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An integrated multi-omics approach identifies
the landscape of interferon-α-mediated
responses of human pancreatic beta cells
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Interferon-α (IFNα), a type I interferon, is expressed in the islets of type 1 diabetic individuals,

and its expression and signaling are regulated by T1D genetic risk variants and viral infections

associated with T1D. We presently characterize human beta cell responses to IFNα by

combining ATAC-seq, RNA-seq and proteomics assays. The initial response to IFNα is

characterized by chromatin remodeling, followed by changes in transcriptional and transla-

tional regulation. IFNα induces changes in alternative splicing (AS) and first exon usage,

increasing the diversity of transcripts expressed by the beta cells. This, combined with

changes observed on protein modification/degradation, ER stress and MHC class I, may

expand antigens presented by beta cells to the immune system. Beta cells also up-regulate

the checkpoint proteins PDL1 and HLA-E that may exert a protective role against the auto-

immune assault. Data mining of the present multi-omics analysis identifies two compound

classes that antagonize IFNα effects on human beta cells.
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Type 1 diabetes (T1D) is a chronic autoimmune disease
leading to pancreatic islet inflammation (insulitis) and
progressive beta cell loss1. Type I interferons (IFN-I), a

class of cytokines involved in antiviral immune responses2, are
involved in insulitis. Viral infections are a risk factor associated
with T1D development3 and individuals at risk of T1D show a
type I interferon signature4. The type I interferon, interferon-α
(IFNα), is expressed in islets of T1D patients5, and antibodies
neutralizing different isoforms of IFNα prevent T1D development
in individuals with polyglandular autoimmune syndrome type 16.
Exposure of human pancreatic beta cells to IFNα recapitulates
three key findings observed in human insulitis, namely HLA class
I overexpression, endoplasmic reticulum (ER) stress and beta cell
apoptosis7.

Combination of genome-wide association studies (GWAS)8

and studies using the ImmunoChip9 have identified around 60
loci associated with the risk of developing T1D. Transcriptomic
studies revealed that >70% of the T1D risk genes are expressed in
human pancreatic beta cells10, and many of these genes regulate
innate immunity and type I IFN signaling11.

Type I IFN signaling is often cell-specific, an effect mediated by
differences in cell surface receptor expression, and activation of
downstream kinases and transcription factors12. Thus, and con-
sidering the potential relevance of this cytokine to the patho-
genesis of T1D, it is crucial to characterize its effects on human
beta cells. To define the global impact of IFNα on human beta
cells, we presently performed an integrative multi-omics analysis
(ATAC-seq, RNA-seq and proteomics) of IFNα-treated human
beta cells to determine the early, intermediate and late responses
to the cytokine. The findings obtained indicate that IFNα pro-
motes early changes in chromatin accessibility, activating distant
regulatory elements (RE) that control gene expression and pro-
tein abundance. IFNα activates key transcription factors (TFs),
including IRF1, which act as a mediator of the crosstalk between
beta cells and immune cells via the expression of the checkpoint
proteins PDL1 and HLA-E. Furthermore, IFNα induces modules
of co-expressed mRNA and proteins that physically interact and
have relevance to T1D pathogenesis. The integration of high-
coverage RNA-seq and ATAC-seq indicates regulatory gene
networks and reveals that alternative splicing and different first
exon usage are key mechanisms expanding the repertoire of
mRNAs and proteins expressed by stressed beta cells. Finally,
mining the modules of co-expressed genes and the IFNα beta cell
signature against the most recent catalogs of experimental and
clinical drugs identifies two potentially interesting therapeutic
targets for future trials.

Results
IFNα modifies beta cell mRNA expression similarly to T1D.
We performed a time course multi-omics experiment combining
ATAC-seq, RNA-seq and proteomics of the human beta cell line
EndoC-βH1 exposed or not to IFNα. The data were integrated to
determine the dynamics of chromatin accessibility, gene/tran-
script expression and protein translation, respectively (Fig. 1a).
We also performed RNA-seq of 6 independent human pancreatic
islet preparations exposed or not to the cytokine at similar time
points (Supplementary Fig. 1a). To assess whether our in vitro
model is relevant for the in vivo islet inflammation (insulitis) in
T1D, we took two approaches: (1) Examine whether candidate
genes for T1D expressed in human islets are involved in IFN
signaling (Supplementary Fig. 2a); and (2) Compare our in vitro
data of IFNα-treated EndoC-βH1 cells and human islets with
available RNA-seq data of human beta cells from T1D patients. In
line with previous findings suggesting a role for IFNs on the
pathogenesis of T1D13, we found that T1D risk genes expressed

in human islets10,14 are significantly enriched in immune-related
pathways, including type I and II interferon regulation/signaling
(Supplementary Fig. 2b). Next, we performed a Rank–Rank
Hypergeometric Overlap (RRHO) analysis (which estimates the
similarities between two ranked lists15) comparing the log2 fold-
change (FC) ranked list from RNA-seqs of EndoC-βH1 cells and
human islets (IFNα-treated vs untreated) against an equally
ranked list of genes obtained from RNA-seq of purified primary
beta cells16 from T1D and healthy individuals (Supplementary
Fig. 2c and Supplementary Data 1). There was a significant
intersection between upregulated genes induced by IFNα in both,
EndoC-βH1 cells (362 overlapping genes) and human islets (850
overlapping genes), and genes induced by the local pro-
inflammatory environment affecting primary beta cells from
T1D individuals (Supplementary Fig. 2d, f). We also compared
these two IFNα-treated datasets against beta cells from T2D
patients17, a condition mostly characterized by metabolic stress18.
By contrast with the observations made in beta cells from T1D
individuals, there was no statistically significant correlation
between IFNα-regulated genes in EndoC-βH1 cells and human
islets and the gene expression profile present in T2D beta cells
(Supplementary Fig. 2e, g).

IFNα induces early changes in chromatin accessibility. The
ATAC-seq experiments demonstrated that INFα induces early
changes in chromatin accessibility, with >4400 regions of gained
open chromatin regions (OCRs) detected at 2 h, which decreased
to 1000 regions by 24 h (Fig. 1b and Supplementary Data 2); only
nine regions had loss of chromatin accessibility (Fig. 1b). Most of
the OCRs at 24 h were already modified at 2 h (fast response), and
only 10% of OCRs were specifically gained at 24 h (late response).
The gained OCRs were mostly localized distally to gene tran-
scription starting sites (TSS) (Supplementary Fig. 3a) acting,
therefore, as potential regulatory elements. These regions are
evolutionary conserved (Supplementary Fig. 3b), and enriched for
transcription factors (TFs) binding motifs (Supplementary
Fig. 3c), including islet-specific TFs binding sequences.

To assess whether changes in chromatin remodeling were
associated with variations in gene expression, we first quantified
the frequency of ATAC-seq regions gained or stable in the
proximity (40 kb window centered on the TSS) of genes with
differential mRNA expression (up/down/non-regulated or non-
expressed) (Supplementary Data 2). There was a higher
proportion of upregulated genes associated with gained OCRs
in comparison to stable regions at each time point analyzed
(Fig. 1c). Moreover, the number of gained OCRs was associated
with changes in both the proportion (Fig. 1d) and the intensity
(Supplementary Fig. 3e) of transcript induction (Supplementary
Fig. 3d, see Methods for more information). There was also a
minor association between the number of stable regions and
upregulated mRNAs at 2 h (Supplementary Fig. 3e), likely due to
the activation of already nucleosome-depleted regions ahead of
cytokine exposure19. Consistently with these results, there was an
increase in the frequency of upregulated proteins coded by genes
proximal to gained OCRs (Fig. 1e). Likewise, there was a
progressive increase in IFNα-induced protein abundance depend-
ing on the number of linked gained open chromatin regions
(Fig. 1f).

