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ABSTRACT 

Applications based on aggregates of magnetic nanoparticles are becoming increasingly 

widespread, ranging from hyperthermia to magnetic recording. However, although some 

uses require a collective behavior, other need a more individual-like response, the 

conditions leading to either of these behaviors are still poorly understood. Here we use 

nanoscale-uniform binary random dense mixtures with different proportions of oxide 

magnetic nanoparticles with low/high anisotropy as a valuable tool to explore the crossover 

from individual to collective behavior. Two different anisotropy scenarios have been 

studied in two series of binary compacts: M1, comprising maghemite (-Fe2O3) 

nanoparticles of different sizes (9.0 nm / 11.5 nm) with barely a factor of 2 between their 

anisotropy energies, and M2, mixing equally-sized pure maghemite (low-anisotropy) and 

Co-doped maghemite (high-anisotropy) nanoparticles with a large difference in anisotropy 

energy (ratio > 8). Interestingly, while the M1 series exhibits collective behavior typical of 

strongly-coupled dipolar systems, the M2 series presents a more complex scenario where 

different magnetic properties resemble either “individual-like” or “collective”, crucially 

emphasizing that the collective character must be ascribed to specific properties and not to 

the system as a whole. The strong differences between the two series, offer new insight 

(systematically ratified by simulations) into the subtle interplay between dipolar 

interactions, local anisotropy and sample heterogeneity, to determine the behavior of dense 

assemblies of magnetic nanoparticles. 
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INTRODUCTION 

Dense nanoparticle (NP) assemblies are the basis of an ever-increasing catalogue of 

applications.
1–4

 The advances in synthetic chemistry have allowed the preparation of 

monodisperse, highly uniform NPs, which in turn has enabled their assembly to build NP 

analogues of atomic crystals (sometimes called super- or supra-crystals/lattices), either 

comprising a single type of NP,
5–11

 or several species to form supra-compounds exhibiting 

a remarkable variety of crystal symmetries.
12–15

 However, the most studied NP composite 

systems are disordered mixtures pursuing a combination of properties to optimize a given 

figure of merit. For instance, in the broad field of nanomagnetism the idea is epitomized by 

the exchange-coupling strategy between magnetically soft and hard nanograins (with high 

saturation magnetization and large coercivity, respectively) in order to maximize the energy 

product of novel permanent magnets.
16–20

 These composites are typically metallic and the 

ferromagnetic grains interact via direct exchange, leading to single-phase behavior with 

enhanced properties.
19–21

 On the other hand, compacts of oxide nanoparticles, where the 

interparticle interactions are mainly of dipole-dipole type, typically show superspin glass 

behavior
22–24

 (previously described for dipolarly-interacting dense ferrofluids
25

).  

 Collective behavior in magnetic nanoparticle systems can be useful for some 

applications like hyperthermia and magnetic resonance imaging.
26,27

 In the recently-

discovered “liquid permanent magnets” based on nanoparticles, strong dipolar interactions 

are crucial to enhance the thermal stability of the magnetization and transform the droplet 

surface into a ferromagnetic layer.
28

 On the other hand, collective behavior, or even short-

range correlations, is detrimental for the performance of magnetic nanoparticles/grains in 
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magnetic storage and magnetoresistance sensing.
29,30

 Thus, understanding the collective vs 

individual behavior of dense systems of nanoparticles becomes crucial to optimize those 

applications. Although collective behavior is a fundamental term in condensed matter 

physics
31

 or any other type of complex network,
32

 its meaning is not clear-cut in the context 

of magnetic nanoparticle systems, where the differentiation between modified-single-

particle behavior and collective order driven by dipolar interactions has produced a large 

body of experimental and theoretical literature.
33–39

 In general, the term collective is 

intended to describe the emergence of patterns of large-scale behavior from the complex 

interactions between small constituent parts. However, different properties are determined 

at different length scales, prompting the possibility for a given system to exhibit both 

individual and collective properties. In this context, dense binary assemblies are presented 

here as a unique tool to shed light on the above ideas, as in these systems “individual” 

properties will be evidenced by a doublet of values, each corresponding to one type of 

constituent. 

In binary NP composites nanoscale homogeneity is crucial to enable the tuning of the 

properties beyond that of the simple superposition of the two constituents.
14,15,40–42 

Notably, 

although binary random compacts of oxide NPs, where the local anisotropy can be readily 

tuned by the proportion of high/low anisotropy particles in the mix, offer the possibility to 

explore the complex relation between interparticle interactions and local anisotropy, this 

tool has been very rarely employed to address the issue.
40

 Here, exploiting the narrow size 

distribution of the constituent particles (2% polydispersity), we have prepared what could 

be considered the simplest possible NP composites by randomly mixing and compacting 

two populations of NPs with different anisotropy energy barriers. Two complementary 
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series of such mixtures have been prepared with a moderate/large difference in the 

anisotropy energy of the constituent NPs. The results show that the proportion of low and 

high anisotropy (LA, HA) particles in these highly homogeneous compacts may be used to 

fine tune both the hysteresis loops and the low-field magnetization dynamics (e.g., the 

blocking/freezing temperature) of the assemblies. Moreover, our experiments allow an 

assessment of the weight of single-particle versus dipolar interaction energies in the 

determination of the above magnetic properties, with contrasting results between the two 

series studied.  

 

RESULTS AND DISCUSSION 

The M1 and M2 series of binary compacts were prepared mixing in different proportions 

highly uniform, roughly spherical, maghemite-based NPs with different size and different 

anisotropy constant, respectively (see Methods). The particles were mixed while still in 

liquid solution, which was subsequently dried up, and -after washing out the oleic acid 

surfactant- the resulting powder was compacted to form dense discs [see inset in Figure 

1(c)]. For the M1 series, NPs with mean diameters dTEM = 9.0 and 11.5 nm (corresponding 

to a volume ratio of 2) were used [Figure 1(a), (b) and (d)]. For M2, equally-sized, 6.8 nm, 

pure and Co-doped maghemite NPs were mixed [Figure 1(e) and (f)]. The samples are 

denoted as Mi-x, where i = 1, 2 refers to the series and x = 0, 10, 20, 30, 50, 65, 85, 100% 

in both series (x, defined as the proportion of HA particles). The uniform mixing of the 

NPs, down to the particle level, was verified by high resolution scanning electron 

microscope (HRSEM) images in the case of the M1 series [Figure 1(c)],
43

 and by 
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compositional mapping for the M2 series, where the mixed nanoparticles have the same 

size but different composition [Figure 1(g) and (h)]. 

 

 

 

Figure 1. TEM images of the 9 nm (a) and 11.5 nm (b) particles used to prepare the M1-x 

samples. The inset in (b) shows a silica coated 11.5 nm maghemite nanoparticle. (c) 

Typical HRSEM image of a compact in the M1 series (x = 65), showing the nanoscale 

mixing of small and large particles. The inset shows one of the discs compacted under 1 

GPa. (d) Size distributions of both types of particles.  (e, f) TEM images of the 6.8 nm 

maghemite (e) and Co-doped maghemite (f) particles mixed in the M2 series. SEM image 

(g) and compositional mapping (h) of M2-50 proving the nanoscale mixing. All the images 

are scaled (orange scale bar = 20 nm). The TEM images in (a), (b), (e) and (f) were taken in 

the unmixed suspensions before removing the oleic acid coating. Note also that TB in the 

labels of panels (a), (b), (e) and (f) refers to the blocking temperature (defined as the peak 

temperature of the ZFC curve) of the isolated NPs (silica-coated). 
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In addition, a fraction of the four types of NPs was extracted from each batch to be 

coated with a thick silica shell [t  3dTEM; see e.g., inset in Figure 1(b)] in order to 

magnetically isolate the cores and thus measure the single-particle magnetic properties.
23,44

 

Each type of nanoparticle is characterized by an energy barrier KefV, where Kef is the 

effective anisotropy and V is the particle volume, which is directly proportional to the 

blocking temperature, TB [taken here simply as the peak temperature in the zero-field-

cooled, ZFC, magnetization curve, see Figure 2(a)], of the individual nanoparticles, TB  

KefV. Thus, the ratio of TB’s of the isolated nanoparticles quantifies the difference in 

energy barriers between the two types of particles. Therefore, we define an anisotropy 

energy contrast, AEC, as the ratio of the blocking temperatures of the two types of particles 

in the composite, TB,HA/TB,LA. Following this definition, the M1 series has a moderate AEC 

 1.6 [where the larger surface anisotropy contribution to Kef in the smaller particles 

explains the AEC < 2 (particles volume ratio)
45

], while the M2 series is characterized by a 

much larger AEC  8.2 (due to the large increase in anisotropy caused by the Co-doping of 

the maghemite particles).
46

 Note that although the ZFC curve peak position systematically 

and significantly overestimates the blocking temperature,
47,48

 the AEC is defined as the 

ratio of the TB’s of the different components and, therefore, is barely affected by this 

approximation (see Supporting Information, SI). 

