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ABSTRACT  

In the present work, we report a solution-based strategy to produce crystallographically 

textured SnSe bulk nanomaterials and printed layers with optimized thermoelectric 

performance in the direction normal to the substrate. Our strategy is based on the formulation 

of a molecular precursor that can be continuously decomposed to produce a SnSe powder or 

printed into predefined patterns. The precursor formulation and decomposition conditions are 

optimized to produce pure phase 2D SnSe nanoplates. The printed layer and the bulk material 

obtained after hot press displays a clear preferential orientation of the crystallographic domains, 

resulting in ultralow thermal conductivity of 0.55 Wm-1K-1 in the direction normal to the 

substrate. Such textured nanomaterials present highly anisotropic properties, with best 

thermoelectric performance in plane, i.e. in the directions parallel to the substrate, which 

coincide with the crystallographic bc plane of SnSe. This is an unfortunate characteristic 

because thermoelectric devices are designed to create/harvest temperature gradients in the 

direction normal to the substrate. We further demonstrate that this limitation can be overcome 

with the introduction of small amounts of tellurium in the precursor. The presence of tellurium 

allows reducing the band gap, increase both charge carrier concentration and mobility, 

especially cross plane, with a minimal decrease of the Seebeck coefficient. These effects 

translate into record out of plane ZT values at 800 K.  
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INTRODUCTION 

Solid state thermoelectric (TE) devices offer a direct and solid state means of conversion 

between thermal and electrical energy, which makes them extremely appealing for a wide range 

of applications.1-8 However, the relatively low energy conversion efficiency and high 

manufacturing cost of current TE devices, which are in most cases designed for cooling 

applications, makes them cost-efficient only in few niche markets.1, 9 Towards improving cost-

efficiency of TE devices, it is imperative to: i) implement lower cost fabrication processes; ii) 

optimize device parameters for each particular application to maximize efficiency and 

minimize the amount of used material; iii) develop high performance and lower cost TE 

materials.  

Thermoelectric performance is generally quantified using an adimensional figure of merit, 

ZT = S2T/, where , S, Tand are the electrical conductivity, Seebeck coefficient, absolute 

temperature and thermal conductivity, respectively.3, 7, 10_ENREF_7 Among the different 

families of TE materials proposed,2, 4 some two dimensional chalcogenides exhibit the best TE 

performance.11-17 Bi2Te3-based alloys provide the highest ZT values at temperatures around 

ambient, up to 1.96 at 420 K,16 and dominate the TE market.18-21 On the other hand, SnSe single 

crystals have recently achieved unprecedented record ZT values in the medium-high 

temperature range, 2.6 at 923K.13, 22 SnSe has a layered crystal structure with weak Van der 

Waals bonds along the a axis and tight covalent bonds along the bc plane, which results in 

highly anisotropic transport properties and an impressively low lattice thermal conductivity. 

Nonetheless, the high production cost and poor mechanical properties of SnSe single crystals 

limit their use in real applications. All of these have sparked much interest in producing 

polycrystalline SnSe with TE performance approaching that of SnSe single crystals. Owing to 

the anisotropic properties of the material, the optimization of polycrystalline SnSe generally 

requires producing crystallographic textured samples.23-35 In this direction, while severe plastic 

deformation techniques are conventionally used to produce textured polycrystalline 

materials,36, 37 spark plasma sintering and hot press approaches, more commonly used to 

consolidate TE polycrystalline materials, are also able to produce  textured materials when 

using an open dye to induce extrusion or when incorporating a liquid phase in the process.15, 16, 

38-42 

Beyond engineering TE materials with improved performance and lower cost, novel 

strategies to fabricate TE devices that are less labour-intensive and which allow a more rational 

use of the TE material need to be developed. One potential alternative strategy is ink-jet 
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printing. The main advantages of printing techniques are low cost, potential to produce shape 

adaptable or flexible devices, control over the thickness of the TE material and high material 

use efficiency. While printing strategies are currently well developed and used in a large 

number of applications, their implementation in new technologies strongly relies on the 

formulation of proper functional inks. SnSe inks could be formulated from colloidal 

nanoparticles produced from the decomposition/reaction of a tin precursor with selenium oxide 

or trioctylphospine selenium at moderate temperatures as previously reported.43-47 But it is 

more convenient, in terms of cost and quality of the produced layers, to formulate them ionic 

or molecular precursors. 

