. Perhaps because comparative
studies in primates typically rely on opportunistic sample collec-
tion, there are not recognized standards for study design that are
kept and consistently reported in most existing studies (including
many earlier studies from our group). We thus believe that it is
worthwhile to explicitly discuss a few important considerations re-
garding study design and the recording of metadata.

Without a balanced study design, it would have been impos-
sible to independently estimate the effects of individual, tissue,
and species on our data. Because the sources of confounding fac-
tors are difficult to predict in advance, we strongly recommend
that samples are collected using a balanced design with respect
to as many parameters as possible. These include the distribution
of tissue samples per individual, the number of individuals from
each species, sex, age range, cause of death and collection time
(in the case of postmortem tissues), or sample collection and cell
culturing (in the case of iPSC-based models). All steps of sample
processing (RNA extraction, library preparation, and so forth)
should be done in batches that are randomized or balanced with
respect to species, tissue, and any other variables of interest.

Most important, all sample processing steps should be record-
ed in a sample history file that includes anything that happened to
any sample. We have documented many of these steps in
Supplemental Table S1A–E. This documentation can help provide
evidence that a phenomenon is driven by biological rather than
technical factors. It may also benefit future studies by facilitating
effective meta-analysis of multiple data sets, which would help
to address the problems of tissue availability and small sample siz-
es. We believe that, moving forward, it should be a requirement
that these metadata are available with every published compara-
tive genomic data set.

Methods

Sample description

We collected heart (left ventricle), kidney (cortex), liver, and lung
tissues from four individual donors in human (Homo sapiens, all of
reported Caucasian ethnicity), chimpanzee (Pan troglodytes), and
Indian rhesus macaque (Macaca mulatta), for a total of 48 samples
(3 species × 4 tissues × 4 individuals) (Fig. 1A). The choice of these
tissues was guided by their relative homogeneity with respect to
cellular composition (e.g., Balashova and Abdulkadyrov 1984),
which does not change substantially across primate species. In
contrast, other tissues, such as brain subparts, differ substantially
in cellular composition across primates (Brodal 1983), which could
potentially confound the analyses.

Human samples were obtained from the National Disease
Research Interchange (IRB protocol 14378B). Non-human samples
were obtained from several sources, including the Yerkes primate
center and the Southwest Foundation for Biomedical Research, un-
der IACUCprotocol 71619.When possible, samples were collected
from adult individuals whose cause of death was unrelated to the
tissues studied.

RNA library preparation and sequencing

In total, we prepared 48 unstranded RNA-sequencing libraries as
previously described (Marioni et al. 2008; Blekhman et al. 2010).
Twenty-four barcoded adapters were used to multiplex different
samples on two pools of libraries. RNA-sequencing libraries were
sequenced on 26 lanes on four different flow-cells on an
Illumina HiSeq 2500 sequencer in either the Gilad laboratory or
at the University of Chicago Genomics Facility (50-bp single-end
reads) (Supplemental Material; Supplemental Table S1B).

Quantifying the number of RNA-seq reads from orthologous

genes

We used FastQC (version 0.10.0; https://www.bioinformatics
.babraham.ac.uk/projects/fastqc/) to generate a read quality re-
port and TrimGalore (version 0.2.8; https://www.bioinformatics
.babraham.ac.uk/projects/trim_galore/), a wrapper based on
Cutadapt (version 1.2.1) (Martin 2011), to trim adapter sequences
from RNA-seq reads. We trimmed using a stringency of 3. To cut
the low-quality ends of reads, we used a quality threshold (Phred
score) of 20. Reads shorter than20nt after trimmingwere eliminat-
ed before mapping (Supplemental Table S1B).

For each sample, we used TopHat2 (version 2.0.8b) (Kim et al.
2013) tomap the reads to the correct species’ genome:humanreads
to the hg19 genome, chimpanzee reads to the panTro3 genome,
and rhesus macaque reads to the rheMac2 genome (Supplemental
Material). Expression level estimates may be biased across the
species owing to factors such asmRNA transcript size and different
genome annotation qualities. To circumvent these issues, we
only retained reads that mapped to a set of 30,030 Ensembl
gene orthologous meta-exons available for each of the three ge-
nomes, as described and used previously (Blekhman et al. 2010;
Blekhman2012;GallegoRomero et al. 2015).Wedefined thenum-
ber of reads mapped to orthologous genes as the sum of the reads
mapped to the orthologous meta-exons of each gene. We quanti-
fied gene expression levels using the program coverageBed from
the BEDTools suite (Quinlan and Hall 2010) and then performed
TMM and cyclic loess normalization (Supplemental Material).