There was a strong correlation between upregulated mRNAs
and induced proteins (r2: 0.66 and 0.65 at, respectively, 8 and
24 h, p < 2.2 × 10−16) (Fig. 1g, first column), but a much lower
similarity between downregulated mRNAs and proteins (Fig. 1g,
second column). Gene ontology analysis of differentially
abundant proteins upon IFNα treatment identified several
biological processes involved in the pathogenesis of T1D, such
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Fig. 1 Exposure of EndoC-βH1 cells to interferon-α promotes changes in chromatin accessibility, which are correlated with gene transcription and
translation. a EndoC-βH1 cells were exposed or not to IFNα (2000 U/ml) for the indicated time points and different high-throughput techniques were
performed to study chromatin accessibility (ATAC-seq, n= 4), transcription (RNA-seq, n= 5) and translation (Proteomics, n= 4). b Volcano plot showing
changes in chromatin accessibility measured by ATAC-seq. Open chromatin regions indicated as gained (red) or lost (blue) had an absolute log2 fold-
change (|log2FC|) > 1, and a false discovery rate (FDR) < 0.05. The regions that did not reach such threshold were considered “stable” (gray).
c, d Frequency of upregulated, downregulated or stable transcripts in the vicinity (<20 kb transcription start site (TSS) distance) of one or multiple open
chromatin regions (OCRs) as classified in b. e Frequency of differentially abundant proteins in the vicinity (<20 kb TSS distance) of gained or stable open
chromatin regions. f Distribution of IFNα-induced changes in protein abundance among upregulated proteins based on the number of linked gained OCRs.
g Correlation between RNA-seq and proteomics of EndoC-βH1 cells exposed to INFα. The x axis represents the mRNA log2FC. The most upregulated
(log2FC > 0.58, FDR < 0.05) and downregulated (log2FC <−0.58, FDR < 0.05) mRNAs are filled in red and blue, respectively. The y axis indicates the
proteomics log2FC. The proteins most upregulated (log2FC > 0.58, FDR < 0.15) or downregulated (log2FC <−0.58, FDR < 0.15) are represented by red and
blue borders, respectively. mRNAs and proteins not meeting these criteria were considered equal-regulated (gray fill and border, respectively).
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as antigen processing and presentation, responses to viruses,
apoptosis and NK/T-cell responses (Supplementary Fig. 4a, b);
groups of genes associated to protein modification and degrada-
tion were also present (Supplementary Fig. 4a, c). Furthermore,
genes related to endoplasmic reticulum (ER) stress, another post-
transcriptional mechanism that downregulates translation of
many mRNAs20, were also upregulated by IFNα at both the
mRNA and protein levels (Supplementary Fig. 4d). These
findings are in line with our previous observations7 and were
confirmed here in independent samples for two key ER stress
markers, namely the transcription factor ATF321 and the ER
chaperon HSPA5 (also known as BiP/GRP78)22 (Supplementary
Fig. 4e–h). ER stress often decreases translation, which may
explain the weak association observed between mRNA and
protein expression in downregulated mRNAs and proteins
(Fig. 1g).

IRF1, STAT1 and STAT2 are key regulators of IFNα signaling.
To identify the key transcription factors involved, the expression

of differentially expressed genes (DEG) from all RNA-seq time
points (Supplementary Data 3) was analyzed using the dynamic
regulatory events miner (DREM) model23. This approach iden-
tified six patterns of co-expressed genes (Fig. 2a); 5 out of 6
pathways had an early peak of induction (2 or 8 h), which then
decreased or remained stable until 24 h (Fig. 2a). The model
compared the frequency of TF binding sites in the gene pro-
moters between divergent branches of co-expressed genes,
assuming that these TFs are responsible for the observed differ-
ences in gene expression profiles (Fig. 2a). This was compared
with the TF occupancy determined by assaying the protection of
the bound sequence to ATAC-seq transposase cleavage (foot-
print) (Supplementary Fig. 5a and Methods). There were foot-
prints for the transcription factors IRF1, STAT1 and STAT2,
which were deepened upon IFNα exposure in pathway B (which
had the highest transcriptional upregulation at 2 h) and for IRF1
in two independent pathways, namely B and D at 24 h (Fig. 2b).
Western blot analysis confirmed the activation of these TFs
(Fig. 2c). STAT1 and STAT2 phosphorylation peaked between 0.5
and 1 h and then returned to near-basal levels at 24 h, while IRF1
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Fig. 2 IRF1, STAT1 and STAT2 regulate IFNα-induced transcription and the expression of checkpoint proteins. a The regulatory paths summarize the
temporal patterns of the differentially expressed genes (DEG) detected by RNA-seq (|log2FC|> 0.58 and FDR < 0.05, n= 5) (evaluated by DREM25). The x
axis represents the time and the y axis the mRNA log2FC. Each path corresponds to a set of co-expressed genes. Split nodes (circles) represent a temporal
event where co-expressed genes diverge in expression. In blue are the TFs upregulated at the respective time points of the RNA-seq that may regulate the
pathways. b IFNα promoted TFs footprint deepening in open chromatin regions (OCR) associated to genes from the indicated DREM pathways. OCRs were
associated to the nearest gene TSS with a maximum distance of 1 Mb. Previously annotated TF matrices79 were used to identify differential DNA-footprints
induced by IFNα (blue lines = untreated cells, red lines = IFNα (24 h), dashed lines = reverse strand, continuous line = forward strand, Methods, n= 4).
c Time course profile of STAT1, STAT2 and IRF1 protein activation in EndoC-βH1 cells exposed to IFNα (representative of four independent experiments).
d–m EndoC-βH1 cells were transfected with an inactive control siRNA (siCT) or previously validated7,24 siRNAs targeting IRF1 (siIRF1), STAT1 (siSTAT1),
STAT2 (siSTAT2) or STAT1 plus STAT2 (siSTAT1+ 2). After 48 h the cells were exposed to IFNα The values were normalized by the housekeeping gene
β-actin (mRNA) and then by the highest value of each experiment considered as 1 (for h and m (n= 3); for e–g, i, j and l (n= 4); for d, k (n= 5)), ANOVA
with Bonferroni correction for multiple comparisons (d–m). Values are mean ± SEM (d–m). Source data are provided as Source Data file.
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peaked later, at 4–8 h decreased by 24 h (Fig. 2c); these findings
support the observed TF footprint profiles (Fig. 2b). There was
also a close correlation between DEGs induced by IFNα in RNA-
seq of EndoC-βH1 cells and in human pancreatic islets (Sup-
plementary Fig. 1b; p < 2.2 ×10−22 at 2, 8 and 24 h), which
resulted in a similar pattern of gene activation under the control
of analogous TFs (Supplementary Fig. 1c and Supplementary
Data 4).

Individual DREM pathways usually regulate specific biological
processes (GO) (Supplementary Fig. 5b, 1d). Among them, was
the term “Regulation of immune responses” (Supplementary
Fig. 5b). This pathway comprises several genes involved in the
crosstalk between beta cells and the immune system, such as
PDL1 (CD274), an immune checkpoint protein expressed in the
islets of T1D individuals24, and a second co-inhibitory molecule,
HLA-E, recently identified as potential target for cancer
immunotherapy25 (Fig. 2d–m).

By using a previously validated siRNA targeting IRF124, we
obtained around 60% knockdown (KD) of INFα-induced IRF1
protein and mRNA expression at 2 and 24 h (Supplementary
Fig. 5c–f). IRF1 silencing led to a significant decrease in IFNα-
induced PDL1 and HLA-E mRNA expression (Fig. 2d, f, i, k).
Silencing of IRF1 also decreased IFNα-induced upregulation of
the chemokines CXCL1 and CXCL10, the HLA-I component
beta-2-microglobulin (B2M) and the suppressor of cytokine
signaling 3 (SOCS3) (Supplementary Fig. 5d, f). Small interference
RNAs targeting STAT1 (siSTAT1) or STAT2 (siSTAT2) pro-
moted >70% KD of their respective proteins and mRNAs,
(Supplementary Fig. 5g–j). Inhibiting STAT1 or STAT2 alone
partially blocked the induction of PDL1 and HLA-E at 2 h
(Fig. 2e, j), but led to a paradoxical increase in PDL1 and HLA-E
expression at 24 h (Fig. 2g, i), which is probably due to a
compensatory increase in expression of the non-targeted STAT24.
In line with this, double KD of STAT1+ STAT2 led to
downregulation of both PDL1 and HLA-E (Fig. 2h, m). STAT2
inhibition decreased the 2 h expression of IFNα-induced CXCL1/
10, SOCS1 and MX1, whereas STAT1 KD only prevented CXCL10
induction (Supplementary Fig. 5h). At 24 h only 2 out of 4 genes
remained partially inhibited by siSTAT2 (Supplementary Fig. 5j),
whereas double KD of STAT1+ STAT2 prevented IFNα-induced
gene upregulation at 24 h in most cases (Supplementary Fig. 5k).

Exposure of FACS-purified human beta cells (Supplementary
Fig. 6a–c) to IFNα confirmed the upregulation of genes related to
antigen presentation (HLA-I), antiviral responses (MX1, MDA5),
ER stress (CHOP), immune cells recruitment (CXCL10) and
checkpoint regulators (PDL1) (Supplementary Fig. 6d).