We report here a thiol-free SnSe molecular precursor, which can be used to produce bulk 

nanocrystalline SnSe or can be directly printed into SnSe layers. We study the decomposition 

conditions and demonstrate the possibility to produce pure phase SnSe at moderate 

temperatures. We further analyse here the processing conditions necessary to obtain 

crystallographically textured SnSe bulk nanomaterials and layers and characterize their 

anisotropic TE properties. Finally, the TE performance of the material in the direction normal 

to the layer substrate is optimized by including small amounts of tellurium within the precursor.  
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RESULT AND DISCUSSION 

To prepare a SnSe molecular ink, the tin and selenium precursors and the solvent were 

selected taking into account four main parameters: i) minimize cost; ii) direct the crystal 

morphology toward obtaining planar structures that facilitate posterior assembly into textured 

nanomaterials; iii) reach a compromise between solvent volatility, which has implications in 

toxicity and precursor stability, and decomposition temperature, which is a key parameters 

determining production costs; iv) reduce toxicity, avoiding the use of thiols and hydrazine. 

Taking into account these points, a SnSe precursor was prepared by dissolving SnCl2 and SeO2 

in a combination of OAm and TOP. OAm played a double role, it reduced Se4+ to Se0 and it 

coordinated to Sn2+ to form a Sn-OAm complex, Sn(R-NH)2.48-50 TOP coordinated with Se0 to 

yield TOPSe51 (see Figure S1 in the supporting information, SI).  

To analyse the product of its decomposition, the precursor was dropped onto a substrate 

heated at 420 °C. Upon reaching the heated substrate, the precursor was rapidly decomposed 

and a black powder was produced. Large amounts of powder could be obtained by continuously 

injecting/spraying the molecular ink toward a heated receptacle/support (Figure S1). TEM and 

SEM characterization of the powder obtained from the decomposition of the precursor showed 

the presence of square-like plates with a lateral size of 4±1 µm and a thickness of 90±20 nm 

(Figure 1a, b). HRTEM and XRD analyses demonstrated the powder to be highly crystalline 

and to display a unique crystallographic phase that matched that of orthorhombic SnSe (JCPDS 

NO. 00-048-1224, Pnma space group, Figure 1c, e). From the XRD pattern, the relatively 

strong intensity of the 2θ=31.0 diffraction peak indexed as (400), indicated a preferential 

growth in the bc plane, i.e. the plane perpendicular to the [100] crystallographic direction. UV-

Vis spectrum showed the SnSe powder to have an indirect band gap at 0.96 eV (Figure S2). 

XPS analysis of SnSe displayed two Sn 3d peaks at 494.9 eV (Sn 3d3/2) and 486.4 eV (Sn 3d5/2), 

which matched well with a Sn2+ environment (Figure 1f). Besides, Se 3d3/2 and Se 3d5/2 peaks 

located at 54.4 eV and 53.5 eV evidenced the presence of a Se2- oxidation state. EDX chemical 

analysis showed the SnSe powder to be slightly Sn rich, with a composition ratio Se/Sn = 0.95 

(Figure S3). EELS chemical composition maps displayed a homogeneously distribution of both 

Sn and Se within each particle and from particle to particle (Figure 1d). 

To obtain single phase SnSe, the proper adjustment of the nominal element ratio, Sn/Se, 

and decomposition temperature was fundamental. When increasing the nominal amount of Sn 

in the precursor formulation, a combination of Sn and SnSe phases was obtained upon 

decomposition at 420 ºC (Figures 2a). On the other hand, when using a nominal ratio Sn/Se <1, 
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a combination of SnSe and SnSe2 was produced. Using a nominal Sn/Se=0.5 and decreasing 

the decomposition temperature to 360 ºC, pure-phase SnSe2 could be produced (Figure 2a). 

Figure S4 shows XRD patterns of the materials obtained at different temperatures using a 

nominal element ratio Sn/Se=1.  