Because all three releases ofGTExuse hg19 and only a fraction
of the 1000 Genomes Project data are available in GRCh38 coordi-
nates, we also used hg19. However, to show that the results we re-
port would not change much if we used the GRCh38 build, we
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leveraged the fact that differential expression analysis compares
gene expression levels from groups of samples (e.g., human liver
samples to human lung samples). Therefore, we compared the
ranks of the normalized gene expression levels in the 15 human
samples mapped using hg19 to the same samples mapped to
GRCh38. The correlations of these ranks were extremely high (me-
dian Pearson’s correlation= 0.96). These strong correlations sug-
gest that our general conclusions—and indeed, many genes we
identified as DE—would remain if we had used the GRCh38 build.

Analysis of technical variables

To assess whether the study’s biological variables of interest—tis-
sue and species—were confounded with the study’s recorded sam-
ple and technical variables, we used a previously described
approach (Blake et al. 2018b).

For the 12 RNA-seq related technical variables that were the
most highly correlated with tissue or species, we assessed which
technical variables constitute the “best set” of independent vari-
ables to be included in a linear model for gene expression levels.
Because of the partial correlations between the variables, we ap-
plied lasso regression using the package “glmnet” (Friedman
et al. 2010). Before performing the analysis, we also protected
our variables of interest, tissue and species, in the model for each
gene. We summarized each technical variable’s influence across
the genes by counting the number of times each technical variable
was included in the best set of the gene models. We found that
none of the technical variables appeared in more than 25% of
the best sets (i.e., >25% of the gene models). Therefore, we chose
not to include these technical variables in our model for testing
differential expression.

Finally, during our analysis of technical factors, we discovered
that RNA extraction date was confounded with species. In 2012,
we extracted RNA from the chimpanzee samples on March 8,
from the human samples on 3 d between March 12 and 29, and
from the rhesus samples on March 6. To test the relationship be-
tween the date of RNA extraction and gene expression PCs in hu-
mans, we performed individual linear models on PCs 1–5 using
RNA extraction date as a predictor. None of the models were stat-
istically significant at FDR 10%, suggesting that tissue type is
more highly associated with gene expression levels than RNA ex-
traction date.

Differential expression analysis using a linear model-based

framework

To perform differential expression analysis, we used the same ap-
proach as Blake et al. (2018b).We applied a linearmodel-based em-
pirical Bayes method (Smyth 2004; Smyth et al. 2005) that
accounts for the mean-variance relationship of the RNA-sequenc-
ing read counts, using weights specific to both genes and samples
(Law et al. 2014).

To be considered a “tissue-specific DE gene” under our strin-
gent definition, the genemust be in the samedirection and statisti-
cally significant in all pairwise comparisons including the given
tissue but not significant in any comparison without that tissue.
For example, for a gene to be classified as having heart-specific
up-regulation in a given species, the gene needed to be up-regulat-
ed (a significant, positive effect size) in heart versus liver, heart ver-
sus lung, heart versus kidney, but not significantly different
between the liver versus lung, liver versus kidney, or kidney versus
lung, in the same species. Under the more lenient definition
of tissue-specific DE genes, we compared the gene expression
level of one tissue to the mean of the other three tissues. To do
so, we grouped the three tissues together and again used the

limma+voom framework to identify significant differences in
one tissue versus the group of the other tissues (Law et al. 2014;
Ritchie et al. 2015).

To identify interspecies differences in gene expression pat-
terns across tissues within species (tissue-by-species interactions),
we used the limma+ voom framework and looked for the signifi-
cance of tissue-by-group interactions. In one analysis, the groups
were great ape versus rhesus macaque and in another analysis,
the groups were human versus non-human primates. Tominimize
the number of interactions, we compared one tissue relative to a
group of the other three tissues (e.g., great ape vs. rhesusmacaque,
heart vs. non-heart). Significant tissue-specific interactions were
detected using the adaptive shrinkage method, ashr (Stephens
2017). Specifically, for each test, we input the regression estimates
from limma to ashr: regression coefficients, posterior standard er-
rors, and posterior degrees of freedom.We used the default settings
in ashr to calculate the shrunken regression coefficients (called
the “posterior mean” in ashr), false discovery rate (FDR, also
known as Q-value), and false sign rate (FSR, also known as S-value:
the probability that sign of the estimated effect size is wrong in ei-
ther direction).We assigned directionality based on the sign of the
posterior mean and determined significance based on the FSR.