The checkpoint protein PDL1 is overexpressed in beta cells
from people with T1D24, and we presently evaluated the
expression of another checkpoint protein, i.e. HLA-E25. IFNα
upregulated HLA-E mRNA expression in EndoC-βH1 cells
(Fig. 3a), dispersed human islets (Fig. 3b) and FACS-purified
human beta cells (Fig. 3c) and augmented HLA-E protein
expression in both EndoC-βH1 cells (Fig. 3d) and human islets
(Fig. 3e), with peak at 24 h. The inhibitory effects of HLA-E on
immune cells require its expression on the cell surface or its
secretion26. Flow cytometry confirmed that IFNα increases
surface HLA-E expression (Fig. 3f, g, Supplementary Fig. 5l),
but there was no HLA-E release to the supernatant (Supplemen-
tary Fig. 5m). HLA-E mRNA expression was upregulated by 8-
fold in human islets of donors with recent-onset T1D in the
DiViD study27 and HLA-E protein expression was significantly
increased in insulin-containing islets, but not in insulin-deficient
islets, of T1D individuals in comparison to healthy individuals
(Fig. 3h, i). HLA-E expression was present in both beta and alpha
cells (but not delta cells; Supplementary Fig. 5n) in the islets of
people with T1D, with a predominance of expression among

alpha cells as compared to beta cells (Fig. 3j). This may help to
explain why alpha cells are more resistant to the immune assault
in T1D.

mRNA and protein modules regulated by interferon-α. We
integrated the RNA-seq and proteomics data (using all the
samples from both 8 and 24 h) using the weighted correlation
network analysis package (WGCNA)28. The heatmaps of the
topological overlap matrix from each dataset with module
assignment are shown in Fig. 4a. There were initially 32 eigengene
modules of mRNAs and 27 of proteins, which were merged
(considering a dissimilarity threshold of 0.25) reducing the
numbers of mRNA and protein modules to 8 and 7, respectively
(Supplementary Fig. 7a–c). The quality of these modules was
determined using a combined score of density and separability
measures (Methods)29, which indicated that they were well-
defined (Zsummary > 10) (Supplementary Fig. 7d). WGCNA ana-
lysis of the RNA-seq of human islets exposed to IFNα identified
well-defined modules of mRNAs (Supplementary Fig. 8a–d),
similar to the ones identified in EndoC-βH1 cells exposed to the
cytokine (Supplementary Fig. 8e). To focus on central modules
induced by IFNα exposure, we selected only the differentially
expressed genes (DEG) (Supplementary Data 3) and abundant
proteins (DAP) (Supplementary Data 5) in each eigengene
module, representing 49% of the protein-coding DEGs and 89%
of the DAPs, and then examined the overlap between these
datasets. There was a significant overlap between five modules of
mRNAs and proteins (minimum of 10 elements in common,
FDR < 0.05) (Fig. 4b). The two main new modules, called #1 and
#2 (Fig. 4c), were composed of highly correlated mRNAs and
proteins (Supplementary Fig. 7e, g) predominantly upregulated
by IFNα at both 8 and 24 h (Supplementary Fig. 7f, h). Module #5
also had significantly correlated members (Supplementary
Fig. 7i), but enriched in downregulated mRNAs/proteins at both
8 and 24 h (Supplementary Fig. 7j). Interestingly, there was sig-
nificant enrichment of ATAC-seq gained OCRs in module #2
(Fig. 4d). They were enriched for TF binding motifs including
both the pro-inflammatory motifs ISRE / IRF and the islet-
specific transcription factor FOXA2 (Fig. 4e).

To identify the gene regulatory network (GRN) of module #2,
we integrated information from two sources: (1) literature-based
collection of TF-target interactions30, and (2) the present de novo
TF binding motifs and their predicted targets (Supplementary
Fig. 9a). This allowed us to add information from cis-regulatory
elements (in orange) acting on the IFNα-induced GRN in human
beta cells (Supplementary Fig. 9b). A similar approach was used
for modules #1 and #5, but considering only data from the
literature (Supplementary Fig. 10a, c).

The PPI network InWeb InBio Map31 was used to assess the
presence of protein–protein interaction (PPI) networks in the
different modules. This generated networks of interacting
proteins for modules #1, #2 and #5 (Fig. 4f and Supplementary
Fig. 10b, d) and allowed the recognition of protein communities
(grouped by colors) that regulate specific and common biological
functions (Fig. 4f and Supplementary Fig. 10b, d). Module #2,
which presents the higher number of connections, showed an
enrichment for several key biological processes activated by IFNα
and relevant for the pathogenesis of T1D, including cellular
response to viruses, antigen processing and presentation via MHC
class I, inflammatory and acute phase responses (Fig. 4g).

Interferon-α changes the alternative splicing landscape. The
present high-coverage RNA-sequencing (>200 million reads)
allowed the detection of ~47,000 splicing variants, with IFNα-
induced 343 differentially expressed transcripts (DETs) at 2 h,
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and 1690 and 1669, respectively at 8 and 24 h, with predominance
of upregulated transcripts (Fig. 5a and Supplementary Data 6 and
7). Considering all the DETs, 4%, 32% and 32% were exclusively
modified at 2, 8 and 24 h, respectively, indicating a predominance
of intermediary to late transcriptional changes induced by IFNα.
Next, we evaluated the frequency of each individual splicing
events (with an absolute difference in percent spliced-in (|ΔPSI|)
> 0.2) regulated by IFNα at 8 and 24 h. There were 3140 events at

8 h and 2344 events at 24 h (FDR < 0.05) (Fig. 5b). The most
frequent AS event modified by IFNα was cassette exons (CEx),
with predominantly increased exon inclusion (represented by
ΔPSI > 0.2, FDR < 0.05) (Fig. 5c). An example of a cassette exon
showing increased inclusion upon IFNα treatment is the gene
OASL (Fig. 5d, e), an antiviral factor targeting single-stranded
RNA viruses such as picornaviruses32. Exposure to IFNα for 24 h
increased exon 4 inclusion in both EndoC-βH1 cells and human
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islets (Fig. 5d). In line with this, the protein encoded by the
isoform OASL−001 (which retains exon 4) displayed a higher
IFNα-induced upregulation in comparison with the protein
encoded by the isoform OASL−002, which has exon 4 exclusion
(Fig. 5e). Interestingly, the isoform OASL−001 has antiviral
activity, whereas the isoform 002 lacks the ubiquitin-like domain
required for this response (Supplementary Fig. 11A)33.

Intron retention is an important mechanism of gene expression
regulation, promoting nuclear sequestration of transcripts or
cytoplasmatic degradation via nonsense-mediated decay34. There
was a predominance for intron removal after 24 h (represented by
ΔPSI <−0.2, FDR < 0.05), but not at 8 h (Fig. 5f). To understand
how this impacts protein translation, we compared changes in
protein abundance among three categories of ΔPSI. Genes
presenting intron removal had a significant increase in protein
expression after IFNα exposure for 24 h in comparison to those
with intron retention (ΔPSI > 0.2, FDR < 0.05) or with non-
significant intron changes (ΔPSI −0.2–0.2 or FDR > 0.05)
(Fig. 5g).

There were clear variations in the mRNA expression of several
well-known RNA-binding proteins (RBPs)35 upon IFNα exposure
(Fig. 5h, left panel), but the impact on the respective proteins was
less pronounced (Fig. 5h, right panel). We focused on a group of
IFNα-modified RBPs at both mRNA and protein levels after 24 h,
and mapped their RNA-binding motifs among upregulated and
downregulated alternative exons. In support of a biological role for
these RBPs on alternative exon splicing, there was an enrichment
of their binding motifs in regions controlling alternative cassette
exon inclusion/exclusion (Fig. 5i). To further study some of these
findings, we first reproduced the IFNα-induced downregulation of
two RBPs, ELAV-like protein 1 (ELAVL1) and heterogeneous
nuclear ribonucleoprotein (HNRNPA1), by using specifics siRNAs
(Supplementary Fig. 12a, e). Next, we evaluated whether this
inhibition reproduced the changes induced by IFNα in the exon
usage of four-and-a-half LIM domain protein 1 (FHL1) and
Caprin Family Member 2 (CAPRIN2) (Supplementary Fig. 12b, f)
two potential targets of, respectively, ELAVL136 and HNRNPA137.
Silencing these RBPs promoted changes on exon usage (Supple-
mentary Fig. 12c, g) that were similar to the ones observed after
IFNα treatment (Supplementary Fig. 12b, f). This is especially
relevant in the context of the IFNα-induced exon exclusion FHL1,
which decreases the expression of transcripts coding for the
protein FHL1A (Supplementary Fig. 12d), an isoform described as
a key host factor for the replication of the RNA virus
Chikungunya38.