Figure 2(a) displays the ZFC curves measured in dilute systems (magnetic cores 

separated by thick silica shells) of the nanoparticles employed to prepare the M1 and M2 

mixtures. The different AEC ratios translate, through the Arrhenius exponential dependence 

of the relaxation time on the energy barrier [see Figure 2(b)], into enormous differences in 
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the individual dynamics of the particles making up the M2 mixtures [e.g., a factor 10
10

 at 

T = 150 K, see inset in Figure 2(b)], whereas for the M1 series such differences are 

comparatively modest (e.g., only a factor  70 at T = 150 K). 

 

 

 

Figure 2. (a) Normalized ZFC magnetization curves measured (in H = 5 Oe) in dilute 

dispersions of the LA/HA magnetic particles (black/brown curves) employed to prepare the 

compact mixtures of series M1 (dashed lines) and series M2 (solid lines). (b) Temperature 

evolution of the relaxation time (Arrhenius law) of the isolated LA/HA particles, 

considering τ0 = 10
-11

 s and the blocking temperatures indicated in panel (a). The horizontal 

line marks the typical observation times in dc measurements (τobs ~ 30 s). The different 

width of the colored boxes emphasizes the difference in "anisotropy energy contrast" 

between series M1 and M2. The inset shows the temperature dependence of the ratio of 

relaxation times of the constituent particles for both series. 
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The ZFC curves measured for all the M1 and M2 binary compacts are shown in Figure 3. 

In both series there appears a single peak in the M(T) at TMAX, suggesting that dipolar 

interparticle interactions (see SI, for a discussion on the nature of interparticle 

interactions)
49

 are strong enough to provide collective behavior in the dense assemblies (cf. 

the superposition curves, corresponding to unmixed compacts, shown in Figure S1). In the 

M1 series the TMAX values are much higher than the individual blocking temperatures of 

both the LA and HA particles. This is consistent with the flat shape of the FC curve below 

the freezing temperature [as exemplified in the inset of Figure 3(a) for one of the 

composites], typical of strongly interacting particle systems. Note that although all samples 

freeze cooperatively at a single transition temperature, the broader effective size 

distribution in the central members of the series (as well as the demagnetizing field due to 

the disc shape in all samples)
50

 smears out the transition.
51

  On the other hand, for the M2 

series, although the TMAX values are still higher than the blocking temperature of the hard 

NP (140 K), the increase is relatively small compared to the M1 series, hinting an important 

role for the particle anisotropy -and the particles anisotropy contrast- despite the single ZFC 

peak in the compacts. In fact, the ZFC curves also show a hump at low temperatures (T  

30 K), except for the end members [see Figure 3(b)], a feature that can be more clearly 

observed in ac susceptibility measurements (see Figure S2). Notably, this effect is absent in 

the M1 series. 
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Figure 3. (a) and (b): ZFC normalized magnetization (M/MMAX) curves measured in H = 5 

Oe for the two series of compacts, as well as for the LA/HA particles isolated by silica 

spacers also plotted in Figure 2(a). The insets show the field-cooled and ZFC curves for one 

of the mixtures of series M1 (all samples in this series showed a very similar behavior) and 

for the end members as well as one of the mixtures in the M2 series. (c): ZFC memory 

experiments for M1-50, M2-0 and M2-50. The reference curves measured without a halt 

are plotted with red lines and the memory ZFC curves measured after a halt at 𝑇ℎ𝑎𝑙𝑡 = 2 ·

𝑇𝑀𝐴𝑋/3 are plotted with a green line for M1-50, a dark blue line for M2-0 and a light blue 

line for M2-50. The corresponding difference curves are plotted as a function of the 
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reduced temperature T/TMAX in the inset. (d): Dependence on the concentration of HA 

particles of the ZFC memory dip in the M2 series, experimental (red circles) and Monte 

Carlo (blue squares) results. The inset shows two examples of simulated ZFC memory 

experiments (M2-0 and M2-50 systems). 

 

To get a deeper understanding on the dynamical properties of the samples, we have 

looked for a fingerprint of low-field collective behavior, namely the ageing and 

rejuvenation (leading to the ZFC memory effect) characteristic of spin glasses
24,52,53

 and 

superspin glasses, a state customarily observed at low temperature in strongly dipolar-

interacting systems.
22,54,55

 The memory effect manifests as a dip
52,53

 (with respect to a 

reference ZFC curve) at the halt temperature Thalt in a ZFC “memory” curve measured in 

exactly the same conditions as the reference except for a halt at Thalt during the zero-field 

cooling (see Methods). Remarkably, for the M2 series, we found that, although the end 

members of the series show a strong memory effect, this phenomenon is essentially 

suppressed in all the mixtures [see Figure 3(d)], as exemplified in Figure 3(c) for the M2-50 

sample. In contrast, all the samples in the M1 series show strong ZFC memory effects, as 

can be seen also in Figure 3(c) for the most unfavorable case, the M1-50 sample. Although 

still robust, the weaker memory effect in M2-100 compared to M2-0 is analogous to 

observations in conventional (atomic) spin glasses, where increasing spin anisotropies were 

shown to yield weaker memory effects.
56

 On the other hand, the severe reduction of the 

memory effect with the introduction of even a small proportion of a (softer/harder) second 

phase, and its virtually complete suppression for the central sample of the series (M2-50), is 
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rather unexpected and highlights the crucial role of heterogeneity in the zero-field 

dynamics.  

This result was consequently explored by Monte Carlo simulations using a three-spin 

model,
57

 based on bulk parameters and the experimental results, for particles interacting 

exclusively through dipole-dipole interactions (see SI for details of the model). The 

simulations reproduced precisely the experimental results [see Figure 3(d), blue data points 

and example ZFC curves in the inset], both qualitatively (suppression of the effect upon 

mixing) and quantitatively (the values of the memory dip relative to the reference ZFC 

magnetization at Thalt). In the model, the strong anisotropy contrast between the two types 

of simulated nanoparticle samples and the interplay between nanoparticle anisotropy, 

including the surface contribution, and interparticle interactions result in the observed 

memory effects. 

The humps in the M(T) and the absence of memory effects in the M2 series are related to 

the difference in relaxation times of the pure and Co-doped particles [see Figure 2(b)]. 

Namely, the Co-doped particles are essentially blocked in the temperature range of the low 

temperature hump in the ZFC curves at the observation times of the experiments (~30 s for 

SQUID magnetization measurements). Thus, these particles act as weak static random 

fields, which are not able to participate in the dynamics of the system. In the M2-0 and M2-

100, all the particles are equal, thus they all participate in the collective (equilibrium and 

non-equilibrium) dynamics. In the M2 mixtures, however, the blocked Co-doped particles 

affect the evolution towards an equilibrium phase and leave a fraction of the soft 

maghemite particles (not always the same) as quasi-superparamagnetic, yielding the low-

temperature anomaly. Moreover, due to the much longer relaxation times of the Co-doped 
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nanoparticles, they act as disturbances in the evolution towards equilibrium dynamics in the 

memory experiments. This implies that the system essentially remains in a non-equilibrium 

state in all time scales, thus the experiments probe non-equilibrium dynamics, which should 

have weaker memory effects. On the other hand, in the M1 series the relaxation times of the 

two types of particles are similar [dashed lines in Figure 2(b)], consequently, the dynamics 

of the different samples is more homogeneous leading to memory effects and the absence 

of a low temperature hump in M(T) for the whole series. Therefore, the presence of a single 

peak at TMAX in the ZFC curve measured in the mixtures, although resulting from strong 

enough interactions, does not necessarily imply single-phase dynamics below such peak 

temperature. 

This heterogeneity-driven suppression of the collective relaxation is similar to that found 

in systems with a broad particle size distribution (relative to the strength of the 

interactions), a typical form of “uncontrolled” heterogeneity.
35,58

 Note that metallic NP 

systems allow for greater heterogeneity while preserving collective behavior due to the 

presence of strong non-dipolar interactions.
59,60

 Thus, in the present study the control of the 

heterogeneity via the proportion of LA/HA has permitted to isolate the influence of this 

parameter from that of local anisotropy: e.g., M2-100 shows a smaller memory effect than 

M2-0 due to the much larger anisotropy of the NPs in the former sample, but the negligible 

memory in M2-50 (with a smaller average NP anisotropy than M2-100) must be then 

caused by the heterogeneity obtained by mixing the two types of particles.  

 

Next, we examine the high-field behavior (hysteresis loops) of the two series. As can be 

seen in Figure 4, the end members of the M1 series have rather similar saturation 
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magnetization, MS (although different magnetic moment,   = MSV) and coercivity, HC. 

On the other hand, the Co-doped NPs have a smaller MS than the pure maghemite NPs, but 

a much larger HC. The smaller MS is probably due to increased disorder, presumably at the 

surface, as indicated by the observation of exchange bias (field-axis shift of the low 

temperature loop after cooling in a saturating field
61

).
62–64

 Interestingly, in contrast with the 

qualitatively similar trends of the ZFC curves for the two series, the hysteresis loops of the 

two types of mixtures are very different (Figure 4). While the M1 samples present ordinary 

(single-phase-like) loops, the M2 mixtures display double-loop responses. Such constricted 

loops are typical of weakly dipolar-coupled composites,
14

 strongly exchange-coupled 

systems with exceedingly large soft counterparts (e.g., in polycrystalline bulk materials, 

thin films or core/shell nanoparticles),
65–67

 weakly exchange-coupled composites (in 

different morphologies)
65–67

 or poorly-mixed (or phase-segregated) systems.
20,40

 This was 

expected from the fact that the average dipole-dipole interaction strength in the M2-50 

sample amounts to a field of 140 Oe (after equating dipolar and Zeeman energies using 

the NP magnetic moments obtained as indicated in Figure S3), significantly lower than the 

difference in coercivity between the constituent particles (see Figure 4). In contrast, for 

M1-50 the corresponding average dipolar field is 220 Oe, i.e., larger than the coercivity 

difference between the LA and HA particles in series M1. 
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Figure 4. Hysteresis loops at 5 K after field cooling measured for the end and middle 

members of each sample series. The inset in the upper panel shows the low-field, hysteretic 

region.  