The impact of matched tissue samples on DE results

To determine the impact of matched tissue samples on DE results,
we compared inter-tissue DE analysis results when using tissues
from the same or different individuals in GTEx v7 data (The
GTEx Consortium 2017). We first subset the GTEx raw gene ex-
pression count data to only individuals for which there was gene
count information in the heart and lung tissues, for genes included
in all three tissues. (The most GTEx samples were in heart and
lung, so we decided to focus on these samples.) Furthermore, to
minimize the number of covariates needed in the linear model,
we decided to only analyze individuals of the same sex and whose
samples were sequenced on the same platform (sex=1 and plat-
form=1 from the GTEx documentation). We then normalized
the data and performed DE analysis using a voom+ limma pipe-
line. In the linear model, we included tissue and three GTEx-pro-
vided covariates (covariates 1 and 2 and inferred covariate 1 from
the covariate file for each tissue) as fixed effects and individual
as a random effect. We chose to renormalize the raw counts data
rather than use the normalized counts from GTEx because the
voom+ limma pipeline requires raw counts to assign voom
weights. We considered the output of the inter-tissue DE analysis
for all individuals (DE vs. non-DE genes at FDR 5%) as the “ground
truth.” To evaluate the impact of our study design, we then subset
the gene expression information to the individuals forwhich there
is information in all three tissues. We obtained gene expression
level information from four randomly selected individuals and
used the voom+ limma pipeline to identify inter-tissue DE genes.
Next, we compared the list of DE genes from this analysis to the
ground truth list. We performed this downsampling procedure
for tissues from the same four individuals as well as from four dif-
ferent individuals 10 times each and compared the number of true
and false positives from the tests. For the analysis with eight differ-
ent individuals, there were no repeated individuals, so we did not
use the “duplicateCorrelation” function in voom.

BS-seq library preparation, sequencing, and mapping

We prepared a total of 48 whole-genome BS-seq libraries from ex-
tracted DNA as previously described (Tung et al. 2012; Banovich
et al. 2014). We aligned the trimmed reads to the human (hg19,
February 2009), chimpanzee (panTro3, October 2010), or rhesus
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macaque (rheMac2, January 2006) genomes, and to the lambda
phage genome using the Bismark aligner (version 0.8.1) (Krueger
and Andrews 2011).

We estimated the percentage of methylation at an individual
cytosine site by the ratio of the number of cytosines (unconverted)
found in mapped reads at this position, to the total number of
reads covering this position (sequenced as cytosine or thymine,
i.e., converted or unconverted) using the methylation extractor
tool from Bismark (version 0.8.1).We additionally collapsed infor-
mation frombothDNA strands (becauseCpGmethylation status is
highly symmetrical on opposite strand) (Lister et al. 2009) to
achieve better precision in methylation estimates across the
genome.

To obtain CpGs that mapped to multiple species, the chim-
panzee and rhesus macaque CpG sites were mapped to human
coordinates (hg19) using chain files from ftp://hgdownload
.cse.ucsc.edu/goldenPath/hg19/liftOver/ and the liftOver tool
from theUCSCGenomeBrowser (Karolchik et al. 2014). These files
had previously been filtered for paralogous regions and repeats,
but we also removed positions that were not remapped to their
original positionwhenwemapped fromhuman back to their orig-
inal genome. Chimpanzee and rhesus macaque CpG sites were
mapped to human, even if their orthologous positions were not
a CpG site in human.

Identifying differentially methylated regions (DMRs)

We were interested in identifying regions showing consistent dif-
ferences between pairs of tissues or pairs of species, taking biolog-
ical variation into account. To identify DMRs we used the linear
model-based framework in the Bioconductor package bsseq (ver-
sion 0.10.0) (Hansen et al. 2012). For a given pairwise comparison
(e.g., human liver vs. human heart), the bsseq package produces a
signal-to-noise statistic for each CpG site similar to a t-test statistic,
assuming that methylation levels in each condition have equal
variance. As recommended by Hansen et al. (2012), we used a
low-frequency mean correction to improve the marginal distribu-
tion of the t-statistics. Similar to previous studies using this meth-
odology, a t-statistic cutoff of −4.6, 4.6 was used for significance
(Hansen et al. 2011, 2014). DMRs were defined as regions contain-
ing at least three consecutive significant CpGs, an averagemethyl-
ation difference of 10% between conditions, and at least one CpG
every 300 bp (Hansen et al. 2012). We used BEDTools (version
2.26.0) (Quinlan and Hall 2010) to calculate the number of over-
lapping DMRs across tissues and/or species (Blake et al. 2018a).
We required overlappingDMRs to have aminimumbase pair over-
lap of at least 25%, unless otherwise stated.