 

Figure 1. (a) Representative TEM and (b) SEM micrographs of square-like SnSe nanostructures, and a 

structure model of an individual nanoplate. (c) HRTEM micrograph of a SnSe nanoplate, magnified 

detail of the orange squared region and its corresponding power spectrum. The SnSe lattice fringe 

distances were measured to be 0.304, 0.207 nm and 0.302 nm, at 43.53, and 87.51, which was 

interpreted as the orthorhombic SnSe phase, visualized along its [100] zone axis. (d) EELS chemical 

composition maps obtained from the red squared area of the STEM micrograph. Individual Sn M4,5-

edges at 485 eV (red) and Se L2,3-edges at 1436 eV (green) as well as its composite. (e) XRD pattern of 

SnSe. (f) Sn 3d and Se 3d regions of the XPS spectrum of SnSe. 
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TOP coordinated with Se to yield TOPSe. Without TOP in the precursor solution, SnSe 

nanostructures could be also obtained, but the decomposition required reaction temperatures 

above 500 °C.52 Additionally, the aspect ratio of the SnSe nanostructures produced in the 

absence of TOP was strongly reduced (Figure S5). When adding small amounts of TOP to the 

solution, the precursor decomposition temperature could be reduced down to 420 °C for 

VTOP/VOAm > 0.13, which we associated to the relatively high reactivity of the formed TOPSe.50 

On the other hand, when replacing OAm by octadecene, SnSe was not formed, probing the 

important role of OAm in reducing SeO2 and complexating with Sn2+. Additionally, we tested 

the influence of the OAm purity on the final product finding no obvious difference in crystal 

phase and morphology when using two different OAm qualities (80-90% vs 98%, Figure S6). 

 

Figure 2. (a) XRD pattern of the powder produced from the decomposition at different temperatures of 

a precursor containing different ratios of Sn/Se. A detail of the XRD pattern around 2=31º is displayed 

for clarity. (b) SEM micrographs of SnSe plates with orthorhombic structure and SnSe2 plates with 

hexagonal phase obtained when decomposing a precursor containing Sn/Se=1 at 420 ºC and a precursor 

containing Sn/Se=0.5 at 360 ºC, respectively.  

When adding OAc to the precursor ink, a significant change of the geometry of the 

produced SnSe particles was observed. Figure 3 shows the evolution of the particle shape with 

the OAc/OAm ratio. We believe the carboxylic group in OAc to have a selective interaction 

with particular SnSe facets during crystal growth,53, 54 thus the morphology of SnSe 

transformed gradually from square shape to dendritic with increasing ratio of OAc/OAm. At 
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relatively high OAc concentrations, OAc/OAm>0.2, dendritic structures were produced. 

Through AFM analysis, the thickness of plates and dendritic structures supported on a substrate 

was measured to be in the range 100-150 nm, which is slightly larger than values obtained from 

SEM statistics (Figure 3c)   

The SnSe powder obtained from the precursor decomposition was thermally annealed at 

500 °C for 60 min inside a tube furnace with argon flow to remove residual organic ligands. 

The annealed crystals maintained the original plate geometry and showed no appreciable 

growth. The annealed powder was subsequently loaded into a graphite die and hot pressed at 

500 °C for 5 minutes under a uniaxial pressure of 80 MPa. A cylindrical pellet with a relative 

density of ca. 95% was finally obtained (Figure 4a, Table S2). The material cost to produce 

one cylindrical pellet is estimated in Table S3. 
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Figure 3. (a) Schematic illustration of the shape evolution for square-like and dendritic crystals. (b) 

SEM micrographs of the morphology evolution with increasing OAc/OAm ratios. Dendritic 

nanostructures were obtained when OAc/OAm > 0.2. Scale bars = 2 µm. (c) AFM topography images 

of a square-like and a dendritic nanostructure and height profiles taken from the displayed red line.  