 

Notably, although the overall shape of the measured loops is reasonably well-described 

as a superposition of the end member loops (see Figure 5), significant deviations appear at 

low fields for the central samples (see insets), yielding field-axis interception values larger 

than those extracted from the calculated superpositions. This result is, in fact, in agreement 

with the naïve picture of the harder particles providing some “pinning” against the 

switching of the softer particles, which essentially determine the overall HC. Thus, one 

would intuitively argue that the difference in anisotropy between the hard and soft particles 
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is high enough to prevent the full coupling of the two populations in the mixtures. 

However, the difference between the calculated and experimental coercivities indicate that 

the two types of NPs must influence each other through dipolar interactions. Thus, the 

soft/hard NP populations are strongly interacting (given the NPs proximity) but not fully-

coupled due to the large anisotropy of the HA particles. Hence, our results highlight the 

ambiguity of the usual interpretation of the magnetic properties of a magnetic composite as 

“coupled” or “weakly coupled”. To obtain the complete picture of the magnetic response,  

information on the field and temperature ranges should be discussed, as illustrated by the 

central samples in the M2 series, which show collective (“coupled”) behavior at low fields 

and T  200 K (i.e., a single peak in the ZFC curve), but weak coupling at higher fields and 

T = 5 K (i.e., separate, yet not independent, magnetization reversal of the two populations 

resulting in double-loop hysteresis). 
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Figure 5. Hysteresis loops at 5 K after field cooling measured for two selected samples 

in the M2 series. The insets zoom the central region. The red line is the weighted 

superposition of the end members of the series (M2-0 and M2-100), whereas the black 

dotted line is the fit to a model with two interacting components (see text for details).  

 

In the following we discuss in more detail the evolution of TMAX and HC on the 

proportion of HA particles, x, in the two series studied, as summarized in the two left 

columns in Figure 6. Firstly, we examine the data measured (or calculated) in the M1 

series, i.e., the left column in Figure 6. The freezing temperature (TMAX) shows a clear 

linear trend, which can be understood by assuming that the individual blocking 
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temperatures have no bearing on the collective freezing, i.e., they are fully determined by 

the strong interparticle interactions, as first proposed by Mørup in the 90’s
68

 and suggested 

by the high TMAX/TB ratio for the end members of the series. The data in the M1 series is 

well described by this model, where TMAX is proportional to the dipolar interaction strength 

between nearest neighbors Tdd, 
39,68

 

𝑇𝑀𝐴𝑋 ∝ 𝑇𝑑𝑑 ∝
𝜇𝑎𝑣

2

𝑟3
∝ 𝑀𝑆𝐶𝜇𝑎𝑣 = 𝑀𝑆𝐶[𝜇𝐿𝐴 + (𝜇𝐻𝐴 − 𝜇𝐿𝐴)𝑥] (1) 

where av is the weighted average magnetic moment of the high- (𝜇𝐻𝐴) and low- (𝜇𝐿𝐴) 

anisotropy particles, and C is the NP packing fraction/filling factor. Note that C and 𝑀𝑆 are 

roughly constant across the series. A constant C  60% results from the fact that all samples 

have been compacted under the same pressure, yielding quasi-random-close-packed 

configurations,
50

 as shown in Figure 1(c). Given the modest difference in diameter between 

the small (LA) and large (HA) particles (1.28 ratio), the filling factor will barely change 

with the fraction of HA particles.
69

 The saturation magnetization of the large particles was 

measured to be only slightly larger than that of the small particles, as seen in Figure 4 upper 

panel.
45

 Therefore, dipolar interactions depend on x mainly through the volume-averaged 

particle moment, 𝜇𝑎𝑣, which varies linearly from the moment of the small particles to that 

of the large particles (𝜇𝐿𝐴 and 𝜇𝐻𝐴, respectively). Thus, the experimental observation of a 

linear dependence of TMAX on x is consistent with a model where the ZFC peak temperature 

is determined exclusively by the relatively strong dipolar interparticle interactions. 

 

In these strongly coupled M1 mixtures, while TMAX is solely determined by interactions, 

HC is shown to be determined both by the intrinsic value in isolated NPs and by the 

intensity of the interparticle interactions. The HC values measured across the series deviate 
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from the values extracted from the superposition loops, indicating an influence of the 

varying interaction strength. In fact, the observed non-monotonic dependence can be 

explained by a simple model which considers the variation across the series of both the 

average particle size and the interparticle interactions. The HC of a dense NP assembly 

results from two factors, the individual particle anisotropy barrier and the strength of 

interparticle interactions, which may be quantified by Tdd (Equation 1). Regarding the first 

factor, it is well-known that the coercivity is proportional to the anisotropy barrier ( 

KV),
70

 which, in turn (and given the similar K values previously measured for the particles 

in M1-0 and M1-100)
45

 depends linearly on x. Thus, the isolated-particle coercivity of the 

average particle in the composite M1-x can be written as 

𝐻𝐶,𝑖𝑝(𝑥) = 𝐻𝐶,𝐿𝐴 + (𝐻𝐶,𝐻𝐴 − 𝐻𝐶,𝐿𝐴)𝑥 (2) 

where 𝐻𝐶,𝐿𝐴 and 𝐻𝐶,𝐻𝐴 are the coercive fields of the small and large particles, respectively. 

Regarding the effect of dipolar interactions, experiments dealing with differently 

concentrated dispersions of particles have established a decrease of HC with increasing 

particle concentration at temperatures well below the blocking temperature.
71

 This is in 

agreement with the classical calculations by Néel
72

 and Wohlfarth,
73

 as well as with 

numerical simulations, which found a linear dependence between the two parameteres.
74

 

With 𝑇𝑑𝑑 ∝ 𝐶𝜇𝑎𝑣 for the strength of dipolar interactions in the M1 series, the present 

experiment is complementary to the cited previous experiments, as here the “concentration” 

C (packing fraction) is constant and the average particle moment is finely tuned via the 

HA/LA proportion. Thus, the HC of the sample M1-x can be written as 

𝐻𝐶(𝑥) = 𝐻𝐶,𝑖𝑝(𝑥)[1 − 𝐴𝑇𝑑𝑑(𝑥)] (3) 

inserting 𝑇𝑑𝑑 from Equation 1 yields 
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𝐻𝐶(𝑥) ∝ {𝐻𝐶,𝐿𝐴 + (𝐻𝐶,𝐻𝐴 − 𝐻𝐶,𝐿𝐴)𝑥} ∗ {1 − 𝐵[𝜇𝐿𝐴 + (𝜇𝐻𝐴 − 𝜇𝐿𝐴)𝑥]} (4) 

where A and B are constants. This is an inverted parabola, as experimentally observed in 

series M1 [see Figure 6(b1)], which supports the mentioned approximations and hypotheses 

leading to Equation 4. Hence, intermediate compositions show a stronger effect of 

interactions (even if they increase monotonically in the series) and the coercivity of the 

uniform mixtures deviate more from the simple superposition of the two NP populations. 

 

 
 

Figure 6. Dependence on the concentration of high anisotropy particles of the ZFC peak 

temperature, TMAX (a), and the coercivity, HC (b). The third column shows the results from 

Monte Carlo simulations for the M2 series. The empty red symbols in panels (b) 

correspond to values extracted from loops calculated as (weighted) superpositions of the 

loops measured (or simulated) for the end members of the series. The insets plot the relative 

difference between the values measured (or extracted from simulations) in the mixtures and 

in the superposition loops. The solid lines in the first column are fits to the models 



22 

 

described in the text, while the dotted lines are guides to the eye. Note that the upper x-axes 

give the variation of the dipolar interaction strength, Tdd, as a result of the different 

magnetic moments of the LA and HA constituent particles. The arrows in (a1) and (a2) 

highlight the fact that while Tdd increases with x in the M1 series it decreases in the M2 

series. 