To be considered a tissue-specific DMR, the region was re-
quired to be a significant tissue DMR (T-DMR) in one tissue com-
pared to the other three tissues pairwise (in the same direction)
but not a significant T-DMR across any of the other three tissues
in pairwise comparisons. We again used BEDTools to ensure a
minimum base pair overlap of 25%. Once the tissue-specific
DMRs were identified within a species, we then classified them
as species-specific or conserved. To be considered conserved
(across humans and chimpanzees or all three species), the tissue-
specific DMR had to be significant in all species in the comparison
and have a minimum base pair overlap of the T-DMR of at
least 25%.

Calculating the average methylation levels of conserved

promoters

To calculate the DNA methylation levels of orthologous CpGs
around the transcription start site (TSS) of orthologous genes, we

first had to determine the orthologous TSSs. We began with the
12,184 orthologous genes in our RNA-sequencing analysis. Of
these, we found that 11,131 of these orthologous genes had an
hg19 RefSeq TSS annotation (https://sourceforge.net/projects/
seqminer/files/Reference%20coordinate/refGene_hg19_TSS.bed/
download).We used liftOver to find orthologous sites in the chim-
panzees and rhesus macaque genomes in 9682 of those 11,131
genes. We then determined which of the hg19 RefSeq TSS annota-
tions were closest to the first hg19 orthologous exon, and we
repeated this process with the other two species and their respec-
tive genomes.We found that 9604 of 9682 of the closest TSS anno-
tations in humans had the same liftOver coordinates in the other
two species. We then calculated the distance between the first
orthologous exon to the TSS site in all three species individually.
To minimize this difference between the three species, we filtered
all genes with amaximum distance difference across the species of
larger than 2500 bp (for reference, the 75th percentile of the max-
imum difference in distance was 2078 bp). After this filtering step,
7263 autosomal genes remained, and 4155 genes had at least two
orthologous CpGs 250 bp upstream of and 250 bp downstream
from the orthologous TSS. We chose a 250-bp window around
the TSS based on DNA methylation levels around the promoter
in Banovich et al. (2014) and calculated the average of orthologous
CpGs within this window for the 4155 genes. Using the same
method but in humans and chimpanzees only, we found and cal-
culated the average of orthologous CpGs within this window for
7725 genes.

Joint analysis of promoter DNAmethylation and gene expression

levels

To determine whether DNA methylation may underlie interspe-
cies differences in gene expression levels, we used a joint analysis
method as described below. For each gene, we analyzed the gene
expression levels, along with the accompanying average methyla-
tion levels 250 bp upstream of and downstream from the TSS
(found above). For a given tissue, we first determined the effect
of species on gene expression levels using a linearmodel, with spe-
cies and RIN score as fixed effects (Model 1). Next, we parameter-
ized a linear model attempting to predict expression levels
exclusively from methylation levels. We refer to these residuals
as “methylation-corrected” gene expression values. We then
used these values to again determine the effect of species, this
time on gene expression levels “corrected” for methylation, using
a linearmodelwith species and RIN score as fixed effects (Model 2).
To determine the contribution of DNAmethylation levels to inter-
species differences in gene expression, we computed the difference
in the species effect size between Model 1 and Model 2 for each
gene, as well as the standard error of the difference. Large effect
size differences between Models 1 and 2 for a given gene suggest
that methylation statusmay be a significant driver of DE. To assess
the significance of this difference, we used adaptive shrinkage
(ashr) (Stephens 2017) to compute the posterior mean of the dif-
ferences in the effect sizes, using vashr (Lu and Stephens 2016),
with the degrees of freedom equal to the number of samples in
the linear model minus 2. The shrunken variances from vashr
were used in the ashr posterior mean computation. From this
procedure, we obtained the number of genes where species has a
significant difference in effect sizes before and after regressing
out methylation. We assessed significance using the S-value
statistic (FS) (Stephens 2017). Using the S-values, rather than the
Q-values, not only takes significance into account but also has
the added benefit of assessing our confidence in the direction of
the effect.
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We performed the above analysis separately for interspecies
DE genes and non-DE genes, and in each tissue individually. We
identified interspecies DE genes in our tissue of interest as those
with a significant species term in the model of species and RIN
score as fixed effects. We assessed significance of DE genes at
FDR 5%, unless otherwise noted.

We also applied the same analysis framework to determine
whether DNA methylation may underlie inter-tissue differences
in gene expression levels. For the inter-tissue DE genes and non-
DE genes, we replaced “species” with “tissue” as a fixed effect in
models 1 and 2. We assessed significance with various FDR and
FSR thresholds, as specified in the text.

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE112356. Data and scripts used in this paper are available at
https://github.com/Lauren-Blake/Reg_Evo_Primates and in the
Supplemental Code. The results of our scripts can be viewed at
https://lauren-blake.github.io/Regulatory_Evol/analysis/.
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