RBPs can also control gene expression by blocking RNA
translation, as described for the Fragile X Mental Retardation 1
(FMR1) gene39. Indeed, there was a significant downregulation of
previously validated bona fide targets of FMR1 (Supplementary

Table 1)40 in IFNα-treated EndoC-βH1 cells as compared to the
remaining proteins (Fig. 5j).

IFNα induces increased alternative transcription start sites.
The usage of alternative transcription start (TSS) sites is another
mechanism that generates different transcripts from the same
gene41. We used the SEASTAR pipeline42 for the computational
identification and quantitative analysis of first exon usage. This
approach recognized >250 events of alternative first exon (AFE)
usage occurring in 166 different genes at 8 h, and >130 events of
AFE usage in 88 genes at 24 h (Fig. 6a). In agreement with this,
118 and 64 alternative promoters (±2 kb around FE TSS) detected
by SEASTAR at 8 and 24 h, respectively, overlapped peaks of TSS
identified by the FAMTOM5 Consortium43. Among these genes
was the 5′-nucleotidase cytosolic IIIA (NT5C3A), a negative
regulator of IFN-I signaling44. This gene had two AFEs identified
by the SEASTAR modeling. In untreated condition (controls),
there was a higher usage of the proximal first exon (FE), present
in the isoforms NT5C3A−001 and 002 in beta cells (Fig. 6b,
upper panel). After INFα exposure, however, there was increased
usage of the distal FE from the transcript NT5C3A−004 (ΔPSI:
0.71 (8 h)/0.65 (24 h), both FDR < 0.001), which is supported by
the cap analysis of gene expression (CAGE) of TSSs45 (Fig. 6b,
upper panel). This was confirmed in independent samples of
EndoC-βH1 cells and human islets using specific primers (Fig. 6b,
lower panel). Exon Ontology analysis46 indicated that this FE
shift probably has functional impact, since the distal FE lacks
both the endoplasmic reticulum (ER) retention signal and the
transmembrane helix (Supplementary Fig. 11b), enabling its
encoded protein to remain in the cytosol where NT5C3A acts44.

Next, we compared the frequency of gained OCRs among
alternative promoters. As the SEASTAR pipeline mainly
recognizes non-redundant FEs, we evaluated alternative promo-
ters identified by both the SEASTAR pipeline and the FAMTON5
database of alternative TSSs45 (Supplementary Methods). We
thus identified 198 and 51 gained OCRs present in alternative
promoter regions at 2 and 24 h, respectively. Characterization of
the IFNα-induced alternative promoters presenting a major gain
in chromatin accessibility pointed to the T1D risk gene RMI247.
At gene level, there was only a ~1.4-fold upregulation of RMI2
expression, but at the transcript level there was a >60-fold
increase in two isoforms, RMI2−002 and −004. Visualization of
the RMI2 locus combined with ATAC-seq and RNA-seq peaks
indicated that the isoform RMI2−004 gained chromatin acces-
sibility in its promoter leading then an increase in mRNA
expression (Fig. 6c). Data from CAGE analysis45 and RNA
polymerase II ChIP-seq of another human cell type exposed to
IFNα48 (Fig. 6c, lower part) confirms the presence of the RMI2

Fig. 3 HLA-E is overexpressed in pancreatic islets of T1D individuals. EndoC-βH1 cells (a, d), human islets (b, e) or FACS-purified human beta cells (c)
were exposed (gray bars) or not (black bars) to IFNα for the indicated time points and HLA-E mRNA (a–c) and protein (d, e) evaluated. The values were
normalized by the housekeeping gene β-actin (mRNA) or α-tubulin (protein) and then by the highest value of each experiment considered as 1 (for a (n=
4); b (n= 3 (8 h), n= 5 (24 h)); c (n= 4); d (n= 4) and e (n= 2 (8 h), n= 4 (24 h)), ANOVA with Bonferroni correction for multiple comparisons (a–e)).
f, g HLA-E cell surface expression was quantified in EndoC-βH1 cells by flow cytometry. Histograms (f) represent changes in mean fluorescence intensity
(MFI). The MFI values (g) were quantified at baseline and after 24 h exposure to IFNα (n= 4, two-sided paired t-test). Values are mean ± SEM (a–g).
h Immunostaining of HLA-E (green), glucagon (red) and insulin (light blue) in representative islets from individuals with or without diabetes. The top and
middle panels represent an insulin-containing islet (ICI) and insulin-deficient islet (IDI) from T1D sample DiViD 3, and the lower panel represents an islet
from a control donor (EADB sample 333/66). DAPI (dark blue). Scale bar 20 μm. i The MFI analysis of HLA-E expression. 30 ICIs from 6 independent
individuals with T1D (5 islets per individual), 20 IDIs from 4 independent individuals with T1D (5 islets per individual), and 30 ICIs from 6 independent
individuals without diabetes (5 islets per individual) were analyzed. Values are median ± interquartile range; ANOVA with Bonferroni correction for
multiple comparisons, AU (arbitrary units), ns= (non-significant). j Higher magnification image demonstrating that HLA-E (green) localizes predominantly
to alpha cells in a T1D donor islet (glucagon (red); insulin (light blue)) but is also expressed in beta cells, as indicated in h and j. Scale bar 30 μm. Source
data are provided as Source Data file.
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Fig. 4 Weighted correlation network analysis (WGCNA) identifies IFNα-regulated mRNA and protein modules. a Heatmap representation of the
topological overlap matrix. Rows and columns correspond to single genes/proteins, light colors represent low topological overlap, and progressively darker
colors represent higher topological overlap. The corresponding gene dendrograms and initial module assignment are also displayed. b Identification of
modules presenting significant overlap (FDR < 0.05 and a minimum of 10 members in common) (green border) between differentially expressed genes
(DEG) and their translated differentially abundant proteins (DAP). c Composition, number of elements and type of DEG and DAP present in each of the
significantly overlapping modules. d ATAC-seq-identified open chromatin regions at 2 h were linked to gene transcription start sites (TSSs) in a 40 kb
window. These genes and their open chromatin regions were associated to the modules of DEG and DAP. The enrichment for gained open chromatin
regions was then evaluated in each module. (** represents a p-value = 0.002343, one-sided χ2 test). e De novo HOMER motifs present in the ATAC-seq
regions overlapping module #2 as described in Methods. The unadjusted p-values were obtained using the hypergeometric test from the HOMER
package77. f The protein–protein interaction (PPI) network of module #2 was done using the InWeb InBio Map database31. Enriched proteins (FDR < 0.05
and minimum number of connections = 5, represented as squares) were identified and added to the network if they were not already present. Red fill
identifies upregulated proteins, blue fills downregulated proteins and gray fill equal-regulated. Colored regions delimitate communities of proteins, as
described in Methods. The wordcloud next to each community presents their enriched geneRIFs terms. g The biological processes (GO) overrepresented in
module #2 summarize the main findings observed in IFNα-treated human beta cells. The present results were based on RNA-seq (n= 5) and proteomics
(n= 4) data of EndoC-βH1 cells.
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alternative promoter. The IFNα-induced RMI2−004 upregulation
was confirmed using specific primers in both EndoC-βH1 cells
and human islets (independent samples) (Fig. 6d). These findings
support a double mechanism by which IFNα affects human beta
cells, i.e. first a massive change in open chromatin regions
followed by later changes in gene expression and AS (see above)
and also AFE usage.

