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Abstract: The internal recirculation plays an important role in different areas of the biological
treatment of wastewater treatment plants because it has a great influence on the concentration of
pollutants, especially nutrients. A usual manipulation of the internal recirculation flow rate is based
on the target of controlling the nitrate concentration in the last anoxic tank. This work proposes
an alternative for the manipulation of the internal recirculation flow rate instead of nitrate control,
with the objective of avoiding limit violations of nitrogen and ammonia concentrations and reducing
operational costs. A fuzzy controller is proposed to achieve it based on the effects of the internal
recirculation flow rate in different areas of the biological treatment. The proposed manipulation of
the internal recirculation flow rate is compared to the application of the usual nitrate control in an
already established and published operation strategy by using the internationally known benchmark
simulation model no. 2 as a working scenario. The results show improvements with reductions of
59.40% in ammonia limit violations, 2.35% in total nitrogen limit violations, and 38% in pumping
energy costs.

Keywords: wastewater treatment plant; fuzzy control; benchmark simulation model no. 2;
control strategies

1. Introduction

The objective of Wastewater Treatment Plants (WWTPs) is to reduce pollution before water reaches
the receiving environment. Specifically, the pollutant concentrations that must be under the established
limits are: Total Suspended Solids (TSS), organic matter measured by Biochemical Oxygen Demand
in five days (BOD5) and Chemical Oxygen Demand (COD), Total Nitrogen (SNtot), phosphorous,
and ammonium and ammonia nitrogen (SNH). Among these pollutants, nutrients (phosphorous and
SNtot) and SNH are the most difficult to keep under the established limits. Due to this reason, it is usual
the application of control strategies in WWTPs with the objective of reducing the concentrations of
these pollutants.

Nutrients can cause eutrophication and SNH, in addition to containing nitrogen, is toxic to the
aquatic life. Given the importance of keeping pollutant concentrations under the established limits
at the lowest possible operational costs, several research works have been published in recent years
focusing on the application of control strategies in WWTPs.
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Although the mentioned problem of excess nutrients in the water is of great importance, the law
may not limit their concentration if the receiving environmental is not considered sensitive. In these
cases, the WWTPs do not apply nutrient control. If nitrogen control is necessary for its reduction,
the internal recirculation flow rate (Qa) in the biological treatment is one of the possible variables that
can be manipulated, although keeping it fixed is also a usual option, as in [1–3]. Other works, as [4,5],
apply optimization techniques to manipulate both, dissolved oxygen (SO) and Qa. However, the most
usual control strategy applied to manipulate Qa, instead of keeping it fixed, is the control of nitrate
(SNO) in the last anoxic tank, as in [6–8].

Many of the published articles dealing with the application of control strategies in WWTPs
use simulation models to test them. Specifically, the Benchmark Simulation Model no. 1 (BSM1) is
an internationally known simulation model, developed by the International Association on Water
Pollution Research and Control ([9,10]), which is frequently used. The proposed work uses the
Benchmark Simulation Model no. 2 (BSM2) ([11]) as working scenario, which is an extension of BSM1.

The present work proposes an alternative for the manipulation of Qa with a broader approach to
the effects of Qa in the biological treatment. A fuzzy controller is applied for the proposed manipulation
due to the importance of a great knowledge of the dynamics of the variables of the plant. The effects
of the Qa variations in nitrogen and ammonia concentrations and operational costs are analysed and
compared to those of the SNO control.

The paper is organised as follows. First, BSM2 is presented. Next, the proposed fuzzy control
design is explained. Afterward, the simulation results are shown, as well as the discussion about them.
Finally, the most important conclusions are drawn.

2. Methodology

The proposed control technique in this work is tested by using the international known BSM2 ([12])
as working scenario, which was updated by [13]. The proposed fuzzy controller has been assessed
on the basis of an already published operation strategy ([8]), just replacing the Qa manipulation and
comparing the results with those of the original strategy. Thus, it will be possible to see the effects of
changing the way the internal recirculation is operating.