The hot pressed material displayed a clear crystallographic texture, with the SnSe [100] 

crystal direction oriented along the pressure axis, as shown by XRD analysis of the pellet hold 

with the diffraction plane coincident and normal to the pressure axis (Figure 4b). This 

crystallographic orientation is consistent with the [100] being the softer crystallographic 

direction in SnSe. SEM micrographs showed the pellet to have a layered structure, with layers 

of material assembling normal to the pressure axis, consistent with XRD results (Figure 4c). 
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The grain size became slightly larger after the hot-press process as noted by SEM 

characterization. 

To determine the influence of the shape of the SnSe particles on the crystallographic 

texture of the consolidated material, we hot pressed SnSe particles with 100 nm average size 

and 50 nm thickness produced by a reported method  (Figure S9a).31 The hot press of these less 

asymmetric particles in the same conditions as the SnSe plates resulted in polycrystalline 

materials with no significant texture (Figure S9b,c), proving the influence of the initial particle 

geometry in the texture of the final polycrystalline material.15, 16 

 

Figure 4. (a) Schematic illustration of the process of consolidation of the SnSe powder into a cylindrical 

pellet. A SEM micrograph of the annealed SnSe nanopowder and an actual image of consolidated pellet 

are included in the scheme. (b) XRD pattern of the SnSe pellet laid along the in-plane and cross-plane 

directions. (c) Representative top view and cross section SEM micrographs of a SnSe pellet. 

To demonstrate the potential of the SnSe molecular precursor to produce printed SnSe 

layers/patterns, the precursor was printed on a flexible graphite foil using an ink jet nozzle. The 

graphite foil was then annealed on a hot plate at 420 °C for 5 min and additionally hot pressed 

at 500 °C for 3 min under 80 MPa pressure. SEM and XRD analyses of the printed layer 

demonstrated it to contain SnSe plates oriented parallel to the substrate (Figure S10). 
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The TE properties of the polycrystalline SnSe obtained from the precursor decomposition 

were characterized in two directions (Figure S12): cross plane (//), i.e. parallel to the pressure 

axis, and in plane (), i.e. normal to pressure axis. Electrical conductivities measured in plane 

(), were higher than those measured cross plane (//), with /// = 3.30. This result is 

consistent with the much higher charge carrier mobilities in the bc crystal plane of SnSe when 

compared with its a direction.  

Positive Seebeck coefficients were measured in all the temperature range, consistent with 

the p-type semiconductor character of undoped SnSe. As expected from the minor dependence 

of this parameter on scattering, similar values of the Seebeck coefficient were measured in both 

directions, S ≈ S//. The slightly higher values systematically obtained cross plane could be 

ascribed to an energy filtering mechanism at grain boundaries, i.e. a preferential scattering of 

low energy carriers at the plate interfaces, as previously reported for layered materials.15, 16 

SnSe nanomaterials displayed very low thermal conductivities in both directions, but 

slightly higher than those obtained from single crystals, most probably due to a certain degree 

of oxidation.55 Significantly lower thermal conductivities were obtained cross plane when 

compared with in plane, κ/κ// = 1.75 at 750 K, which was again consistent with the preferential 

orientation of the plates lying normal to the pressure axis.  
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Figure 5. Temperature dependence of (a) electrical conductivity, σ; (b) Seebeck coefficient, S; (c) 

power factor, S2σ, PF; (d) total thermal conductivity, κtotal; (e) lattice thermal conductivity, κL; and (f) 

TE figure of merit, ZT of a SnSe0.98Te0.02 pellet measured in two directions, in-plane (⊥, open symbols) 

and cross-plane (//, solid symbols). 

Overall, the highest ZT values, up to ZT = 0.5 at 770 K, were obtained in plane. This 

result is consistent with measurements on single crystals and previous reports,13, 23, 25, 56, 57 but 

it is unfortunate toward the development of printed SnSe-based modules that target the 

generation/harvesting of cross plane temperature gradient.  