 

Next, we discuss the same magnetic parameters in the M2 series, plotted in the central 

column of Figure 6, and compare them to those in the M1 series. The dependence of TMAX 

on x for the M2 series appears similar (increasing trend) to that of the M1 series. However, 

there is a crucial difference, highlighted by the upper axes in Figure 6(a1) and (a2), 

showing the variation of the average dipole-dipole interaction strength Tdd with the mix 

proportion; namely, while Tdd increases with x in the M1 series, it decreases in the M2 

series. This is because the magnetic moment of the Co-doped (HA) particles is smaller than 

that of the pure maghemite (LA) particles (see Figure S3 in the SI), thus Tdd decreases 

(concomitantly with the increase in average local anisotropy) as the proportion of the 

lower-moment HA particles, x, becomes larger. Consequently, this rules out dipolar 

interactions as the origin of the increase in TMAX with x and points out the significant 

influence of the local anisotropy on this characteristic temperature. Importantly, the data 

does not imply that dipolar interactions, although less intense than in series M1, are not also 

influencing the value of TMAX. In fact, the existence of a single peak at this temperature can 

only be understood from the presence of strong enough interactions. Nevertheless, the 

average local anisotropy energy is larger and varies much faster across the series than the 

intensity of dipolar interactions, the ratio between the two energy terms (KV/Edd = 
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25TB/Tdd) ranging from roughly 7 (for M2-0) to about 120 (in M2-100). Mørup’s model, 

which was found to describe well the variation of TMAX in series M1, cannot account for 

TMAX(x) in the M2 series. Note that the dipolar coupling strength does not necessarily have 

to trump the anisotropy barrier in order to yield (low-field) collective behavior. For 

instance, sample M2-100, with an Edd/KV ratio of barely 1%, does show clear-cut superspin 

glass features such as ZFC memory [see Figure 3(d)] and critical slowing down of the 

relaxation time (not shown). This might be attributed to the narrow size (KV) distribution 

and a mechanism whereby the random orientation of the NP easy axes contributes to the 

energy degeneracy characteristic of frustrated behavior and allows the appearance of 

superspin glass behavior despite the relatively weak dipolar coupling, as suggested in a 

recent Monte Carlo study by J. J. Alonso et al.
75

  

 

Regarding the coercive field, the experimental HC values also lie above the superposition 

values (panel b2 in Figure 6), as in the M1 series, but the enhancement due to uniform 

mixing is much larger (up to 80% for M2-50, see inset). This indicates that despite the 

double-loop behavior (signaling that the two populations are not fully coupled), the strong 

interaction between the particles significantly influence their magnetism. However, as 

discussed above, increasing concentrations of HA particles in this series provide weaker 

average dipolar interactions, therefore the model applied above for the M1 series is 

completely inadequate in the (relatively) weakly coupled M2 scenario, where the simpler 

intuitive idea of the harder particles “pinning” the switching of the softer ones, which in 

turn determine the overall coercivity, appears more suitable. Note that a minimum 

population of around 20% of HA particles is necessary for the soft particles to feel such 
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pinning influence. The contrast between the two series in the influence of dipolar 

interactions on HC is thus remarkable.  

The third column in Figure 6 shows results from Monte Carlo simulations of the M2 

series. The concentration dependence of the parameters extracted from the simulated 

thermal and magnetic response (see SI for representative examples, Figures S5 and S6) are 

remarkably similar to the experimental observations, including the effect on the coercivity 

of mixing versus simple (unmixed) addition of the soft and hard nanoparticles [insets in 

panels (b2) and (b3)]. The relatively simpler, strongly coupled, M1 series was also 

simulated, with results again very similar to the experiment (see SI, Figure S4). 

 

 

Figure 7. Coercive fields of the LA/HA NP populations as extracted from the fitting of 

experimental loops (a) and Monte Carlo-simulated loops (b) as a function of hard (Co-

doped) particles concentration.  

 

In order to explore the origin of the x dependence of the hysteresis loops in series M2 

(summarized in panel b2 of Figure 6), we have attempted to extract the behavior of each 



25 

 

population (LA and HA particles) by fitting the experimental loops to the following sum of 

hard and soft components using the empirical function proposed by Stearns and Cheng:
76

 

𝑀(𝐻) =
2

𝜋
𝑀𝑆,𝐿𝐴 atan [ (

𝐻+ 𝐻𝐸,𝐿𝐴±𝐻𝐶,𝐿𝐴 

𝐻𝐶,𝐿𝐴
) tan (

𝜋𝑆𝐿𝐴

2
) ] +

 
2

𝜋
𝑀𝑆,𝐻𝐴 atan [ (

𝐻+ 𝐻𝐸,𝐻𝐴±𝐻𝐶,𝐻𝐴 

𝐻𝐶,𝐻𝐴
) 𝑡𝑎𝑛 (

𝜋𝑆𝐻𝐴

2
) ]   

(5) 

where the  symbol indicates the different sign used in the simultaneous fitting of the 

ascending and descending branches of the loops, and the squareness parameters (S) were 

obtained from the fitting of the end member loops (i.e., it is assumed not to change 

significantly when mixing the two types of NPs). Note that the exchange bias of the loops 

is taken into account in the fit, HE,LA and HE,HA. Two examples of the fitted curves are 

given in Figure 5. The results for HC as a function of the proportion of HA particles, x, 

plotted in the left panels of Figure 7, show a strong mutual influence of one type of particle 

on the other. Interestingly, the results are qualitatively reproduced by the Monte Carlo 

simulations (where it is straightforward to separate the individual contributions of the two 

particle populations to the total hysteresis loop). Thus, not only the hard particles harden 

the soft ones, as expected, by delaying their switching as commented above, but, 

conversely, the introduction of soft particles in a compact with majority of hard particles 

will soften them. This is the reason why the overall result of introducing hard particles in 

the binary compacts [increasing x in Figure 6(b2)] is a faster-than-linear enhancement of 

coercivity, as both components (LA and HA) are increasing their coercivity.  
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Figure 8. Switching field distributions (right panel) for the end and central members of the 

M2 series as obtained from the derivative of the DC demagnetization remanence (MDCD) 

curves shown in the left panel. All curves were measured at a temperature of 5 K. The inset 

zooms in the low field region to show the deviation of the soft mode in the M2-50 mixture 

from the single peak observed in the M2-0 compact. 

 

The relatively weak, but still significant, soft-hard particle coupling can be conveniently 

quantified by the analysis of the switching field distribution, defined as the field necessary 

to overcome the energy barrier during an irreversible reversal process (and therefore 

offering a measure of such anisotropy barrier distribution), which can be extracted from the 

dc demagnetization remanence (MDCD) curve
 
as χirr = dMDCD/dH.

40,77
 Figure 8 shows the 

MDCD curves and corresponding switching field distributions for the end and central 

members of the M2 series. As expected from the overall aspect of its hysteresis loop, the 

central sample of the series, M2-50, shows two well-separated switching modes, soft (at 

low fields) and hard, which justifies the description of this composite as “weakly coupled”. 

However, those modes are clearly shifted towards each other with respect to the switching 
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behavior of the pure compacts M2-0 and M2-100, in agreement with the results from the 

Monte Carlo and fitting analyses above. It is this mutual influence that explains that the 

coercive field measured for sample M2-50 are considerably different from those of an 

unmixed system with the same components (see Figure 6, panels b2 and b3). 

 

Therefore, despite the double-loop behavior of the hysteresis loop, Figure 7 and 8 clearly 

indicate that dipolar interactions between the HA and LA particles significantly affect their 

individual switching, suggesting the labels modified single-particle response or weak 

coupling to describe their behavior. The coupling, however, is high enough to render a 

single peak in the ZFC curve of the mixtures [see Figure 3(b)]. 

Altogether the results draw a complex scenario for the M2 mixtures, which present both 

seemingly “collective” (TMAX) and “single-particle” (HC) properties. In fact, the only 

“collective” property observed in these mixtures is the blocking temperature, although its 

increase with decreasing interactions and increasing local anisotropy already signals a 

dominant role for the latter factor. On the other hand, (i) the constricted hysteresis loops, 

(ii) the lack of ZFC memory, and (iii) the hump of the M(T) at low temperatures, they all 

correspond to a “two-phase” behavior driven by the large anisotropy contrast between the 

LA and HA particles.  

 

The origin of the distinct difference between the M1 and M2 series must lie on the large 

anisotropy of the Co-doped maghemite nanoparticles. Based on the Random Anisotropy 

Model (RAM), in nanocrystalline materials the structural correlated volume, (i.e., 

nanoparticle size) can actually be smaller than the volume of magnetically correlated 
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material due to the coupling among particles/grains. Hence, within this framework, the 

magnetization reversal of such magnetic correlated volume is not ruled by the intrinsic 

properties of the individual particles, but by an effective “averaged” anisotropy and easy 

axis resulting from the scaling of the individual contribution of each particle/grain 

randomly oriented within the “magnetic cluster” (i.e., the magnetically correlated 

volume).
78–81

 For bulk nanocrystalline materials (i.e., with exchange interacting grains), the 

region which influences the magnetization is given by the ferromagnetic correlation length, 

Lcorr = Aex/K (where K is the anisotropy constant and Aex is the exchange stiffness, which 

can be naïvely considered as the “force” trying to keep the spins parallel to each other). 

However, the RAM approach has been proposed to be independent of the source of the 

magnetic coupling and it should be appropriate for other types of interactions, like dipolar 

interactions.
79

 Indeed, recent experimental observations have shown a good agreement with 

this model for ensemble of particles interacting purely by dipolar coupling.
82,83

 However, 

for purely dipolar interacting systems, Aex is not the adequate parameter to define the 

tendency of neighboring magnetic moments to be correlated due to dipolar interactions. 

Thus, Aex can be qualitatively substituted by an “effective dipolar coupling stiffness”, Adip. 