Mining IFNα signatures to identify T1D therapeutic targets.
Considering the significant overlap observed between gene pro-
files of IFNα-exposed EndoC-βH1 cells and beta cells from T1D
individuals (Supplementary Fig. 2d), mining these common sig-
natures might identify relevant T1D therapeutic targets. First, the
top 150 commonly upregulated genes detected by the RRHO
analysis of both IFNα-exposed EndoC-βH1 cells and beta cells
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from T1D individuals were selected (Supplementary Fig. 2d and
Fig. 7a) to query the Connectivity Map database49. We focused in
opposite signatures of perturbagens that may reverse the effects of
IFNα. To decrease off-target findings based on individual com-
pounds, the analysis was performed considering only the classes
of perturbagens. Four main classes, including bromodomain
inhibitors, potentially reversed the signature from our query (tau
score <−90) (Fig. 7b). Comparable results were obtained when
analyzing the intersection of IFNα-exposed pancreatic human
islets and beta cells from T1D individuals (Supplementary
Fig. 13a). Bromodomain inhibitors have been shown to prevent
autoimmune diabetes in animal models50 and the KD of the
bromodomain containing 2 gene (BRD2) induced an opposite
signature to our model (Supplementary Fig. 13b). Pre-treatment
of EndoC-βH1 cells with two bromodomain inhibitors decreased
both IFNα-induced HLA-I and CXCL10 induction, with no
changes in CHOP (DDIT3) expression (Fig. 7c, e) or in apoptosis
induced by IL1β+ IFNα (Fig. 7d, f). In human islets, these
inhibitors induced a ~30% decrease in IFNα-induced HLA-I
expression and a 90% reduction in CXCL10 expression; at least in
the context of I-BET-151, there was a 60% reduction of the ER
stress marker CHOP (DDIT3) (Supplementary Fig. 13c, d).

Next, we searched for clinically approved drugs (DrugBank
5.151) among the PPI network of the WGCNA module #2
(Fig. 4f), with a view to possible drug repurposing. Module #2 is
particularly interesting in this context as it recapitulates many of
the key biological processes induced by IFNα (Fig. 4g), and
because ~50% of its members were also present among the most
upregulated genes from the RRHO analysis (Supplementary
Fig. 2d). An interesting target recognized as a hub for different
drugs was the kinase JAK1 (Fig. 8a) and its inhibitor baricitinib,
which has shown promising effects in the treatment of human
rheumatoid arthritis52. Baricitinib prevented IFNα-induced
mRNA expression of HLA-I, CXCL10 and CHOP (DDIT3) in
EndoC-βH1 cells (Fig. 8b) and human islets (Fig. 8c) and it
completely protected EndoC-βH1 cells (Fig. 8d) and human islets
(Fig. 8e) against the pro-apoptotic effects of IFNα+ IL1β.
Furthermore, baricitinib decreased the cell surface protein
expression of MHC class I by >90% in EndoC-βH1 cells (Fig. 9a)
and human islets (Fig. 9b, c).

Discussion
We presently modeled the initial changes observed in the islets of
Langerhans during T1D by performing an integrated multi-omics
approach in EndoC-βH1 cells exposed to the early cytokine IFNα.
The model was validated using human islets RNA-seq and
independent experiments using the same human beta cell line,
pancreatic human islets and FACS-purified human beta cells. Of
relevance, taking into account the major differences between

human and rodent beta cell responses to stressful stimuli53,54, all
experiments were performed in clonal or primary human beta
cells/islets. This approach identified very rapid and broad beta cell
responses to IFNα including: (1) major early modifications in
chromatin remodeling, which activates regulatory elements; (2)
the key TFs regulating signaling, and the crosstalk between beta
cells and immune cells; (3) the functional modules of genes and
their regulatory networks; and (4) alternative splicing and first
exon usage as important drivers of transcript diversity. Finally, an
integrative analysis led to the identification of two compound
classes that reverse all or part of these alterations in EndoC-βH1
cells and human islets and may be potential therapeutic targets
for future trials in T1D prevention/treatment.

During viral infection a prompt innate immune response,
mediated to a largest extent via type I interferons, is critical to
control virus replication and spreading55. In line with this,
exposure of human beta cells to IFNα leads to changes in chro-
matin accessibility already at 2 h, which correlates with sub-
sequent changes in mRNA and protein expression at 8 and 24 h.
The majority of these regions are localized distally to TSSs,
indicating that they may act primarily as distal regulatory ele-
ments. Interestingly, these regions were enriched in motifs of
islets-specific TFs, suggesting that tissue-restricted characteristics
regulate the local responses during insulitis, as we have recently
described for the cytokines IL1β+ IFNγ19. This could explain the
preferential expression of HLA class I (both the classical ABC
members and the presently described inhibitory HLA-E) by
pancreatic islets in comparison to the surrounding exocrine
pancreas. Islet HLA class I overexpression is a key finding during
T1D development56, contributing for the recruitment of auto-
reactive CD8+ T cells that selectively attack beta cells1. IFNα also
induces pathways involved in protein modification (ubiquitina-
tion, sumoylation, etc), degradation (proteasome, etc) and ER
stress, which can generate neoantigens14.

The IRF and STAT family members are master TFs involved in
IFN-I signaling2. Viruses have developed several species-specific
mechanisms to antagonize STAT1 and STAT2 activation55. For
instances, the NS5 protein of Zika virus degrades human but not
mouse STAT257. In the present work, we confirmed the impor-
tance of both STAT1 and 2 for INFα signaling in beta cells, and
observed that their individual KD is compensated in most cases
by the remaining member, as a possible backup mechanism to
protect against pathogens58. Interestingly, IRF1 seems to be a
critical regulator of the IFNα-mediated “defense” responses in
beta cells, including induction of checkpoint proteins such as
PDL1 and HLA-E (present data), and the suppressors of cytokine
signaling 1 and 3 (SOCS3) (ref. 59 and present data). This stands
in contrast to its pro-inflammatory effects in immune cells60. In
line with the possible role for IRF1 in dampening islet

Fig. 5 Interferon-α changes the alternative splicing landscape. a EndoC-βH1 cells were exposed to IFNα for the indicated time points. The significantly
upregulated (red) and downregulated (blue) transcripts were identified using Flux Capacitor (n= 5, |log2FC| > 0.58 and FDR < 0.05). b Frequency of
individual alternative splicing events regulated by IFNα (n= 5, |ΔPSI| > 0.2, minimum 5 reads, FDR < 0.05). c Frequency distribution of alternative cassette
exon (CEx) events altered by IFNα ((n= 5, ΔPSI) > |0.2| and FDR < 0.05). d Confirmation of the increased exon 4 inclusion in the antiviral gene OASL by
IFNα (24 h). cDNA was amplified by RT-PCR using primers located in the upstream and downstream exons of the splicing event and the product evaluated
using a Bioanalyzer 2100 (n= 4 (EndoC) and n= 7 (human islets), two-sided paired t-test). e The log2FCs of the proteins coding for OASL-001 and −002
isoforms from IFNα-treated EndoC-βH1 cells proteomics (24 h) (n= 4). f Frequency distribution of retained intron (RI) events altered by IFNα (n= 5, |
ΔPSI| > 0.2 and FDR < 0.05). g The protein log2FC values obtained by proteomics analysis of EndoC-βH1 cells exposed to IFNα for 24 h were classified in
three categories according to the levels of retained intron ΔPSI (n= 5, mean ± SEM, ANOVA with Bonferroni correction). h Expression of RNA-binding
proteins (left) that are significantly modified at mRNA level (FDR < 0.05) after exposure to IFNα and their respective proteins (right) in the indicated time
points (n= 4–5). i Positional enrichment of motifs from significantly modified RBPs among regions involved in the regulation of modified cassette exons
(CEx) after exposure to IFNα for 24 h. (n= 5, |ΔPSI| > 0.2, FDR < 0.05). j Comparison between the log2FC of a curated list (Supplementary Table 1) of
known FMR1 target proteins against the log2FC of the remaining proteins detected by the proteomics of EndoC-βH1 cells exposed to IFNα for 24 h (n= 4,
mean ± SEM; two-sided unpaired t-test). Source data are provided as a Source Data file.
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inflammation, systemic knockout of IRF1 prevents autoimmune
diabetes in NOD mice61, whereas IRF1 deletion in islets is
associated with shorter mouse allograft graft function and
survival62.