Both BSM2 and the operation strategy applied in [8] are explained below.

2.1. Benchmark Simulation Model No. 2

BSM2 includes a primary treatment, a secondary treatment and a sludge treatment (Figure 1).
The primary treatment consists of a primary clarifier, where some sludge is decanted by gravity and
conducted to be treated. The secondary treatment is composed of five activated sludge reactors,
where the biological treatment is carried out, and a secondary clarifier. The first two reactors are anoxic
and the next three aerobic. Some decanted sludge in the secondary clarifier is treated and the rest is
recirculated to feed the biological treatment. In the sludge treatment there is a thickener to increase the
solid content of sludge by removing a portion of the liquid fraction, an anaerobic digester to break
down organic matter into biogas and digestate, and a dewatering to remove excess of water. This water
is recycled to the primary clarifier through a storage tank to regulate the amount of water.

The present work is focused on the secondary treatment and specifically on the biological
treatment. The objective of this treatment in WWTPs is to reduce organic matter and nutrients.
Phosphorus can be removed biologically or by chemical precipitation, but it is not considered in this
model. As mentioned before, the biological treatment of BSM2 is composed of five activated sludge
reactors. The first two reactors are anoxic (no oxygen is added), but they contain oxygen in the form
of SNO. Here, heterotrophic bacteria degrade organic matter and consume oxygen. As no oxygen is
added, the oxygen of SNO is consumed, reducing SNO to nitrogen gas, which is called denitrification
process. The next three reactors are aerobic. In these reactors, heterotrophic bacteria also degrade
organic matter, but in this case they consume the oxygen added by the blowers. This oxygen is also
consumed by autotrophic bacteria, oxidizing SNH to SNO, which is called nitrification process. As there
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is no SNO at the entrance of the biological treatment, there is an internal recirculation from the last
aerobic reactor to the first anoxic reactor. The present work is focused on the flow rate regulation of
this internal recirculation.
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Activated Sludge Reactors
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Figure 1. Benchmark Simulation Model no. 2 (BSM2) plant with notation used for flow rates.

BSM2 includes 609 days of influent data, including periods of dry, rainy and storm weather
and temperature (Tas) variations. The last year is evaluated. The average dry weather flow rate is
20,648.36 m3/d and the average COD is 592.53 mg/L. The volume of each anoxic tank is 1500 m3 and
that of each aerobic tank 3000 m3. The hydraulic retention time of the biological treatment is 14 h.

The pumping energy is calculated as:

Pumping energy =
1
T

609days∫
245days

(0.004 · Qa(t) + 0.008 · Qr(t) + 0.05 · Qw(t))+

0.075 · Qpu(t)) + 0.06 · Qtu(t)) + 0.004 · Qdo(t)) · dt

(1)

where T is the total time, Qr is the external recycle flow rate, Qw is the wastage flow rate from the
secondary clarifier, Qpu is the underflow rate from the primary clarifier, Qtu is the underflow rate from
the thickener and Qdo is the underflow rate from the dewatering.

The limits established for SNtot in the effluent (SNtot,e) and SNH in the effluent (SNH,e) are 18 mg/L
and 4 mg/L, respectively.

The Activated Sludge Model No. 1 (ASM1) [14] describes the processes of the biological reactors.
They define the conversion rates of the different variables of the biological treatment. The design of
the proposed fuzzy controller is based on the conversion rates of SNH (rSNH ) and SNO (rSNO ), which are
shown below:
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rNH = −0.08ρ1 − 0.08ρ2 −
(

0.08 +
1

0.24

)
ρ3 + ρ6 (2)

rNO = −0.1722ρ2 + 4.1667ρ3 (3)

where ρ1, ρ2, ρ3, ρ6 are four of the eight biological processes defined in ASM1. Specifically,
ρ1 is the aerobic growth of heterotrophs, ρ2 is the anoxic growth of heterotrophs, ρ3 is the aerobic
growth of autotrophs and ρ6 is the ammonification of soluble organic nitrogen. They are defined below:

ρ1 = µHT

(
SS

10 + SS

)(
SO

0.2 + SO

)
XB,H (4)

where SS is the readily biodegradable substrate and µHT is:

µHT = 4 · exp

 Ln
(

4
3

)
5

 · (Tas − 15)

 (5)

ρ2 = µHT

(
SS

10 + SS

)(
0.2

0.2 + SO

)(
SNO

0.5 + SNO

)
0.8 · XB,H (6)

ρ3 = µAT

(
SNH

1 + SNH

)(
SO

0.4 + SO

)
XB,A (7)

where XB,A is the active autotrophic biomass and µAT is:

µAT = 0.5 · exp

((
Ln
( 0.5

0.3
)

5

)
· (Tas − 15)

)
(8)

ρ6 = kaT · SND · XB,H (9)

where SND is the soluble biodegradable organic nitrogen and kaT is:

kaT = 0.05 · exp

((
Ln
( 0.05

0.04
)

5

)
· (Tas − 15)

)
(10)

The general equations for mass balancing are:

• For reactor 1:
dZ1

dt
=

1
V1

(Qa · Za + Qr · Zr + Qpo · Zpo + rz,1 · V1 − Q1 · Z1) (11)

where Z is any concentration of the process, Z1 is Z in the first reactor, Za is Z in the internal
recirculation, Zr is Z in the external recirculation, Zpo is Z from the primary clarifier, V is the
volume, V1 is V in the first reactor, Qpo is the overflow of the primary clarifier and Q1 is the flow
rate in the first tank and it is equal to the sum of Qa, Qr and Qpo.

• For reactor 2 to 5:
dZk
dt

=
1

Vk
(Qk−1 · Zk−1 + rz,k · Vk − Qk · Zk) (12)

where k is the number of reactor and Qk is equal to Qk−1

2.2. Operation Strategy Used for Testing

The control strategy applied in [8] is shown in Figure 2a. The SO of the aerated reactors is
controlled by two Model Predictive Controllers (MPC) with feedforward compensation of the flow
rate from the primary clarifier. One MPC controls the SO in the fourth reactor (SO,4) set-point by
manipulating the oxygen transfer coefficient (KLa) of the third reactor (KLa3) and fourth reactor
(KLa4). The other MPC controls SO in the fifth reactor (SO,5) set-point by manipulating KLa of the fifth
reactor (KLa5). The variation of SO set-points is a better option than keeping them fixed in terms of
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effluent quality and operational costs, as shown in ([15]. In this control strategy, a fuzzy controller is
applied to manipulate SO,4 and SO,5 set-points based on SNH,5. Finally, another MPC with feedforward
compensation manipulates Qa to control SNO in the second reactor (SNO,2) at the set-point of 1 mg/L
(Qa_Man_MPC).

MPCMPC+FF	 MPCMPC+FF	

SO,4	 SO,5	

MPCFuzzy	

SNH,5	

SO,4	set-point	 SO,5	set-point	

MPCMPC+FF	

SNO,2	

SNO,2	set-point	
(1	mg/l)	

Qa	

	

(a)Qa_Man_MPC

MPCMPC+FF	 MPCMPC+FF	

SO,4	 SO,5	

MPCFuzzy	

SNH,5	

SO,4	set-point	 	SO,5	set-point	

	

SNH,in	

Proposed	fuzzy	
controller	

SNH,0	
SNH,5	
SNO,5	
Tas	
Qin	

Qa	

		

(b)Qa_Man_Fuzzy

Figure 2. Operation strategy established in [8], manipulating Qa with SNO,2 control (a) and with the
proposed fuzzy controller (b).