Namely, Adip can be understood as the “strength” of the effective dipolar interaction among 

the particles.
79,82

 However, note that this quantity should be considered as the coupling 

strength of the weakest interactions and not as an average value of the coupling.
79

 

Therefore, a (dipolar) correlation length can be estimated as Lcorr = Adip/K. This Lcorr can 

be interpreted as the average distance over which the magnetization fluctuations are 

correlated. Thus, materials with a weak anisotropy, like -Fe2O3, should have a large Lcorr, 

but Co-ferrite, with a large K, should have a small Lcorr.  
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In fact, information on the intensity of the interparticle interactions can be extracted from 

the field dependence of TB. Namely, using the well-known TB(H) for nanoparticles, 

𝑇𝐵 =
𝐾𝑉

𝑘𝐵 ln(
𝜏𝑚
𝜏0

)
[1 −

 𝜇0𝐻

 𝜇0𝐻𝐾
]

1.5

, but taking into account the correlated volume (rather than the 

nanoparticle volume) and the effective, scaled, anisotropy of this correlated volume (rather 

than the intrinsic anisotropy of the nanoparticles); i.e., 

𝑉𝑁 =
𝜋

6
[𝐷3 + 𝑥(𝐿𝑐𝑜𝑟𝑟

3 − 𝐷3)] (with D the particle diameter and x the packing fraction), and 

𝐾𝑒𝑓𝑓 =
𝐾

√𝑁
 (with N the number of particles contained in VN), respectively.

81
 See the SI for a 

more detailed derivation.
84,85

            

By fitting the experimental TB(H) for the two pure cases of the M2 series, i.e., M2-0  and 

M2-100 (see Figure S7) we obtain that, certainly, Lcorr for the -Fe2O3 is considerably larger 

than that obtained for the Co-doped -Fe2O3 particles (Table 1). In fact, Lcorr(-Fe2O3) = 

36(1) nm encloses tens of nanoparticles (with D ≈ 6.8 nm) thus the magnetic properties of 

the pure maghemite particles in M2-0 are averaged over many particles. On the other hand, 

Lcorr(Co-doped) = 11.4(5) corresponds to a correlated volume comprising barely 4 particles; 

consequently, the properties of the dense system made of Co-doped particles should be 

more individual-particle-like than those of M2-0, as observed experimentally. 

 

Table 1. Correlation length (Lcorr) for different samples of the M2 series obtained from the 

fit to a dipolar random-anisotropy model. 

Sample Lcorr (nm) 

M2-0 36(1) 

M2-10 13.2(5) 
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M2-50 11.2(5) 

M2-85 10.8(5) 

M2-100 11.4(5) 

 

 

Notably, the RAM approach described above has been developed for homogeneous 

mixtures of particles.
82,86

 However, assuming that the approach holds even for binary 

mixtures, we can estimate the “average” Lcorr from the TB(H). Remarkably, the values 

obtained for the binary mixtures show that even a 10% of hard nanoparticles in the mixture 

is sufficient to reduce Lcorr to the M2-100 level. 

 

We have thus demonstrated the fabrication of uniform binary compacts mixing 

nanoparticles with different magnetic anisotropy. The large density, or filling factor ( 

60%),
50

 achieved by simply pressing a powder of bare nanoparticles makes the resultant 

pellets promising candidates to build novel nanoparticulated magnetic ceramics after a mild 

sintering stage preserving the individual particle morphology, thus creating the disordered 

analogues of the recently reported bulk supercrystals densified by controlled annealing or 

ligand-exchange.
5,87

 In other words, to build dense “superglasses”, whose overall behavior 

may be finely tailored via the added degrees of freedom of the proportion and properties of 

the individual components in binary  systems; here, such control has been shown to go 

beyond the superposition of uncoupled systems (as exemplified, e.g., by the strong increase 

in low temperature coercivity in the central samples of series M2). For magnetic materials, 

this strategy may prove useful for the design of, e.g., composites with magnetically-

enhanced mechanical stability
11

 or permanent magnets with optimized energy product.
19,20
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The latter necessarily involve exchange coupling between the constituent nanoparticles, 

which has been recently shown to be achievable while preserving the individual character 

and even the shape of the particles by using advanced densification techniques.
14,88

 In this 

context, an advantage of magnetic binary systems is that loop constrictions (like those in 

Figure 5) could be exploited as a sensitive indicator of the lack of significant interparticle 

exchange to monitor such densification processes,
14

 as we intend to demonstrate in future 

studies. 

 

CONCLUSIONS 

We have shown the convenience of dense hard/soft binary nanoparticle assemblies to 

discern the single-particle/collective nature of different properties in a given system. The 

influence of dipolar interactions, (average) local anisotropy, and sample heterogeneity on 

the low-field (blocking temperature, relaxation) and high-field (hysteresis loop) magnetic 

response has been illustrated in two series of strongly interacting, but strongly- (M1 series) 

and weakly-coupled (M2 series) composites resulting from different anisotropy ratios of the 

mixed hard/soft NP constituents.  

The ZFC peak temperature (TMAX) is a collective property in all samples studied. 

However, whereas in the M1 series TMAX is entirely determined by interparticle 

interactions, the M2 series presents a more complex scenario where the average local 

anisotropy provides a growing contribution with increasing concentration of the high 

anisotropy Co-doped NPs. Thus, the strong increase of the average anisotropy across this 

series (a factor of 8.2) overcomes the smaller reduction in dipolar energy (factor of ~1.6) to 
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account for the observed increase in TMAX. Nonetheless, it is the presence of strong 

interparticle interactions that enable, in the first place, the local averaging of anisotropy to 

yield a single stabilization temperature at TMAX. However, in contrast with the M1 series, in 

the M2 mixtures the slow relaxation of the NPs moments below this temperature does not 

exhibit the ZFC memory effect characteristic of the (collective) superspin glass state, 

indicating a lack of homogeneous (single-phase) relaxation of the magnetization. More 

importantly, we have demonstrated the fundamentally different effect that dipolar 

interactions can have in nanoparticle composites depending on the anisotropy difference 

between the constituent NP populations. We have shown how binary random compacts 

with sufficiently high anisotropy contrast (i.e., the M2 series) may be employed as a tool to 

test or, rather, define the collective character of a given magnetic property as that resulting 

in the collapse of the individual features caused by strong enough interactions. Crucially, 

such collective character must, in general, be ascribed to specific properties and not to the 

system as a whole.  

 

METHODS 

Samples preparation. Four types of highly uniform, roughly spherical NPs were 

synthesized using an optimized thermal decomposition route
64

: maghemite NPs with 

average diameters dTEM = 6.8, 9.0 and 11.5 nm, and cobalt-doped (Co:Fe = 0.19:1) 

maghemite particles 6.8 nm in diameter (see Figure 1). Iron pentacarbonyl [Fe(CO)5] was 

thermally decomposed in the presence of oleic acid (surfactant) and dioctyl ether (solvent), 

and subsequently oxidized with trimethylamine N-oxide [(CH3)3NO] at high temperature. 

The nanoparticle size was controlled changing the amount of oleic acid in the reaction, e.g. 
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for the 6.8, 9.0 and 11.5 nm particles, 1.7, 2.3 and 3.0 mol equivalents of oleic acid were 

used, respectively.
64

 The Co-doped maghemite nanoparticles were prepared by simply 

replacing the corresponding fraction of Fe(CO)5 by Co(CO)5 to yield the above-mentioned 

Co:Fe ratio, which has been previously shown to produce a large increase in NP anisotropy 

while reducing only slightly the saturation magnetization.
46

 The 9.0 and 11.5 nm NPs 

(corresponding to a volume ratio of 2), and the equally-sized, 6.8 nm, pure and Co-doped 

maghemite NPs, were mixed in different proportions while still in liquid solution to prepare 

the samples in series M1 and M2, respectively. The mixed solutions of nanoparticles were 

washed repeatedly in acetone to remove the oleic acid coating.  Thermogravimetry analysis 

shows that an organic residue of only  5%w still remains bound to the NPs. The 

suspension was dried and the resulting powder compacted uniaxially under  1 GPa to yield 

dense discs with about 60% in filling factor, as estimated using a method based on the 

analysis of demagnetizing field effects recently developed by some of us.
50

 

Magnetic characterization. The hysteresis loops were measured at 5 K after cooling in a 

50 kOe field, which was also the maximum field used in the loops. The temperature 

dependence of the magnetization, M(T), (in a field H = 5 Oe in the disk plane) after field-

cooling (FC) and zero-field cooling (ZFC) was also registered. In addition, memory ZFC 

curves were also measured. Namely, the cooling was halted during 4 hours at a given 

temperature, Thalt, below the ZFC peak temperature TMAX (Thalt  2· TMAX /3), then resumed 

to the lowest temperature (10 K). Subsequently, the M(T) curve is registered under exactly 

the same conditions as the reference ZFC curve. DCD (direct current demagnetization) 

remanence curves were measured by initially saturating the sample (in H = -50 kOe) and 

then measuring the moment after application and removal of progressively increasing 
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reverse fields.
89

 Finally, the temperature dependence of the ac susceptibility was recorded 

at 10 Hz using a field amplitude of 1 Oe. All the magnetic measurements were performed 

using a MPMS SQUID magnetometer from Quantum Design. Note that, although the 

studied dense disks present a substantial shape anisotropy, demagnetizing field corrections 

were not necessary, as we have previously demonstrated that such corrections sharpen the 

ZFC peak but do not shift its position (TB, the relevant low-field parameter in this work).
50

 

Monte Carlo simulations. Monte Carlo simulations were carried out using the 

mesoscopic three-spins model,
57 

with parameters extracted from bulk values and 

experimental results (see SI for details). 
46,57,90–102
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On the nature of the interparticle interactions 
 

The discussion in the main text has overlooked the possibility of interparticle 

superexchange. It is rather counterintuitive that an indirect exchange mediated by oxygen 

could propagate between metal ions in different particles, even if the NPs are essentially 

bare and touching. Yet, Frandsen et al. proved this to be the case between NiO 

antiferromagnetic NPs; however they showed that this was allowed by an exceptional 

crystalline coherence from particle to particle stemming from the synthesis method 

(which permitted the particles alignment) and the elongated shape of the NPs.1 

Nonetheless, some of us have recently found some indications of interparticle exchange 

in small maghemite nanoparticles without surface spin disorder and thus showing a 

negligible exchange bias field.2 In the present study, the only NPs falling under such 

description are the maghemite particles used as LA component in the M2 series. 

