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ABSTRACT

Introduction: Surgical procedure is the treatment of choice
in early stage I lung adenocarcinoma. However, a consider-
able number of patients experience recurrence within the
first 2 years after complete resection. Suitable prognostic
biomarkers that identify patients at high risk of recurrence
(whomay probably benefit from adjuvant treatment) are still
not available. This study aimed at identifying methylation
markers for early recurrence that may become important
tools for the development of new treatment modalities.

Methods: Genome-wide DNA methylation profiling was per-
formed on 30 stage I lung adenocarcinomas, comparing 14
patientswith earlymetastatic recurrencewith 16 patientswith
a long-term relapse-free survival period using methylated-
CpG-immunoprecipitation followed by high-throughput next-
generation sequencing. The differentially methylated regions
between the two subgroups were validated for their prog-
nostic value in two independent cohorts using the Mas-
sCLEAVE assay, a high-resolution quantitative methylation
analysis.

Results: Unsupervised clustering of patients in the discov-
ery cohort on the basis of differentially methylated regions
identified patients with shorter relapse-free survival (haz-
ard ratio: 2.23; 95% confidence interval: 0.66–7.53; p ¼
0.03). In two validation cohorts, promoter hyper-
methylation of the long noncoding RNA PLUT was signifi-
cantly associated with shorter relapse-free survival (hazard
ratio: 0.54; 95% confidence interval: 0.31–0.93; p < 0.026)
and could be reported as an independent prognostic factor
in the multivariate Cox regression analysis.

Conclusions: Promoter hypermethylation of the long non-
coding RNA PLUT is predictive in patients with early stage I
adenocarcinoma at high risk for early recurrence. Further
studies are needed to validate its role in carcinogenesis and
its use as a biomarker to facilitate patient selection and risk
stratification.

� 2020 International Association for the Study of Lung
Cancer. Published by Elsevier Inc. This is an open access
article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: PLUT; Methylation profiling; Lung adenocarci-
noma; Prognostic marker; IncRNA

Introduction
Lung cancer is the leading cause of cancer death

worldwide, comprising a mortality of more than 1.5
million per annum and a poor prognosis with a 5-year
overall survival (OS) of 18%.1,2 Despite tremendous
developments in targeted therapies for advanced stages,
the treatment paradigms and prognosis have not
changed in early stage lung adenocarcinoma for the past
decades; recurrence rate remains high at 30% to 50%
and the prognosis is still guarded.3-6 Adjuvant chemo-
therapy is currently recommended for patients with
resected stage II and III.7-12 However, a benefit for
adjuvant chemotherapy after radical resection in stage Ia
lung adenocarcinoma could not be reported and remains
controversial for stage Ib.13,14 The heterogeneity of the
disease, which evolves through a multitude of disrupted
cell control mechanisms that ultimately converge into
carcinogenesis, may explain why there are currently no
known driver genes predisposing for early relapse.15,16

Furthermore, outside of nodal involvement and tumor
size, a separate (but no less urgent) problem is the lack
of established biomarkers13,17 to identify subpopulations
of patients that are at high risk of recurrence, and
therefore, might benefit from adjuvant treatment
modalities.

In the search for new biomarkers, aberrant DNA
methylation is gaining importance. Previous studies
describe aberrant DNA hypermethylation in promoter
regions as frequent molecular events; they were identi-
fied using the candidate gene approach or using the
Infinium HumanMethylation BeadChip16,18-24 with pre-
determined CpGs. Studies mapping unbiased genome-
wide DNA hypomethylation and hypermethylation in
lung adenocarcinoma, which would be reflective of the
complex machinery of epigenetic regulation, are largely
lacking.16,23-25 Especially, differential epigenetic signa-
tures and aberrantly methylated regions in intergenic
regions remain to be identified; we predict that this
could discriminate between subtypes or identify
deregulated genomic regions, and, in turn, predict
response to therapy and prognosis. Therefore, this study
intended to identify differential methylation patterns by
analyzing all CpGs of the whole genome using
methylated-CpG-immunoprecipitation (MCIp) after next-
generation sequencing. By this approach, a distinct
methylation signature associated with early relapse in
stage I lung adenocarcinoma can be detected after
potentially curative treatment. We obtained a strong
predictive DNA methylation marker that was validated
in two independent cohorts that may provide informa-
tion for further clinical studies on adjuvant treatment
modalities and therapeutic targets.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 1. Overview of the experimental design. In the discovery cohort, genome-wide methylation profiling was performed
on 30 stage I lung adenocarcinomas comparing 14 patients with early metastatic recurrence to 16 patients with long-term
relapse-free survival using MCIp and high-throughput next-generation sequencing. DMRs were validated using the
MassCLEAVE Assay (MassARRAY). The 10 DMRs with the highest methylation differences between the two subgroups were
validated in two independent validation cohorts. DMR, differentially methylated region; MCIp, methylated-CpG-
immunoprecipitation.
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Materials and Methods
An overview detailing the experimental design is