3. Fuzzy Controller Design

A fuzzy controller is proposed in this work for Qa manipulation.
Fuzzy logic can be applied as a control technique, relating measured variables (inputs) and

manipulated variables (outputs), based on human expertise about the plant to be controlled.
Using fuzzy logic, the controller’s input values are converted into words by means of membership
functions. These words are used in the established rules that relate the variables of the inputs and
outputs of the controller. Subsequently, the words of the outputs are converted into values also by
membership functions, which are the resulting values of the manipulated variables.

The principle of fuzzy logic, the design of the proposed fuzzy controller and its application are
described below.
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3.1. Fuzzy Logic

The fuzzy control is based on the practical knowledge acquired with the operation of the systems.
This knowledge is determined by words and expressions and not, as in traditional logic, by numbers
and equations. In fact, this does not mean at all that knowledge of the process dynamics is not needed.
Good knowledge of the dynamic behaviour of the controlled plant is to be available to the designer.
The architecture of a fuzzy controller consists of a fuzzifier, a fuzzy rule base, an inference engine and
a defuzzifier ([16,17]).

As the variables are measured in numbers, a fuzzifier is used to convert the inputs into suitable
linguistic values, granting them a relative membership degree and not strict. Conversely, a defuzzifier
is used to transform the outputs from linguistic values into measured variables. The configuration
of a fuzzifier and a defuzzifier implies the selection of the type of membership function, the number
of membership functions and the definition of the range of input and output values. The fuzzy rule
base is a set of i f -then rules that store the empirical knowledge of the experts about the operation
of the process. The fuzzy logic computes the grade of membership of each i f condition of a rule
and aggregates the partial results of each condition using fuzzy set operator. The inference engine
combines the results of the different rules to determine the actions to be carried out, and the defuzzifier
converts the control actions of the inference engine into numerical variables, determining the final
control action that is applied to the plant. There are two different methods to operate these modules:
Mamdani ([18]) and Sugeno ([19]). Mamdani system aggregates the area determined by each rule
and the output is determined by the centre of gravity of that area. In a Sugeno system the results of
the i f -then rules are already numbers determined by numerical functions of the input variables and
therefore no deffuzifier is necessary. The output is determined weighting the results given by each rule
with the values given by the i f conditions.

Readers can find further information about fuzzy control in standard references such as [20].
The FIS (FIS: Fuzzy Inference System) Editor from Matlab is used for the implementation of the
proposed fuzzy controller.

3.2. Proposed Fuzzy Controller for Qa Manipulation

A fuzzy controller is proposed in this work because the Qa manipulation is based on an exhaustive
knowledge of its effects on the different areas of the biological treatment.

The most important relationships between the inputs and output are explained below:

• SNH in the fifth reactor (SNH,5) is always lower than SNH in the influent (SNH,in) due to the
nitrification process. On the other side, there is no SNO in the influent, but there is SNO in the
fifth reactor (SNO,5). Therefore, an increase of Qa dilutes SNH at the entrance of the first reactor
(SNH,0) and SNO at the entrance of the first reactor (SNO,0) is increased (13) and (14). However,
SNO is subsequently reduced in the denitrification process. Consequently, Qa manipulation is
related to SNH,in, and Qa is increased when SNH,in is higher to dilute SNH,0, and Qa is decreased
when SNH,in is lower because dilution is not necessary and lower Qa results in operational cost
savings and improvements in the nitrification and denitrification processes (12). However, this Qa

reduction is always restricted by SNH,0 to have a minimum SNH dilution.

SNH,0 =
Qin · SNH,po + Qa · SNH,5

Qin + Qa
(13)

SNO,0 =
Qin · SNO,po + Qa · SNO,5

Qin + Qa
(14)

• Qa manipulation influences the Hydraulic Retention Time (HRT), increasing it when Qa is lower.
On the other side, during the biological process, substrate is biodegraded by heterotrophic bacteria,
and therefore the Qa reduction increases substrate in the biological process. Hence, increases of
HRT and substrate improve the denitrification process, reducing SNO (3), (6) and (12), However,
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HRT increases also improve the nitrification process, which can cause a SNO increase a little
later, but it also depends on SO. Therefore, Qa is decreased when SNO,5 increases to improve the
denitrification process, but not excessively so as not to generate too much SNO,5 in the nitrification
process. The best option to avoid SNtot limit violations is to reduce Qa just at the SNO,5 peak.