Assuming an effective superexchange between them, the introduction of Co-doped 

particles in the M2 samples would reduce the number of LA-LA contacts and thus the 

average indirect exchange, which would therefore vary in the same way as the dipolar 

interaction strength (indicated by the arrow in Figure 6a2). Thus, the increasing TMAX 

with x (proportion of HA particles) shown in that panel cannot be understood but in terms 

of the increasing local anisotropy. In short, even if superexchange interactions exist 

between the 6.8 nm particles, this would not affect any of the discussion. 

 

 

On the evaluation of the anisotropy energy contrast 
 

The difference in anisotropy between the constituent particles in the two series is 

quatified through the anisotropy energy contrast, AEC, defined as the ratio of the 

blocking temperatures of the two types of particles in the composite, TB,HA/TB,LA. The 

blocking temperature is often and most simply taken as the peak temperature in a low-

field MZFC(T) curve, which yields the AEC values cited in the main text ( 1.6 and 8.2 

for series M1 and M2, respectively). However, this approximation systematically 

overestimates the average blocking temperature, which is obtained more rigorously from 

the maximum slope of the MTRM(T) curve [in turn equivalent to the difference MFC(T) - 

MFC(T)]. From this definition, however, very similar AEC ratios are obtained ( 1.8 and 

8.1 for series M1 and M2, respectively). Nonetheless, it is worth noticing that the latter 

AEC value for the M1 series is closer to the volume ratio between the constituent particles 

( 2.0), which reduces the inferred contribution of the surface anisotropy to the energy 

barrier of the LA particles (still, however, larger than that in the HA particles, as the AEC 

value is still smaller than the volume ratio). 
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Experimental vs superposition ZFC loops in series M2 

 

 
 

Figure S1. Comparison of the zero-field-cooled (ZFC) curve measured in H = 5 Oe for sample 

M2-85 (open symbols, same as in Figure 2) and the corresponding linear superposition of the 

ZFC curves of the end members of the series, i.e., 0.85×ZFC(M2-100) + 0.15×ZFC(M2-0) (filled 

symbols). Note that the selected example, x = 85, yields comparable peaks in the superposition 

due to the lower initial susceptibility of the hard particles in M2-100. 

 

 

 

 

Low-temperature anomaly in the M2 series: ac susceptibility  

 
Figure S2. Temperature dependence of the normalized absorption component of the ac 

susceptibility at 10 Hz of all the binary compacts in series M2. A peak (with decreasing relative 

intensity with the HA-NPs proportion) is observed at the position of the low-temperature hump 

in the ZFC curves (see Figure 2 in the main text).  
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Room temperature loops and Langevin fits of silica-coated maghemite and Co-doped 

particles mixed in series M2 
 

 
Figure S3. Room temperature response of magnetically dilute compacts (achieved by coating the 

cores with a thick silica layer, see insets) of the constituent nanoparticles in the M2 series (pure 

and Co-doped maghemite). The red lines are fits to a simple Langevin function, yielding the 

indicated effective NP moment (µ) and saturation magnetization (MS) values. Note the close 

similarity between the ratios of these parameters (µ/MS = V) in each case, confirming that the 

magnetic cores have indeed the same volume. 

 
 

Simulations of the blocking temperature, TMAX, and coercivity, HC, of the M1 series.  

 

 
 

Figure S4. Dependence on the concentration of HA particles of the ZFC peak temperature, TMAX 

(a), and the coercivity, HC (b), resulting from Monte Carlo simulations of the M1 series. The open 

symbols in panel (b) correspond to values extracted from loops calculated as superpositions of 

the loops simulated for the end members of the M1 series. The lines are linear (a) and quadratic 

(b) fits to the data, respectively.  
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Monte Carlo: the model and examples of simulated curves 

 

For the numerical study of the mixtures in the M1 and M2 series, we use the Monte Carlo 

simulation technique and the Metropolis algorithm.3 We consider dense assemblies of spherical 

nanoparticles with diameter d, with a particle concentration c = 60%, randomly placed at the 

nodes of a simple cubic lattice with lattice characteristic lengths Lx, Ly, Lz with Lx = Ly = Lz = 10α. 

The parameter α is defined as the smallest inter-particle distance equal to the particle diameter. 

The small size of the nanoparticles results to a significant surface contribution in their 

magnetic behavior. Therefore, we use a 3-spin mesoscopic model4 to simulate each nanoparticle 

with a core/surface morphology. Each nanoparticle is described by three classical spin vectors: 

one for the core s1i and two for the surface layer s2i and s3i with i = 1,…,N (N is the total number 

of nanoparticles in the assembly). The magnetic moment for each nanoparticle’s region is mn = 

MnVn / MsV, where n = 1 for the core and n = 2, 3 for the “up” and “down” surface layer 

sublattices. Vn and Mn are the volume and the saturation magnetization of the core, the “up” and 

the “down” surface sublattice regions, MS and V are the saturation magnetisation and the total 

volume of the particle. Each spin has a uniaxial easy anisotropy axis randomly oriented.  The total 

energy of the N nanoparticles system is:5 

 

𝐸 = −
1

2
∑[𝐽𝑐1(𝑠1𝑖 ⋅ 𝑠2𝑖) + 𝐽𝑐2(𝑠1𝑖 ⋅ 𝑠3𝑖) + 𝐽𝑠𝑟𝑓(𝑠2𝑖 ⋅ 𝑠3𝑖)]

𝑁

𝑖=1

 

(Eq. 1) 

−∑𝐾𝑐𝑉1(𝑠1𝑖 ⋅ 𝑒̂1𝑖)
2 − ∑𝐾𝑠𝑟𝑓[𝑉2(𝑠2𝑖 ⋅ 𝑒̂2𝑖)

2 + 𝑉3(𝑠3𝑖 ⋅ 𝑒̂3𝑖)
2]

𝑁

𝑖=1

𝑁

𝑖=1

 

−
1

2
𝑔 ∑ (∑ 𝑚𝑛𝑖 ⋅ 𝑠̂𝑛𝑖

3

𝑛=1

𝑁

𝑖,𝑗=1,𝑖≠𝑗

)𝐷𝑖𝑗(∑ 𝑚𝑛𝑗 ⋅ 𝑠̂𝑛𝑗

3

𝑛=1

) 

−∑ ∑ 𝜇0𝐻𝑚𝑛𝑖(𝑠𝑛𝑖 · 𝑒̂ℎ)

3

𝑛=1

𝑁

𝑖=1

 

 

The first energy term gives the intra-particle nearest-neighbor Heisenberg exchange 

interactions. Inside the angular brackets the exchange interaction between the core spin and the 

two surface spins (Jc1 and Jc2 are the intra-particle exchange coupling constants), and the exchange 

interaction between the surface spins (Jsrf is the exchange coupling surface constant) are summed. 

The second and third energy terms give the anisotropy energy for the core (KC) and the surface 

(Ksrf) (ê1i, ê2i, ê3i being the anisotropy easy-axis directions). The forth energy term gives the dipolar 

interactions among all spins in the nanoparticles, Dij is the dipolar interaction tensor.4 The dipolar 

strength is defined as g = μ0(MsV)2/4πd3. The last term is the Zeeman energy (êh being the 

direction of the magnetic field H). We must note here that inter-particle exchange coupling is not 

included (see first section in this Supplementary Information). 

It is important to emphasize that the different parameters used in the simulations are not 

fitting parameters. Our model starts from bulk parameters, which are known from the literature. 

Moreover, the volume of the core and the thickness of the surface layer are calculated from an 

atomic scale model of a nanoparticle with a spinel structure of size d and surface thickness 0.85 

nm. This surface thickness corresponds approximately to a surface layer of one lattice constant of 

the bulk ferrite material [γ-Fe2O3 (~8.33 Å) and CoFeO4 (~8.38 Å)] in agreement with 

experimental observations.6,7 

To simplify the calculations, the exchange coupling energy and the magnetic anisotropy 

are normalized to the thermal energy kBT (at temperature T = 10 K) to be dimensionless.  