provided in Figure 1.

Patient Samples
For the discovery cohort and validation cohort 1, lung

cancer and adjacent normal lung tissues were provided
by Lung Biobank Heidelberg, a member of the tissue
bank of the National Center for Tumor Diseases (Hei-
delberg, Germany), and the biobank platform of the
German Centre for Lung Research, and the validation
cohort 2 tissues were provided by the Asklepios Biobank
for Lung Diseases, a member of the platform biobank of
the Comprehensive Pneumology Center, German Center
for Lung Research (Deutsches Zentrum für Lungenfor-
schung [DZL]) (Munich, Germany), after approval by the
respective local institutional review boards. Written and
oral informed consent was obtained for all samples from
patients with early stage I to IIb lung adenocarcinoma.
Patients were diagnosed and treated at Thoraxklinik
Heidelberg and Asklepios Clinic Munich-Gauting where
clinical follow-up was pursued and documented. Tissue
samples were snap-frozen in liquid nitrogen within 30
minutes after resection and stored at �80�C. In all
samples, the viable tumor content was at least 50% on
the basis of the pathologic examination of hematoxylin
and eosin–stained slides. To limit variance among the
samples owing to heterogeneity between individuals,
adjacent normal lung tissue samples (>2 cm distant to
tumor site) were obtained from each patient of the dis-
covery cohort for pairwise comparison.

Discovery Cohort. Defined selection criteria were
applied to stratify two different risk cohorts for further
comparative methylation analysis. A total of 16 patients
with stage Ia or Ib lung adenocarcinoma were identified
for the “no relapse” cohort, fulfilling the criteria of
relapse-free survival (RFS) of more than 60 months.
Patients who had received adjuvant treatment were
excluded from this cohort. Patients were eligible to enter
the study as part of the “relapse” cohort if recurrence
had occurred between 5 and 24 months after an oper-
ation. The rationale for choosing this arbitrary timeline
was to exclude (R0) surgical failures (>5 mo) and pa-
tients with risks of secondary malignancies (<24 mo). A
total of 14 patients with distant metastasis with or



Table 1. Patient Characteristics

Characteristics

Discovery Cohort
Validation Cohort
1 (HB)

Validation Cohort 2
(DZL)