Alternative splicing (AS) is a species, tissue and context-specific
post-transcriptional mechanism that expands the number of
transcripts originated from the same gene thus increasing protein

diversity63. Pancreatic beta cells share many characteristics with
neuronal cells, including analogous signal transduction, devel-
opmental steps and splicing networks64. Both T1D risk genes65

and the cytokines IL1β+ IFNγ10 modify AS in beta cells. We
presently identified a preferential alternative exon inclusion after
IFNα exposure and mapped the potentially involved RBPs, which
included the upregulated protein Quaking (QKI). QKI activation
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was used to estimate the frequency of differential alternative first exon (AFE) usage induced by IFNα in human beta cells. The total number of IFNα-
dependent AFEs events (left) and number of genes with AFEs (right) in the indicated time point are shown (n= 5, ΔPSI > |0.2|, FDR < 0.05). b View of the
NT5C3A locus showing the transcripts with AFE usage, the RNA-seq (red) signals of EndoC-βH1 cells exposed or not to IFNα and the CAGE TSSs
information (black scale)45 (upper panel). Confirmation of the AFE usage identified by SEASTAR in the gene NT5C3A (lower panel). cDNA was amplified
by RT-PCR using primers located in the AFE and in its downstream exon. The PCR products were analyzed by automated electrophoresis using a
Bioanalyzer 2100 and quantified by comparison with a loading control. The values were then corrected by the housekeeping gene β-actin. (n= 4 (EndoC)
and n= 6 (human islets), two-sided paired t-test). c View of the RMI2 locus showing all the transcripts in this region, the ATAC-seq (blue) and the RNA-
seq (red) signals of EndoC-βH1 cells exposed or not to IFNα for 24 h, the CAGE TSSs information (black scale)45 and RNA polymerase II ChIP-seq signal of
human K562 cells exposed to IFNα (black)48. A higher magnification of the RMI2-004 locus is presented below (image representative of 4–5 independent
experiments). d Confirmation of the AFE usage in the gene RMI2. Genome mapping (upper part) showing the genomic regions used to design-specific
primers located in the AFE of the transcript RMI2-004 and in its downstream exon. The PCR product was analyzed by automated electrophoresis using a
Bioanalyzer 2100 and quantified by comparison with a loading control. The values were then corrected by the housekeeping gene β-actin. (n= 4 (EndoC)
and n= 6 (human islets), two-sided paired t-test). Source data are provided as a Source Data file.
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in monocytes promotes extensive changes in AS, favoring their
differentiation into pro-inflammatory macrophages66. Further-
more, QKI binds to the genome of RNA viruses and inhibits their
replication67. A similar mechanism was recently described for
FMR168, another RBP induced by IFNα, which controls protein
translation in beta cell (present data). Several other RBPs were
observed as downregulated by IFNα and identified as potential
regulators of IFNα-induced AS events. Thus, inhibition of
ELAVL1 and HNRNPA1 reproduced IFNα-mediated changes in
exon usage. Different RNA viruses can use both ELAVL169 and
HNRNPA170 to support their replication, indicating that the
decreased expression of these proteins may provide an additional
IFN-triggered antiviral mechanism. These findings suggest that
during potentially diabetogenic viral infections, RBPs may have a
dual role: first as splicing regulators and second as regulators of
viral replication.

In order to identify novel approaches to protect beta cells in
T1D, we analyzed the similarities between beta cell signatures
from T1D donors and those following IFNα exposure, and
compared the top identified genes/pathways with the Con-
nectivity Map49 and the DrugBank51 database. This identified two
groups of potential therapeutic agents, namely bromodomain and
JAK inhibitors. Bromodomain (BRD) proteins are components of
chromatin-remodeling complexes that promote chromatin
decompaction and transcriptional activation. BET inhibitors have

shown protective effects in different animal models of auto-
immunity71, including the diabetes-prone NOD mice50. We have
now expanded these findings to human beta cells, showing that
two distinctive BET inhibitors (JQ1+ and I-BET-151) decrease
IFNα-induced responses, including HLA class I and chemokine
overexpression.

After binding to its receptor, IFNα promotes phosphorylation
of two tyrosine kinases, JAK1 and TYK2, which then trigger the
downstream signaling cascade. Chemical inhibition of JAK1+
JAK2 prevents autoimmune diabetes in NOD mice72 and poly-
morphisms associated with decreased TYK2 function are pro-
tective against human T1D73. We presently observed that
baricitinib, a JAK1/2 inhibitor recently approved for use in
rheumatoid arthritis by the FDA52, decreased all the three hall-
marks previously identified in islets of T1D individuals and
initiated by IFNα in human beta cells, namely HLA class I
overexpression, ER stress and beta cell apoptosis, supporting its
future testing in T1D.

In conclusion, we have applied a multi-omics approach to
study the different levels of gene regulation induced by IFNα in
EndoC-βH1 cells and pancreatic human islets. This in vitro
modeling showed strong correlation with the mRNA profile from
beta cells of T1D individuals. At the genomic level, early chro-
matin remodeling activated cis-regulatory elements, many of
them presenting motifs for islets-specific TFs, providing a
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possible mechanism by which tissue-restricted autoimmune dis-
eases might arise. Post-translational modifications, alternative
splicing and first exon usage were induced by IFNα, likely
expanding the repertoire of proteins and transcripts generated by
beta cells in response to this inflammatory stimuli. This can also

be a source of potential neoantigens. Interestingly, IFNα-exposed
human beta cells upregulate co-inhibitory proteins such as PDL1
and HLA-E, which may attenuate or delay the autoimmune
assault. Finally, the present results provide a useful resource for
the discovery of compounds that may be used to reverse the
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Fig. 8 Establishing JAK1 inhibition as protective mechanism against IFNα-mediated inflammation and apoptosis. a The PPI network of module #2 was
integrated with the DrugBank repository51 using the CyTargetLinker app78 in Cytoscape. A higher magnification on JAK1 is shown. b EndoC-βH1 cells were
pretreated with DMSO (NT) or baricitinib at the indicated concentrations for 2 h. Cells were then left untreated (black bars), or treated with IFNα alone
(white bars) without or with the presence of different concentrations of baricitinib (purple scale bars) for 24 h and mRNA expression of HLA class I (ABC),
CXCL10 and CHOP (DDIT3) analyzed. The values were normalized by the housekeeping gene β-actin and then by the highest value of each experiment
considered as 1 (n= 4, mean ± SEM, ANOVA with Bonferroni correction for multiple comparisons). c Human islets were pretreated with baricitinib (4 μM)
or DMSO (vehicle) and then exposed or not to IFNα for 24 h in the presence or not of baricitinib. mRNA expression of HLA class I (ABC), CXCL10 and
CHOP (DDIT3) was analyzed and values normalized by the housekeeping gene β-actin and then by the highest value of each experiment considered as 1.
(n= 3, mean ± SEM, ANOVA with Bonferroni correction for multiple comparisons). d, e EndoC-βH1 cells (d) and human islets (e) were pretreated with
DMSO or baricitinib (4 µM) for 2 h. Subsequently, cells were left untreated or treated with IFNα (2000 U/ml)+ IL1β (50 U/ml) in the absence or presence
of baricitinib for 24 h. Cell viability was evaluated using nuclear dyes by two independent observers. (d (n= 5), e (n= 4), mean ± SEM, ANOVA with
Bonferroni correction for multiple comparisons). Source data are provided as a Source Data file.
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effects of IFNα on human pancreatic beta cells, paving the way for
potential T1D interventional trials.

Methods
Culture of EndoC-βH1 cells and human islets, cell treatment. The human
pancreatic beta cell line EndoC-βH1 was kindly provided by Dr. R. Scharfmann,
University of Paris, France74. Human islet isolation from 20 non-diabetic organ
donors (Supplementary Table 2) was performed in accordance with the local
Ethical Committee in Pisa, Italy. The use of pancreatic human islets for this project
was approved by the Comité d’Ethique hospitalo-facultaire Erasme-ULB. These
cells were maintained in culture and treated as described in Supplementary
Methods.

FACS-purified human beta cells isolation and treatment. Whole pancreatic
human islets were exposed or not to IFNα for 24 h. After this period, the islets were
dispersed into single cells and surface staining was carried out in FACS buffer (PBS
with 0.5% BSA and EDTA 2mM final concentration). Indirect antibody labeling

was performed with two sequential incubation at 4 °C and one wash in FACS buffer
followed each step. Cells were resuspended in FACS buffer, viability dye was added
(DAPI) and cells were sorted on a FACSAria III cell sorter (BD Biosciences).
Primary (mouse anti-human NTPDase3, hN3-B3S, www.ectonucleotidases-ab.
com) and secondary (Alexa Fluor 546 conjugated donkey anti-mouse IgG (A10036,
Thermo-Fisher Scientific)) antibodies were used with the dilutions described in
Supplementary Table 5. Data analysis was carried out with FlowJo software
(Version 10).