• The nitrification and denitrification processes depends on Tas, since they work worse when Tas

is lower (2), (3) and (5)–(8). Therefore, Qa values are higher when Tas is lower to increase SNH,0

dilution, and, inversely, Qa is lower when Tas is higher to decrease pumping energy costs.
• Any rule that increases Qa is always restricted by SNH,5, since if it increases to near the established

limit Qa is reduced to improve the nitrification process and thus oxidize more SNH.

The resulting fuzzy controller consist of 30 rules based on the Qa effects on the biological treatment.
It has 6 inputs and 1 output. The inputs are SNH,in, SNH,0, SNH,5, SNO,5, Tas and influent flow rate
(Qin) and the output is Qa. Mamdani ([18]) is the method of inference. Tas has two membership
functions: “low” and “high” (Figure 3e) and the rest of inputs have three membership functions:
“low”, “medium” and “high” (Figure 3a–d,f). The Qa output has six membership functions:
“very_low”, “low”, “medium_low”, “medium”, “high” and “very_high” (Figure 3g).
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Figure 3. Membership functions of inputs and the output of the proposed fuzzy controller.
(a) Membership functions of SNH,in. (b) Membership functions of SNH,0. (c) Membership functions of
SNH,5. (d) Membership functions of SNO,5. (e) Membership functions of Tas. (f) Membership functions
of Qa. (g) Membership functions of Qin.

3.3. Application of the Proposed Fuzzy Controller

Figure 2b shows the proposed application of the fuzzy controller for Qa manipulation in the
operation strategy of [8] (Qa_Man_Fuzzy). The SO control in the aerated reactors is kept and only the
MPC that controls SNO,2 by manipulating Qa is replaced by the proposed fuzzy controller. In this way,
the proposed fuzzy controller for Qa manipulation is tested in an already established and published
operation strategy and compared with a usual Qa manipulation based on SNO,2 control. The objective
is not only to compare the achieved results, but also to analyse and compare the different effects of Qa

variations on pollutants concentrations and costs.

4. Simulation Results and Discussion

In this section, simulation results of the operation strategy applied in [8] with Qa_Man_MPC
(Figure 2a) and Qa_Man_Fuzzy (Figure 2b) are compared and discussed, analysing the evolution over
time of the most important variables.

Table 1 shows the simulation results of the percentage of time of SNtot,e and SNH,e limit violations
and the pumping energy consumption with Qa_Man_MPC Qa_Man_Fuzzy. Among these results,
the reductions of 59.40% in SNH,e limit violations and 38% in pumping energy by Qa_Man_Fuzzy are
remarkable. These improvements do not result in a deterioration of the percentage of time of SNtot,e

limit violations, since it is similar with both Qa manipulations and even with a 2.35% improvement
with Qa_Man_Fuzzy.

As there is no SNO at the entrance of the biological treatment, but there is at the output, the Qa

manipulation based on SNO,2 control increases Qa when SNO,5 is lower to increase SNO,2 to the set-point
of 1 mg/L.The main disadvantage of the SNO,2 control is that this fact increases pumping energy
consumption too much, specially at high Tas, when the nitrification and denitrification processes
improve and less dilution is necessary. This can be observed in Figure 4, which shows the results of a
week simulation in summer. The difference in Qa values between Qa_Man_MPC and Qa_Man_Fuzzy
is very large when SNH and SNtot are lower enough than the established limits. In addition, in this
specific control technic, MPC achieves a satisfactory SNO,2 tracking, but some abrupt Qa increases,
due to its high gain, result in SNH,5 increases that reach values over the established limits in some
cases, such as on days 589 and 590.