No Relapsea Relapseb

n % n %n % n %

Total 16 53 14 47 142 71
Gender
M 8 27 12 40 81 57 31 43.7
F 8 27 2 6.7 61 43 40 56.3
Age
Median [yrs] 64 62 66 65
Range [yrs] 38-74 43-75 38-85 43-85
Stage TNM 6th (7th) 6th (7th) 6th (7th) 7th
Ia 5 (5) 17 2 (2) 6.7 30 (30) 21 34 47.9
Ib 11 (7) 37 12 (5) 40 112 (88) 79 37 52.1
IIa 0 (3) 0 (6) 0 (16) 0
IIb 0 (1) 0 (1) 0 (8) 0
Tumar diameter
Median (range) [cm] 3.8 (1.4-11) 4.05 (1.9-16) 3.3 (1-17) 2.75 (0.6-5)
Histological subtype
Acinary 9 41 30
Lepidic 3 18 3
Micro papillary 0 2 0
Papillary 3 12 18
Solid 7 23 16
Fetal 0 1 0
Mixed Types 7 40 4
Adenocarcinoma w/o further information 2 5 0
Smoking history 20
Smoker 6 20 4 13 49 35 43 60.6
Former smoker 7 23 8 6.7 22 15 18 25.4
Non-smocker 2 6.7 2 6.7 17 12 10 14.1
NA 1 3.3 0 0 1 0.7 0 0
Adjuvant chemotherapy 0 0 4 13 23 16 3 4.23
Relapse free duration [months] 0 9.1 (5.2-16) 41.3 (0.4-107) 34.9 (0-88.9)
Death 0 0 13 93 38 27 9 12.7
Median observation time (range) 72 (60-107) 35 (7.3-37.8) 49 (0.4-108.5) 36.2 (0-88.9)
[months]
aPatients without relapse after R0-resection of the tumor and alive for more than 60 months.
bPatients with relapse after 5 to 24 months after R0-resection of the tumor.
DZL, Deutsches Zentrum für Lungenforschung; F, female; HB, Heidelberg Biobank; M, male.
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without local recurrence were enrolled for the relapse
cohort. Diagnosis and tumor resection were carried out
from 2002 to 2010. The clinical characteristics of the
patients are summarized in Table 1.

Validation Cohort 1 and Validation Cohort 2. For
validation cohort 1 (Heidelberg Biobank), 142 samples
of patients with lung adenocarcinoma stage Ia or Ib
(TNM sixth edition) were obtained from the Lung bio-
bank, Heidelberg. Diagnosis and tumor resections were
carried out from 2002 to 2011. Reassessment of stages
according to TNM seventh edition revealed 128 stage Ia
or Ib and 24 stage IIa or IIb. All patients were nodal
negative. Validation cohort 2 (DZL) included 71 samples
of patients with lung adenocarcinoma stage Ia or Ib
(TNM seventh edition) from the Asklepios Biobank
Munich-Gauting from 2009 to 2015. Ethical approvals of
the respective local institutional review boards were in
place. Patient characteristics are summarized in Table 1.

DNA and RNA Isolation
DNA and RNA of the tumor and adjacent lung tissues

were extracted using the QIAamp DNA mini kit and
RNeasy mini kit (Qiagen, Hilden, Germany), respectively.
Quality control activities were performed using gel
electrophoresis (DNA) and Agilent Bioanalyzer 2100
(RNA) (Agilent, CA). For reverse transcriptase polymer-
ase chain reaction (PCR) analysis, RNA was reverse
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transcribed into complementary DNA using the Super-
Script II (Invitrogen, Carlsbad, CA). Reverse transcriptase
PCR was performed using complementary DNA equiva-
lent to 10 ng RNA by adding a mixture of 5.5 mL Probes
480 Master Enzyme Mastermix (Roche, Mannheim, Ger-
many), 0.11 mL of 20 mM primer pairs, 0.11 mL Universal
Probe Library probe (UPL, Roche: BTG2: UPL1; FYN:
UPL29; PDX1: UPL78; RPTOR: UPL23), and 0.28 mL H2O
on a LightCycler 480 PCR system (Roche, Mannheim,
Germany). Crossing point values were adjusted to the
housekeeping gene GAPDH and relative expression was
calculated as given by Livak and Schmittgen.26 Primer
information is given in Supplementary Figure 1A.
MCIp and High-Throughput Next-Generation
Sequencing

Global methylation analysis was performed using
MCIp followed by high-throughput next-generation
sequencing, as described earlier.27,28 First, 60 mg of
methyl-CpG-binding domain Fc-protein was coupled to
40 mL of protein A-coated magnetic beads (Diagenode,
Liege, Belgium) and bound to 3 mg of sonicated genomic
DNA (Bioruptor NextGen, Diagenode) with a median
fragment length of 145 base pairs (bp) as confirmed by
Agilent’s BioAnalyzer high-sensitivity DNA platform.
Methylated DNA was then eluted by the variable strin-
gency of the magnetically labeled protein using the SX-
8G IP-Star robot (Diagenode) by increasing the salt
concentration (300–1000 mM). Highly methylated DNA
(1000 mM eluate) was desalted with MinElute columns
(Qiagen) and enrichment was quantified by real-time
PCR using the imprinted gene SNRPN. MCIp-enriched
methylated DNA fragments were submitted to the
DKFZ Genomics and Proteomics Core Facility for library
preparation and next-generation sequencing. Afterward,
fragmented DNA was end-repaired and ligated to
Illumina-paired end adaptors using NEBnext DNA
Library Prep Master Mix Set (New England Biolabs) in
accordance with the manufacturer’s instructions.
Adapter ligated libraries were directly amplified by 14
cycles of PCR with the standard Illumina index primers
and distributions were validated using the Agilent Bio-
analyzer before it was quantified by a Qubit fluorometer
(Invitrogen). The libraries were sequenced on the Illu-
mina HiSeq 2000 sequencer (50 bp, single read 50 bp)
using standard Illumina protocols.
Data Analysis and Candidate Gene Selection
Sequencing reads were aligned to the hg19 genome