Since the purpose of the simulation is to establish that the origin of the effects that we infer from 

the experimental results are indeed valid, the different parameters used in the simulations are 

obtained from bulk values of the materials under study and by using experimental data: 
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(i) The exchange coupling parameters of the maghemite nanoparticles are estimated 

starting from their bulk values.8 To set the mesoscopic parameters, we first perform atomic scale 

calculations for spherical nanoparticles with the inverse spinel crystalline structure of 

magnetite,5,9–11 where in each fully occupied unit cell the iron ions are distributed in the tetrahedral 

sites (A-sublattice) and the octahedral sites (B-sublattice). Our atomic scale simulations show, for 

all the nanoparticle sizes, that in the core the B sublattice is the dominant one, so we set the core 

macrospin as a “B” spin. Consequently, based on Srivastava’s values, we set Jc1 = JAB = -25.5 K 

for the exchange coupling between the core macrospin and that of the A surface sublattice, and 

Jc2 = JBB = 15 K for the exchange coupling between the core macrospin and the B surface 

sublattice.  

In order to obtain the normalized exchange energy terms, j, e.g., jc1 = ½×JAB×SA×SB/kBT, 

one has to bear in mind that bulk maghemite has the structure (Fe+3)A [Fe+3
5/3 □1/3] B where the 

symbol [] stands for ~20% vacancies and that the magnitude of the spin of Fe+3 are SA = SB = 

5/2. Hence, since jc1 gives the interaction between A sites of the surface and B sites of the core, 

and vacancies exist only at B sites (i.e., A spins interact with 80% B spins),  jc1= 

½×JAB×SA×(SB*80%)/kBT(10K) = -0.5×25.5×(5/2)×(5/2×0.8)/10 = -6.4 Similarly, for jc2 (the B 

spins in the core interact with B spins in the surface B lattices) jc2 = ½×15×0.8×(5/2)×(5/2)/10 = 

3.8. 

From electronic structure calculations of maghemite and Co-ferrite nanoparticles it has 

been found that the jsrf values are close to the bulk ones, but the sign of JAA is positive and its 

value is about ½ of the bulk one.12,13 Following these results, we set Jsurf AA = 3.1, Jsurf BB ≈ Jc2 and 

Jsurf AB ≈ Jc1.  Moreover, in our atomic scale model for the three particle sizes we find that 

proportion (i.e., number of bonds over the total number of the surface bonds) of the coupling 

between AA, BB and AB sites are 0.1, 0.3, 0.6, respectively. The surface consists of two 

macrospins, therefore the mesoscopic exchange coupling at the surface jsrf has contributions from 

the couplings between AA, BB and AB surface bonds. Therefore, for the mesoscopic jsrf we take 

jsrf = 0.1×3.1 + 0.3×3.8 - ½×0.6×6.4 ≈ -0.5. Note that the ½ in JAB takes into account the double 

counting. 

For the d = 6.8 nm Co-doped maghemite nanoparticles we use the values for the 

mesoscopic exchange coupling constants jc1 , jc2 , jsrf  from the γ-Fe2O3 nanoparticles, since  the 

experimental Js of maghemite and CoFe2O4 are rather similar (i.e., JBB = 15 K, JAB = -25.5 K – γ-

Fe2O3– vs. JBB = 18 K, JAB = -25 K –CoFe2O4–).8 

 

(ii) The core anisotropy is estimated from the bulk value of the equivalent uniaxial 

anisotropy for maghemite, KC = Kbulk/12 = 4.7104 erg/cm3/12 = 4103 erg/cm3 as suggested by S. 

Mørup and co-workers.14 Thus, the parameter of the normalized core anisotropy kC= 

KcVc/kBT(10K) for the d = 9 nm nanoparticle in MIX1 it becomes kC (d=9) = 0.5. Using literature 

values for the surface anisotropy (Ks ~ 0.035 erg/cm2)15 and the bulk value of the core anisotropy 

(KC = 4103 erg/cm3) and using the well-known expression for the effective anisotropy, Keff = 

KC + 6Ks/d, by setting Ksrf = 6Ks/d we get Ksrf /KC ~ 60. Consequently, in our calculations 

we take ksrf = 30 for the d = 9 nm.   
In the larger nanoparticles, d = 11.5 nm, the core volume doubles that for the d = 9 nm 

case. Therefore, the effective anisotropy is kC(d=11.5) = 2×0.5 = 1. In order to estimate the surface 

anisotropy Ksrf, we take into account the fact that as the nanoparticle size increases the surface 

contribution is reduced. Along these lines, experimental observations on maghemite nanoparticles 

gave an estimation of the reduction of the spin canting on the surface of the nanoparticles as the 

radius increases,16 consequently the reduction of the spin canting results to the reduction of the 

surface sites where the surface anisotropy acts. We consider a ~0.33 reduction of the surface spin 

canting,16 which results in a (0.33)2 ~ 0.1 reduction of the corresponding surface area. Hence, we 

take ksrf(d=11.5) = Ksrf(d=11.5)Vsrf(d=11.5)/kBT(10K) = Ksrf(d=9)×0.1×(1.67Vsrf(d=9))/10K = (1/6)*ksrf(d=9 nm) 

≈ 5 in our reduced units.  

Importantly, when these parameters are used in our model, they give HC(d=9)/HC(d=11.5) ≈ 1 

in agreement with the corresponding experimental values. 
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(iii) In the MIX2 series, for the maghemite nanoparticles of size d = 6.8 nm again, we 

take as reference the nanoparticle d = 9 nm, and we obtain kC(d=6.8)/kC(d=9.0) ~ 0.3, thus kC(d=6.8) = 

0.17. Given that Vsrf(d=6.8) = 0.54Vsrf(d=9) and by taking into account the increase of the spin canting 

as the size decreases,16 we find that  k srf (d=6.8 ) = Ksrf(9)×1.1×0.54Vsrf (d=9)/kBT(10K) ≈ 15.    

For the 6.8 nm Co-doped particles, we consider that the core value of Co-doped 

maghemite particle is between the bulk values of the maghemite (4103 erg/cm3) and CoFe2O4 

(20105 erg/cm3) and we set Kc= 11105 erg/cm3
. Therefore the core anisotropy kC-Co-doped = 

KcVc/kBT(T=10K) = 275×Kc(6.8)maghemiteVc(6.8)maghemite /10 = 275×0.17 ≈ 50. 

  For the surface anisotropy of Co-doped particles, we use the results of the Co doping 

effect on maghemite nanoparticles of a similar size of Fantechi and wo-workers.17 Since Keff ~ 

3106 erg/cm3 is higher than the bulk value of CoFe2O4, we obtain Ksrf = Keff - KC = 3106 - 1.1106 

= 1.9106 erg/cm3, consequently, Ksrf/KC ~ 2. . Therefore, since Vsrf = 1.4VC, the surface anisotropy 

is taken as ksrf = KsrfVsrf /kBT(10K) = 150.  

Notably, when these parameters are introduced in the model they result in HC-maghemite/HC-

Co-dop ~ 0.05, in good agreement with the experimental hysteresis loops. 

    

(iv) The dipolar energy term, since each nanoparticle is described by three macrospins, 

one for the core and two for the two sublattices, is given by the expression:  

 

Edip=−
1

2
𝑔 ∑ (𝑚1𝑖 ŝ1𝑖 + 𝑚2𝑖 ŝ2𝑖 + 𝑚3𝑖 ŝ3𝑖

𝑁
𝑖,𝑗=1,𝑖≠𝑗 )𝐷𝑖𝑗(𝑚1𝑗ŝ1𝑗+𝑚2𝑗ŝ2𝑗 + 𝑚3𝑗ŝ3𝑗),  

 

where m1 is the core macrospin, and m2 and m3 are the surface macrospins and ŝ1, ŝ2𝑎𝑛𝑑  ŝ3 are 

their corresponding unit vectors. Note that ŝ1𝑎𝑛𝑑  ŝ2 are aligned parallel and they have 

antiparallel alignment with ŝ3 . Here Dij is the dipolar tensor, that depends on the geometry of the 

assembly4 and 𝑔 is the dipolar strength defined as 𝑔 = μ0(MsV)2/4πd3 where Ms and V are the 

experimental values of the saturation magnetization and the volume of each particle.  

The parameters m1, m2 and m3 introduce a weight to each macrospin to account for the 

distribution of the volume saturation magnetizations in each region (core, surface) inside the 

particle. We call these parameters “the normalized magnetic moments” m1, m2 and m3 and they 

are calculated as follows. From our atomic scale calculations, we determine the number of the A 

lattice sites NsrfA and the B lattice sites NsrfB at the surface and the uncompensated spins of the 

core which give the difference between the A and B lattice sites NCore unc= NCoreB -NCoreA. For the 

surface the magnetic moments are calculated from the number of the surface spins at the B 

(SBNsrfB) and the A (SANsrfA) sites, respectively, which are normalized by dividing them by the 

total magnetic moment coming from the uncompensated spins of the particle, that is SB(NCore-unc 

+ NsrfB -NsrfA) . Our calculations show that m2 = 1 and m3 = 0.5 in all cases because the ratios of 

uncompensated spins are similar for the three sizes. Since 𝑚1𝑖ŝ1𝑖 + 𝑚2𝑖ŝ2𝑖 + 𝑚3𝑖ŝ3𝑖 is a unit 

vector and ŝ1𝑖, ŝ2𝑖, ŝ3𝑖 are unit vectors, then m1+ m2- m3 = 1, therefore m1 = 0.5.  