Figure 5 shows the day 559, in which a high rain event takes place. When it happens,
the Qin increase results in a HRT reduction, worsening the nitrification and denitrification processes,
and consequently SNO and SNH increase. As a result of this SNO increase, Qa_Man_MPC reduces
Qa to try to keep SNO, 2 at the set-point of 1 mg/L. Then, there is an important difference between
Qa_Man_Fuzzy and Qa_Man_MPC between the times 559.3 and 559.4 since when there is a SNH,in

increase, Qa_Man_Fuzzy increases Qa, but Qa_Man_MPC keeps a low Qa value. This fact results
in an important difference in the SNH,0 dilution. When the SNH peak reaches the aerated reactors,
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detected by the SNH,5 input, Qa_Man_Fuzzy reduces Qa to similar levels of Qa_Man_MPC to improve
the nitrification process. As can be observed between the times 559.4 and 559.5, the SNH limit violation
is avoided with Qa_Man_Fuzzy but not with Qa_Man_MPC, which is mainly due to the previous
SNH dilution. This fact also produces a slight reduction of the SNO,5 peak and therefore of the SNtot,e

peak, although the SNtot,e limit violation is not avoided. A greater SNO,5 peak reduction could be
achieved if Qa is reduced later, when SNO,5 is higher, but this Qa manipulation would not avoid the
SNH,e limit violation.

A similar case happens on day 599, as shown in Figure 6. Qa_Man_MPC decreases Qa too much
when there is rain event, while Qa_Man_Fuzzy increases Qa when SNH,in increases, resulting in a
significant difference in SNH,0 dilution, specially between the times 599.3 and 599.4. In this case,
the SNtot,e limit violation is avoided with Qa_Man_Fuzzy.

Figure 7 shows a week simulation in winter, when Tas is lower. There is no significant difference
in the Qa values between Qa_Man_MPC and Qa_Man_Fuzzy, only in specific short time periods
. Therefore, the pumping energy savings of Qa_Man_Fuzzy in comparison with Qa_Man_MPC
are mainly achieved with higher Tas. It can be observed that with dry weather and low Tas the
Qa variations are similar with both applications. However, the Qa increase with Qa_Man_MPC
coincides with a SNH,in increase, but is due to a SNO,2 decrease caused for a previous SNH,in decrease,
while Qa_Man_Fuzzy increases Qa due specifically to a SNH,in increase. In the case of an influent
with low SNH,in values during a longer period, applying Qa_Man_MPC could result in a larger
and unnecessary Qa increase without coinciding with a SNH,in increase, as in the similar case of
the summer period (Figure 4). On the other hand, the Qa reduction is due to the SNO increase
with both Qa manipulations, even though Qa_Man_MPC does not take into account the SNH,5

increase, while Qa_Man_Fuzzy does. This fact explains the similar percentage of time of SNtot,e limit
violations with both Qa manipulations and the improvement of SNH,e limit violations by applying
Qa_Man_Fuzzy.

Table 1. Numerical results with Qa_Man_MPC and Qa_Man_Fuzzy.

Evaluation Criteria Qa_Man_MPC Qa_Man_Fuzzy % of Improvement

SNtot,e limits violations (% of time) 0.255 0.249 2.353
SNH,e limits violations (% of time) 0.134 0.0544 59.403

Pumping energy (kWh/day) 692.241 429.176 38.002
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Figure 4. Time evolution of Qin, SNH,in, SNH,0, SNO,5, SNH,5, SNtot,e and Qa during one week in summer
with Qa_Man_MPC and Qa_Man_Fuzzy.
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Figure 5. Time evolution of Qin, SNH,in, SNH,0, SNO,5, SNH,5, SNtot,e and Qa of day 559 with
Qa_Man_MPC and Qa_Man_Fuzzy.
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Figure 6. Time evolution of Qin, SNH,in, SNH,0, SNO,5, SNH,5, SNtot,e and Qa of day 599 with
Qa_Man_MPC and Qa_Man_Fuzzy.
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Figure 7. Time evolution of Qin, SNH,in, SNH,0, SNO,5, SNH,5, SNtot,e and Qa during one week in winter
with Qa_Man_MPC and Qa_Man_Fuzzy.