To further promote the TE performance of polycrystalline SnSe layers, small amounts of 

Te were added to the precursor in replacement of equivalents amounts of Se. The 

polycrystalline material obtained from the decomposition of the Te-containing precursor, 

SnSe1-xTex, was characterized by a slightly reduced band gap (Figure S2), a slightly larger 
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charge carrier concentration, nH, and most important a significantly increased charge carrier 

mobility, particularly cross plane (Figure S13). Best TE performance was obtained from the 

material containing a 2 at% of Te, SnSe0.98Te0.2 (Figure 5). This material displayed significantly 

higher electric conductivities than SnSe without a major reduction of the Seebeck coefficient 

and a minor increase of the total thermal conductivity, associated with the increase of its 

electronic component. Overall, TE figures of merit up to three-fold larger than those measured 

for SnSe were obtained. Most important, the highest TE figures of merit were obtained cross 

plane, reaching ZT= 1.05 at 805 K, which is the highest value reported at this temperature and 

in this direction for polycrystalline SnSe. This excellent performance was related to the 

presence of Te facilitating charge transport especially cross plane, which translated into a 

significant increase of the charge carrier mobility. 
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CONCLUSION  

We detailed a fast solution-based approach to produce crystallographic textured SnSe bulk 

nanomaterials and printed layers. The molecular precursor solution was prepared directly by 

dissolving ionic Sn and Se species in a thiol-free and nontoxic solvent. Pure phase SnSe powder 

was obtained by decomposing the molecular precursor at 420 °C. The composition, crystal 

phase and shape of the produced SnSe nanostructures could be tuned by modifying the nominal 

elemental ratio, the decomposition temperature and the use of additional surfactants. 

Crystallographic textured SnSe bulk nanomaterials and layers were obtained after hot-pressing 

the precursor decomposition products. These materials showed moderate TE performances 

cross plane which was unfortunate for the design a TE devices that generate/harvest 

temperature gradients in the direction normal to the substrate. The SnSe TE performance was 

significantly improved, up to a threefold, by introducing small amounts of Te during precursor 

formulation. The presence of this small amount of Te resulted in an important increase of 

electrical conductivity cross plane associated to an increase of charge carrier concentration and 

especially mobility with a minor variation of the Seebeck coefficient. The presence of 2 at% of 

Te in SnSe0.98Te0.02 finally translated into record cross plane ZT values at 800 K for 

polycrystalline SnSe. 

EXPERIMENTAL SECTION 

Chemicals: Tin chloride (SnCl2, 98%) and selenium dioxide (SeO2, 99.8%) were purchased 

from Acros Organics. Tri-n-octylphosphine (TOP, C24H51P, 97 %), oleic acid (OAc, C18H34O2, 

90%) and oleylamine (OAm, C18H37N, ≥ 98%) were purchased from Sigma-Aldrich. Sodium 

tellurite (Na2TeO3, 99.5%) was purchased from Fisher. Analytical grade chloroform and 

ethanol were ordered from various sources. All chemicals were used as received unless 

specifically noted. 

SnSe precursor: Within an argon-filled glove box, 5.76 g SnCl2 (30 mmol) and 3.33 g SeO2 

(30 mmol) were weighted and placed inside a glass bottle. Then 150 mL OAm and 20 ml TOP 

were added inside the bottle. The mixture was subsequently sonicated for 20 min until 

precursors dissolved completely. Small amounts of OAc were included within the precursor to 

produce dentritic SnSe nanostructures. 
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SnSe1-xTex precursor: To produce SnSe1-xTex (x= 0.01, 0.02, 0.03) precursor precursors, 5.76 

g SnCl2 (30 mmol), 3.33g SeO2 (30 mmol) and 6.65x g Na2TeO3 were weighted and placed in 

a glass bottle, where 150 mL OAm and 20 ml TOP was subsequently added. The mixture was 

sonicated for 20 min until all precursors dissolved completely.  

SnSe precursor decomposition: The SnSe precursor was continuously injected into a 

preheated glass flask (420 °C), where it immediately decomposed. The flask was naturally 

cooled down to room temperature (RT) and the crystalline product was collected by dispersion 

in chloroform and precipitation with ethanol. Dispersion/precipitation steps were repeated 

three times using chloroform and ethanol aided by centrifugation at 7200 rpm for 5 min. The 

produced SnSe material was kept inside glovebox for further use. 

Bulk material consolidation: SnSe particles were thermally annealed at 500 °C (heating rate 

= 10 ºC/min) for 60 min inside a tube furnace with argon flow to remove organic residues. 