 

(v) For the calculation of the dipolar strength. g = μ0(MsV)2/4πd3 kBT (T = 10 K) we have 

used the Ms from the measured hysteresis loops (Fig. 4 in the main text). 

 In the M1 series the dipolar strength g for the interaction between the small maghemite 

nanoparticles (d = 9.0 nm) is 17.4 and between the larger maghemite nanoparticles (d = 11.5 nm) 

27. The mean dipolar strength for the interaction between small and large maghemite 

nanoparticles is taken g = c1· g1+ c2· g2 where c1 and c2 are the small and large maghemite 

nanoparticles concentrations, respectively. Thus, the corresponding dipolar strengths are g = 18.4, 

19.3, 20.3, 22.3, 23.7 and 25.7 for c2 = 10%, 20%, 30%, 50%, 65% and 85%, respectively. 

In the M2 series, for the assemblies of pure γ-Fe2O3 and Co-doped maghemite 

nanoparticles with d = 6.8 nm, the dipolar strength g is taken as 13.7 for the pairs of γ-Fe2O3 

nanoparticles and 8.4 for the pairs of Co-doped nanoparticles, since the latter have lower MS. For 

the interaction between maghemite and Co-doped nanoparticles in the binary M2 series we set a 

mean dipolar strength g = c1· g1+ c2· g2 where c1and c2 are the maghemite nanoparticles and 

the Co-doped maghemite nanoparticles concentrations, respectively (corresponding to g = 13.2, 

12.6, 12.1, 11.1, 10.3 and 9.2 for c2 = 10%, 20%, 30%, 50%, 65% and 85%, respectively). 
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Figure S5. Simulated normalized ZFC curves for the M2 series. Shown in the inset are a few 

examples of the normalized FC/ZFC curves. 

 

 

 
 

Figure S6.  Simulated hysteresis loops for the end and middle members of the M2 series. 
 

 

 

Random anisotropy model (RAM): analysis of TB(H) 

 

When the grain/particles size becomes smaller than the correlated volume of magnetic 

material, the effective anisotropy results from the average contribution of the individual 

interacting grains. This behaviour is described as the random anisotropy model (RAM) and it has 

been largely demonstrated for exchange interacting grains. Recently, some of us have successfully 

proposed the random anisotropy model to investigate the interplay between the individual 

particles anisotropy energy and the interparticle interactions for purely dipolar coupled particles.18  

For an ensemble of non-interacting particles, the dependence of TB on the applied field 

µ0H is described by the law:19,20  
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𝑇𝐵 =
𝐾𝑎𝑉𝑝

𝑘𝐵 ln (
𝜏𝑚
𝜏0

)
[1 −

 𝜇0𝐻

 𝜇0𝐻𝐾
]
𝛼

 (Eq. 2) 

 

where Ka is the intrinsic anisotropy constant of the material, Vp the nanoparticle volume, α = 1.5,19 

τm ~ 60s  (i.e., the typical experimental time in SQUID dc magnetization measurements),  τ0 = 10-

11s (commonly used for ferromagnetic particles), µ0HK the anisotropy field, and kB the Boltzmann 

constant,  kB = 1.38065 10-23 J/K.  

For ensembles of interacting nanoparticles, their interactions extend over the magnetic 

correlation length (Lcorr)21 that can be expressed as a function of the applied field:20,22 

 

𝐿𝑐𝑜𝑟𝑟 = 𝐷 + [
2𝐴𝑑𝑖𝑝

𝑀𝑆 𝜇0𝐻 + 𝐶
]
1/2

 (Eq. 3) 

 

where Adip represents an effective dipolar interaction intensity.23 The parameter C is needed to 

solve the divergence at µ0H = 0 T. It considers the influence of particles concentration on 

interactions, assuming a value close to zero for clustered particles and the form C ≈ 2Aeff – MS 

µ0H  for non-interacting ones.19,20 In the framework of RAM, Lcorr defines a correlation volume 

(VN) where the effective anisotropy constant Keff results from the fluctuations of the easy axes 

of the N grains within the correlation length, where the mean value varies as the square 

root of the number of independent contributions within the correlated volume: 23 

 

𝐾𝑒𝑓𝑓 =
𝐾𝑎

√𝑁
 (Eq. 4) 

 

where N can be defined as the ratio between the correlation volume and the volume of a single 

particle, considering the volume fraction x effectively occupied by the particles in the ensemble: 

 

𝑁 = 1 + 𝑥
(𝐿𝑐𝑜𝑟𝑟

3 − 𝐷3)

𝐷3
 (Eq. 5) 

 

Therefore, we can define the volume of the cluster VN as the effective volume of magnetic 

material interacting within the correlation length Lcorr: 

 

𝑉𝑁 =
𝜋

6
[𝐷3 + 𝑥(𝐿𝑐𝑜𝑟𝑟

3 − 𝐷3)] (Eq. 6) 

 

As the interparticle interactions increase, the correlation length expands and the anisotropy 

averages out over a larger volume, thus reducing its effective magnitude. On the other hand, an 

external magnetic field reduces the correlation length.22 For an ensemble of interacting particles, 

one should consider the effective anisotropy field µ0HK
N of the cluster of N correlated particles, 

which is linked to its effective average anisotropy Keff:19,20 

 

 𝜇0𝐻𝐾
𝑁 = 2

𝐾𝑒𝑓𝑓

𝑀𝑆
 (Eq. 7) 

 

Finally, equation (Eq. 2) can be re-written by substituting Ka, Vp and HK with the effective values 

for the cluster Keff, VN and HK
N, respectively to define the field dependence of the effective 

blocking temperature of the NPs’ ensemble: 
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𝑇𝐵(H) =
𝐾

𝜋
6

[𝐷3 + 𝑥(𝐿𝑐𝑜𝑟𝑟
3 − 𝐷3)]

6 𝑘𝐵 ln (
𝜏𝑚
𝜏0

) √1 + 𝑥
(𝐿𝑐𝑜𝑟𝑟

3 − 𝐷3)
𝐷3 [

 
 
 

1 −
 𝜇0𝐻𝑀𝑆

√1 + 𝑥
(𝐿𝑐𝑜𝑟𝑟

3 − 𝐷3)
𝐷3

2K

]
 
 
 
1.5

 (Eq. 8) 

 

The experimental values of TB(H) were extracted using FC/ZFC curves measured at different 

applied fields from the peak of the effective distribution of energy barriers, defined as: 

 

𝑓(𝑇) ∝
𝑑(𝑀𝑍𝐹𝐶  − 𝑀𝐹𝐶)

𝑑𝑇
 (Eq. 9) 

 

Figure S7 report the (MFC - MZFC) curves and their negative derivative for samples M2-0 

and M2-100, as well as the fitting of the experimental values of average blocking temperature to 

Eq. 8. The results of the fit for the M2-0, M2-10, M2-50, M2-85 and M2-100 samples are 

summarized in Table S1. 

 

 
 

Figure S7. TRM curves (left), equivalent to (MFC - MZFC), and its inverse derivative (middle) 

measured at different applied fields for samples M2-0 (upper panels) and M2-100 (lower panels). 

The field dependence of the effective average blocking temperature (peak value of the derivative) 

and its fit to Eq. 8 (red line) are shown in the right panels.   

 

According to the RAM results, the magnetic properties of the pure maghemite particles 

in M2-0 are averaged over many particles, with Lcorr about 36 nm, thus leading to collective 

behaviour, as also confirmed by the largest Adip value. On the other hand, for the Co-doped 

maghemite nanoparticles (M2-100), Lcorr is larger than the individual particle size (6.8 nm), but 

smaller than the diameter of a sphere containing two particles. Indeed, even if the particles are 

strongly coupled, the individual particle energy barrier will still dominate the magnetization 

reversal of this sample.  The good agreement obtained between the intrinsic (particle) blocking 

temperature extracted from the RAM fit (𝑇𝐵0 ∝ 𝐾𝑎𝑉) and the values measured for the isolated 

maghemite and Co-doped particles (solid lines in Figure 2b) lends credibility to the RAM 

analysis.  
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Sample Lcorr (nm) Adip (J m-1) Ka (kJ m-3) TB0 (K) 

M2-0 36(1) 1.1(8)e-13 45 (6) 21(5) 

M2-10 13.2(5) 7(4)e-14 150 (10) 72(5) 

M2-50 11.2(5) 1.3(4)e-14 243 (6) 114(5) 

M2-85 10.8(5) 4.2(5)e-14 238 (2) 112(5) 

M2-100 11.4(5) 1.9(6)e-14 272 (8) 150(5) 

 

Table S1. The correlation length Lcorr and the effective dipolar interaction strength Adip are 

reported for several samples in the M2 series. In addition, the table shows the average intrinsic 

anisotropy and the corresponding blocking temperature, beyond interactions effects, extracted 

from the fit. 
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