ATAC sequencing processing and analysis. ATAC sequencing was performed in
four independent experiments for each time point (2 and 24 h)75. For ATAC-seq
50,000 EndoC-βH1 cells were exposed or not to IFNα for 2 or 24 h. After that, the
cells were harvested, and the nuclei isolated by using 300 μl of cold lysis buffer
(10 mM Tris–HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Igepal CA-630). The
nuclei pellet was resuspended in a 25 μl transposase reaction mix containing 2 μl of
Tn5 transposase per reaction and incubated at 37 °C for 1 h. The tagmented DNA
was isolated using SPRI cleanup beads (Agencourt AMPure XP, Beckman Coulter).
For library amplification two sequential 9-cycle PCR were performed (72 °C for
5 min; 98 °C for 30 s; 9 cycles of 98 °C for 10 s, 63 °C for 30 s; and 72 °C for 1 min;
and at 4 °C hold). Finally, the DNA library was purified using the MinElute PCR
Purification Kit (Qiagen, Venlo, Netherlands). TapeStation and semi-quantitative
PCR assays at target positive and negative controls were performed to ensure the
quality and estimate the efficiency of the experiment before sequencing. Libraries
were sequenced single-end on an Illumina HiSeq 2500. Data processing and ana-
lysis is described in Supplementary Methods.

RNA-sequencing processing and analysis. Total RNA of five independent
experiments with EndoC-βH1 cells and six independent preparation of pancreatic
human islets exposed or not to IFNα for different time points was obtained using
the RNeasy Mini Kit (Qiagen, Venlo, Netherlands). RNA integrity number (RIN)
values were evaluated using the 2100 Bioanalyzer System (Agilent Technologies,
Wokingham, UK). All the samples analyzed had RIN values >9. mRNA was
obtained from 500 ng of total RNA using oligo (dT)beads, before it was fragmented
and randomly primed for reverse transcription followed by second-strand synthesis
to generate double-stranded cDNA fragments. The cDNA undergone paired-end
repair to convert overhangs into blunt ends. After 3′-monoadenylation and adaptor
ligation, cDNAs were purified. Next, cDNA was amplified by PCR using primers
specific for the ligated adaptors. (Illumina, Eindhoven, Netherlands). The generated
libraries were submitted to quality control before being sequenced on an Illumina
HiSeq 2500. RNA-seq data processing and analysis is described in Supplementary
Methods.

Proteomics processing and analysis. EndoC-βH1 cells exposed or not to IFNα
were extracted using the Metabolite, Protein and Lipid Extraction (MPLEx)
approach. A detailed description of the method used for proteomics processing and
analysis is provided in Supplementary Methods.

Rank–rank hypergeometric overlap (RRHO) analysis. To compare the signature
induced by IFNα with the one present during insulitis in T1D individuals, we
performed the RRHO mapping15. For this goal, a full list of log2FC ranked genes
from our RNA-seq of EndoC-βH1 cells and human islets (IFNα vs Control, 24 h)
were compared against similarly ranked lists of purified primary beta cells obtained
from individuals with T1D16 and T2D17 (T1D/T2D vs non-diabetic).

In a RRHO map, the hypergeometric p-value for enrichment of k overlapping
genes is calculated for all possible threshold pairs for each experiment, generating a
matrix where the indices are the current rank in each experiment. The log-
transformed hypergeometric p-values are then plotted in a heatmap indicating the
degree of statistically significant overlap between the two ranked lists in that
position of the map. Multiple correction was applied using the Benjamini–Yekutieli
FDR correction.

Dynamic regulatory events miner (DREM) modeling. For reconstructing
dynamic regulatory networks, we have used the DREM method23, which integrates
times series and static data using an Input-Output Hidden Markov Model
(IOHMM), where the TF-DNA interaction information obtained from ChIP-seq
experiments48 was used as the input and our RNA-seq time series expression data
as the output. A detailed description of DREM-based modeling is provided in
Supplementary Methods.

Weighted gene co-expression network analysis (WGCNA). On each dataset
(RNA-seq and proteomics), we obtained modules of genes/proteins of similar
expression profiles using WGCNA28. The soft threshold parameter for the RNA-
seq dataset was chosen to be 10 (value to approximate a scale-free topology).
Similar parameters were used for the analysis of RNA-seq of pancreatic human
islets exposed or not to IFNα. Regarding the proteomics dataset, in order to achieve
an approximated scale-free topology, we first normalized each protein expression
in each temporal group (subtraction by mean and division by standard deviation),
and then selected the soft threshold parameter as 14. After merging the modules
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Fig. 9 Baricitinib decreases IFNα-mediated MHC class I protein
expression in beta cells. a EndoC-βH1 cells were pretreated with baricitinib
(4 μM) or DMSO and then exposed or not to IFNα for 24 h in the presence
or not of baricitinib. MHC class I (ABC) protein expression was measured by
flow cytometry. The percentage of positive cells was quantified. (n= 6,
mean ± SEM, ANOVA with Bonferroni correction for multiple comparisons).
b, c Dispersed human islets were pretreated with baricitinib (4 μM) or
DMSO (vehicle). Next, cells were left untreated, treated with IFNα alone or
with IFNα in the presence of baricitinib for 24 h. MHC class I intensity was
quantified in each condition (b) using Fiji software80 and normalized by the
HOECHST intensity to correct for the number of cell per area (n= 3,
ANOVA with Bonferroni correction for multiple comparisons, RFU (relative
fluorescence units)). Immunocytochemistry (ICC) analysis (c) of MHC class
I (ABC) (red), insulin (green) and HO (blue) was performed to confirm
MHC class I expression in three independent human islet preparations.
Scale bar 10 μm.
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using a dissimilarity threshold of 0.25, we identified 8 modules in the RNA-seq
dataset and 7 modules in the proteomics dataset.

To analyze module quality, we have used a set of statistics (density and
separability metrics) from the modulePreservation function of the R package
WGCNA29. For this purpose, we resampled the dataset 1000-times to create
reference and test sets from the original data and evaluate module preservation,
represented as the Zsummary for each module across the resulting networks. Zsummary

> 2 indicates moderate preservation and Z > 10 high quality/preservation for each
module29. To evaluate WGCNA module preservation in independent samples, we
used the same R function, but in this case applying metrics based on module
density and intramodular connectivity to give a composite statistic Zsummary.

To evaluate the overlap of RNA-seq and proteomics modules, we considered a
mRNA to be differentially expressed at 8 or 24 h if its absolute fold-change was
>1.5 and its FDR < 0.05. Regarding the proteomics dataset, we considered a protein
to be differentially abundant at 8 or 24 h if the t-test p-value was <0.05. We selected
only the differentially expressed genes/abundant proteins in the identified
WGCNA modules. We then searched for the overlap between the elements of the
RNA-seq and proteomics modules and obtained an overlap p-value
(hypergeometric probability). We retained overlapping modules with a FDR < 0.05
and a minimum of 10 common elements.

Protein–protein interaction network analysis. The inBio Map protein–protein
interaction (PPI) network database31 was obtained from https://www.intomics.
com/inbio/. We first restricted the network to contain only the elements expressed
in human beta cells based on our RNA-seq database (mean RPKM > 0.5 in at least
one condition). For each WGCNA overlapping module, we identified the proteins
in the PPI network with a significantly high number of protein-to-protein con-
nections to the set of elements in the module (FDR < 0.01, and minimum number
of connections equal to 5). We considered only networks obtained for the over-
lapping modules #1, #2 and #5, as the other overlapping modules returned empty
PPI networks. We then obtained PPI networks for each WGCNA overlapping
modules, involving the original set of module elements, plus the respective iden-
tified connecting proteins. Communities of interacting proteins were identified
using the EAGLE algorithm76 with the following parameters: CliqueSize threshold:
6 and ComplexSize threshold: 2. Wordclouds of each community were generated
using information from geneRIFs terms.

Gene regulatory network analysis. A network of regulatory interactions was
obtained from RegNetwoks30 (www.regnetworkweb.org). As in the PPI network,
we first restricted the network to contain only the elements we found to be
expressed in the RNA-seq dataset. Similarly to the PPI network analysis, for each
WGCNA overlapping modules, we identified regulators with a significantly high
number of regulatory connections to the set of elements in the module (FDR < 0.01,
and minimum number of connections equal to 4). We then obtained regulatory
networks for each WGCNA overlapping modules, involving the original set of
module elements, plus the respective identified regulators.

To create a non-redundant dataset of motifs from regions of gained open
chromatin, we used the compareMotifs.pl script from the package HOMER77 to
merge motifs with a similarity score threshold of 0.7. The remaining motifs were
mapped to the gain open chromatin regions using the annotatePeaks.pl script.