After cooling to RT, the annealed material was grounded in a mortar and subsequently loaded 

into a graphite die. The die was then transferred to a custom-made hot press system inside the 

glove box, where it was heated to 500 °C by using an induction coil. The die was held at this 

temperature for 5 min under 80 MPa pressure. Afterward, the pressure was released and the 

die was naturally cooled down to RT. The obtained cylindrical pellets (8 mm × 12 mm) were 

cut in rectangular bars in two directions: along the pressure axis (cross-plane direction) and 

normal to this axis (in-plane direction). The consolidated pellets were subsequently kept inside 

glovebox. Before performing measurement, the pellets were polished slightly to remove a 

possible surface oxide layer. 

Printed layers: The SnSe molecular precursor was printed on a graphite foil using an ink jet 

nozzle. The graphite foil was then annealed on a hot plate at 420 °C for 5 min within an argon-

filled glove box. Afterward, the foil was hot pressed at 500 °C for 3 min under 80 MPa pressure. 

Structural and chemical characterization: The particle size and morphology were 

characterized by transmission electron microscopy (TEM, ZEISS LIBRA 120), working at 120 

kV and field-emission scanning electron microscopy (SEM, Zeiss Auriga) operating at 5.0 kV. 

High resolution TEM (HRTEM) images and scanning TEM (STEM) studies were conducted 

on a FEI Tecnai F20 field emission gun microscope operated at 200 kV with a point-to-point 

resolution of 0.19 nm, which was equipped with high angle annular dark field (HAADF) and 

Gatan Quantum electron energy loss spectroscopy (EELS) detectors. Elemental analysis was 

performed using an Oxford energy dispersive X-ray spectrometer (EDX) combined with the 
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Zeiss Auriga SEM working at 20.0 kV. X-ray diffraction analyses (XRD, 2θ: 5°-80°, scanning 

rate was set at 5°/min) were carried out on a Bruker AXS D8 Advance X-ray diffractometer 

with Ni-filtered Cu-Kα radiation (λ= 1.5406 Å), operating at 40 mA and 40 kV. X-ray 

photoelectron spectroscopy (XPS) was performed on a SPECS system equipped with a Phoibos 

150 MCD-9 detector, working at 150 W with an Al anode XR50 source. Fourier transform 

infrared spectroscopy (FTIR, Alpha Bruker) was carried out with a platinum attenuated total 

reflectance single reflection module. The surface topology was measured by atomic force 

microscopy (AFM, XE 100 Park System Corp.) Scans were conducted in non-contact mode 

with a silicon Tap300Al-G cantilever (Budget Sensors, spring constant of ∼40 N/m and 

resonant frequency of ∼300 kHz). AFM images were analysed in the XEI software (Park 

System Corp). Ultraviolet-Visible Spectrophotometry (UV-Vis) Optical absorption spectra 

were recorded on a LAMBDA 950 UV-Vis spectrophotometer from PerkinElmer. 

Thermoelectric characterization: Seebeck coefficients were measured with a static DC 

method. Electric resistivity data was obtained using a standard four probe method. Electric 

resistivity and Seebeck coefficients were measured simultaneously in a LSR-3 LINSEIS 

system in the temperature range from 323 to 803 K under a helium atmosphere. Bearing in 

mind the measurement precision and system accuracy, an error of ca. 5% in the measurement 

of Seebeck coefficient and electrical conductivity was estimated. A Xenon Flash Apparatus 

was used to measure the thermal diffusivities (D) of all samples with accuracies better than 6%. 

Thermal conductivities were then calculated by the relation κ = CpDρ, where Cp is the heat 

capacity that was estimated from the Dulong-Petit law, D is the measured thermal diffusivity 

and ρ is the mass density that was measured using the Archimedes’ method. Hall charge carrier 

concentrations (nH) and mobilities (μH) at room temperature (300 K) were measured with a on 

Van der Pauw and Hall Bar measurements (ezHEMS 1000, NanoMagnetics) using a magnetic 

field of 1 T. Values provided correspond to the average of 10 consecutive measurements, from 

which an error of ca. 10% was estimated. 

ASSOCIATED CONTENT  
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