5. Conclusions

An alternative for Qa manipulation in the biological wastewater treatment by a fuzzy controller has
been proposed instead of the usual SNO,2 control. Both Qa manipulations has been tested and compared
applying them in an already published operation strategy, obtaining the following conclusions:
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• Qa_Man_Fuzzy takes into account SNH,5 values for Qa manipulation, but Qa_Man_MPC is based
only on SNO values. This fact added to the abrupt Qa variations with Qa_Man_MPC results in a
59.40% reduction of SNH,e limit violations with Qa_Man_Fuzzy in comparison with Qa_Man_MPC

• With lower SNO values, the Qa_Man_MPC application increases Qa. This fact takes place specially
at higher Tas, when the SNH dilution is less necessary, while Qa_Man_Fuzzy application keeps
lower Qa values without risk of violations. As a result, Qa_Man_Fuzzy gets a 38% reduction in
pumping energy compared to Qa_Man_MPC.

• Both Qa_Man_MPC and Qa_Man_Fuzzy reduce Qa when SNO increases. Due to this fact,
the percentages of time of SNtot,e limit violations are similar with both applications. The 2.35%
reduction with Qa_Man_Fuzzy is mainly due to rain events because Qa_Man_MPC keeps Qa

very low to reduce SNO,2, without taking into account the SNH,0 dilution, as Qa_Man_Fuzzy does.
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Abbreviations

The following abbreviations are used in this manuscript:

ASM1 Activated Sludge Model no. 1
BOD5 5-day Biological Oxygen Demand (mg/L)
BSM1 Benchmark Simulation Model no 1
BSM2 Benchmark Simulation Model no2
COD Chemical Oxygen Demand (mg/L)
HRT Hydraulic Retention Time (s)
KLa Oxygen transfer coefficient (d−1)
KLai Oxygen transfer coefficient in tank i (d−1)
Q Flow rate (m3/d)
Qa Internal recycle flow rate (m3/d)
Qin Influent flow rate (m3/d)
Qr External recycle flow rate (m3/d)
Qw Wastage flow rate from the secondary clarifier (m3/d)
Qtu Underflow rate from the thickener (m3/d)
Qdo Underflow rate from the dewatering (m3/d)
rSNH conversion rate of ammonium and ammonia nitrogen concentration in the biological process
rSNO conversion rate of nitrate concentration in the biological process
SNtot Total nitrogen concentration (mg/L)
SNtot,e Total nitrogen concentration in the effluent (mg/L)
SNH Ammonium and ammonia nitrogen concentration (mg/L)
SNH,0 Ammonium and ammonia nitrogen concentration at the input of the first reactor (mg/L)
SNH,5 Ammonium and ammonia nitrogen concentration at the output of the fifth reactor (mg/L)
SNH,in Ammonium and ammonia nitrogen concentration in the influent (mg/L)
SNH,e Ammonium and ammonia nitrogen concentration in the effluent (mg/L)
SNO Nitrate concentration (mg/L)
SNO,0 Nitrate concentration at the input of the first reactor (mg/L)
SNO,2 Nitrate concentration at the output of the second reactor (mg/L)
SNO,5 Nitrate concentration at the output of the fifth reactor (mg/L)
SO Dissolved oxygen concentration (mg/L)
SO,i Dissolved oxygen concentration in tank i (mg/L)
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Tas Temperature (◦C)
TSS Total Suspended Solids (mg/L)
WWTP Wastewater Treatment Plants
Z any concentration of the process
Zi is Z at the output of the reactor i
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