Transcription factor motif analysis. Sequence composition analysis of de novo
motifs was performed using findMotifGenome.pl from the package HOMER77

with parameters ‘-size given -bits -mask’. The motifs having a p ≤ 10−12 and
observed in >3.5% of the targets were chosen for subsequent analysis. All de novo
matches having a similarity score to known TF motifs higher than 0.7 are shown in
the tables (Fig. 4e and Supplementary Fig. 3c), or when no match was present over
this threshold, the first hit was elected and its score is presented.

Alternative splicing changes validation. Alternative splicing changes identified
from RNA-seq were validated by RT-PCR using specifically designed primers
(Supplementary Table 3). To confirm cassette exons, the primers were adjacent to
the predicted splicing event. This approach allowed us to discriminate between
variants based on their fragment sizes. For alternative first exon usage (AFE)
validation, we have designed primers spanning regions that are unique to the
isoform of interest (Fig. 6g), and then normalized the results by the housekeeping
gene β-actin. cDNA was amplified using MyTaq Red DNA polymerase (Bioline,
London, UK), and PCR products were analyzed using an Agilent 2100 Bioanalyzer
system (Agilent Technologies, Wokingham, U.K.). The molarity of each PCR band
corresponding to a specific splice variant was quantified using the 2100 Expert
Software (Agilent Technologies, Diegem, Belgium), and used to calculate the ratio
inclusion/exclusion (SE) or isoform-X/β-actin (AFE).

Small-RNA interference. Transfection was performed using Lipofectamine
RNAiMAX (Invitrogen) as described in Supplementary Methods. After that, the
cells were kept in culture for a 48 h recovery period and subsequently exposed or
not to IFNα as indicated. Supplementary Table 3 describes the sequences of siRNAs
used in the present study.

Real-time PCR analysis. After harvesting of the cells, Poly(A)+mRNA was
obtained using the Dynabeads mRNA DIRECT kit (Invitrogen) and reverse
transcribed. Detailed description is provided in Supplementary Methods.

Western blot, immunocytochemistry and flow cytometry. Detailed description
together with additional information on western blot, immunocytochemistry and
flow cytometry analysis is provided in Supplementary Methods.

Immunofluorescence. After dewaxing and rehydration, samples were subjected to
heat-induced epitope retrieval (HIER) in 10 mM citrate buffer pH 6.0, then probed
in a sequential manner with appropriate antibodies as indicated in Supplementary
Table 4. The relevant antigen–antibody complexes were detected using secondary
antibodies conjugated with fluorescent dyes (Invitrogen, Paisley, U.K). Cell nuclei
were stained with DAPI. After mounting, images were captured with a Leica
AF6000 microscope (Leica, Milton Keynes, UK) and processed using the standard
LASX Leica software platform (Version 1.9.013747). For quantification studies,
randomly selected insulin-containing islets (ICIs) from individuals with or without
diabetes were imaged, in addition to insulin-deficient islets (IDIs) from individuals
with diabetes. Thirty ICIs were analyzed from 6 independent individuals (5 islets
per individual), 20 IDIs were analyzed from 4 independent individuals (5 islets per
individual) and 30 ICIs were analyzed from 6 independent control individuals (5
islets per individual). The mean fluorescence intensity (MFI) arising from detection
of HLA-E was measured using LASX Leica quantification software.

Therapeutic targets identification. The top 150 upregulated genes shared among
the RNA-seq of EndoC-βH1 cells and human islets exposed to IFNα for 24 h and
the RNA-seq of beta cells16 from T1D individuals were identified by the RRHO
analysis. This list of genes was used to query the Connectivity Map dataset of L1000
cellular signatures, which has transcriptional responses of human cells to different
chemical and genetic perturbations, using the CLUE platform (https://clue.io)49.
To identify compounds potentially reverting the effects induced by interferons in
beta cells, we have focused on perturbagens promoting signatures that were
opposite (negative tau score) to our query list. Only perturbagens having a median
tau score <−90 were considered for further evaluation.

Additionally, aiming at potential repurposing of drugs under clinical
investigation for treatment of other pathologies, we have integrated the DrugBank
database v5.151 with the PPI network obtained from WGCNA module #2 using the
CyTargetLinker v4.0.078 within Cytoscape v3.6 to build a biological network
annotated with drugs.

The small molecules and drugs pointed out by these two approaches were then
validated in vitro as described above to verify their impact on IFNα-induced
upregulation of cytokines/chemokines, ER stress markers, HLA class I and beta cell
apoptosis.

Cell viability assessment. The cell viability is described in details in Supple-
mentary Methods.

Statistical analysis. Data of the confirmatory experiments are expressed as means
± SEM. A significant difference between experimental conditions was assessed by
paired t-test, unpaired t-test, one-way or two-ways ANOVA followed by Bonfer-
roni correction for multiple comparisons as indicated using the GraphPad Prism
program version 6.0 (www.graphpad.com). Results with p ≤ 0.05 were considered
statistically significant.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All raw and processed ATAC and RNA-sequencing data that support the findings of this
study have been deposited in NCBI Gene Expression Omnibus (GEO) with the primary
accession code GSE133221 (subseries are GSE133218: RNA-seq of EndoC-βH1 cells,
GSE148058: RNA-seq of human islets, GSE133219: ATAC-seq of EndoC-βH1 cells). The
proteomics datasets have been submitted to Pride under identifier number PXD014244
(http://www.ebi.ac.uk/pride/archive/projects/PXD014244). The network of regulatory
interactions can be obtained from RegNetwoks (http://www.regnetworkweb.org/
download/RegulatoryDirections.zip). The DrugBank database v5.1 can be downloaded
from: https://www.drugbank.ca/releases/5-1-0/downloads/all-full-database. The inBio
Map protein–protein interaction (PPI) network database can be obtained from: https://
www.intomics.com/inbio/api/data/map_public/2016_09_12/inBio_Map_core_2016_
09_12.zip. The CAGE peaks from FANTOM5 database can be obtained on: http://
fantom.gsc.riken.jp/5/datafiles/phase2.5/extra/CAGE_peaks/. The Connectivity Map
database can be accessed using the CLUE platform (https://clue.io). The RNA
polymerase II (POLR2A) ChIP-seq of human K562 cells can be obtained from the
ENCODE project (GSM935474, https://www.encodeproject.org/experiments/
ENCSR000FAX/). The Exon Ontology database can be accessed from: http://fasterdb.
ens-lyon.fr/ExonOntology/. The information about T1D risk genes can be found on
immunobase (www.immunobase.org) and GWAS catalog (https://www.ebi.ac.uk/gwas/).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16327-0 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2584 | https://doi.org/10.1038/s41467-020-16327-0 | www.nature.com/naturecommunications 15

https://www.intomics.com/inbio/
https://www.intomics.com/inbio/
http://www.regnetworkweb.org
https://clue.io
http://www.graphpad.com
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133221
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133218
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148058
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133219
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD014244
http://www.ebi.ac.uk/pride/archive/projects/PXD014244
http://www.regnetworkweb.org/download/RegulatoryDirections.zip
http://www.regnetworkweb.org/download/RegulatoryDirections.zip
https://www.drugbank.ca/releases/5-1-0/downloads/all-full-database
https://www.intomics.com/inbio/api/data/map_public/2016_09_12/inBio_Map_core_2016_09_12.zip
https://www.intomics.com/inbio/api/data/map_public/2016_09_12/inBio_Map_core_2016_09_12.zip
https://www.intomics.com/inbio/api/data/map_public/2016_09_12/inBio_Map_core_2016_09_12.zip
http://fantom.gsc.riken.jp/5/datafiles/phase2.5/extra/CAGE_peaks/
http://fantom.gsc.riken.jp/5/datafiles/phase2.5/extra/CAGE_peaks/
https://clue.io
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM935474
https://www.encodeproject.org/experiments/ENCSR000FAX/
https://www.encodeproject.org/experiments/ENCSR000FAX/
http://fasterdb.ens-lyon.fr/ExonOntology/
http://fasterdb.ens-lyon.fr/ExonOntology/
http://www.immunobase.org
https://www.ebi.ac.uk/gwas/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The source data underlying Figs. 2c–m, 3a–e, g, i, 5d, g, j, 6b, d, 7c–f, 8b–e, 9a, b and
Supplementary Figs. 4e–h, 5c–m, 6b, d, 12a–c, 12e–g, 13c–d are provided as a Source
data file.
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