assembly of the human reference genome using the
Burrows-Wheeler Alignment tool.29 Aligned reads were
further processed by merging lane-level data and
removing duplicates. The remaining uniquely mapped
reads were converted to Sequence Alignment Map or Bi-
nary AlignmentMap formats using SAMtools. Read counts
of each sample were normalized for total read length and
the number of sequencing reads (reads per kilobase per
million mapped reads; RPKMs). Peak calling was per-
formed using the software HOMER (v4.4). A differentially
methylated region (DMR) of one peak was defined if at
least a twofold difference in tag densities between the
tumor and adjacent normal tissue of one patient sample
set was detected. DMRs enriched in the relapse subcohort
compared with the no relapse subcohort were calculated
using Fisher’s exact test and p values were corrected by
multiple testing (Benjamini-Hochberg). The second list of
DMRs was obtained by comparison of the mean RPKMs of
each cohort (no relapse versus relapse) using the Wil-
coxon ranked sum test (p < 0.05) after multiple testing
correction (Benjamini-Hochberg). For candidate marker
selection and further quantitative methylation analysis,
we focused on the nonrepetitive overlapping DMRs ful-
filling both criteria.
Quantitative Methylation Analysis
Quantitative methylation values for candidate gene

regions were technically validated using matrix-assisted
laser desorption and ionization time-of-flight mass
spectrometry (MALDI-TOF MS), as described before.30

The 10 best-validated amplicons were further assessed
for clinical validation in the independent sample cohort
(Heidelberg Biobank). Genomic DNA was bisulfite-
converted using the EZ DNA methylation kit (Zymo
Research, Orange, CA) in accordance with the manu-
facturer’s protocol. Defined genomic regions covering
the candidate gene regions of bisulfite-converted DNA
were PCR-amplified, followed by in vitro transcription
and base-specific cleavage. Methylation standards (0%,
20%, 40%, 60%, 80%, 100%) were used to control for
the dynamic range of measurements. DNA methylation
status was quantitatively assessed by MALDI-TOF MS
using the Sequenom (Sequenom, San Diego, CA) (primer
information is provided in Supplementary Table 1A).
Besides the methylation value of single CpG units, the
mean methylation value of overall CpG units per
amplicon was used for further analysis. The samples of
validation cohort 1 were divided into two groups (high
and low methylation) for each DMR using the median
methylation value of the whole cohort as the cutoff. The
mean methylation values of the amplicons were used for
survival analysis (Mantel-Cox test). The methylation
status of the predictive amplicons was tested in the in-
dependent validation cohort (DZL) and correlated
with clinical outcomes to validate the prognostic
significance.
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Reporter Gene Assay
The reporter gene assay was performed as previously

described.31 The promoter region of the long noncoding
RNA (lncRNA) PLUT was amplified from genomic DNA
using phusion polymerase (Thermo Scientific) and
inserted in the luciferase vector pGL4.10 (Promega).
Luciferase activity was measured 48 hours after trans-
fection into HEK-293 cells and normalized to the activity
of a cotransfected cytomegalovirus promoter–driven b-
galactosidase vector. Three independent experiments
were performed in duplicates. Error bars show the SD.
Transfections were performed with metafectene ac-
cording to the manufacturer’s instructions.
Figure 2. Methylation analysis and identification of DMRs. (A)
Unsupervised hierarchical clustering of the RPKMs (0 to
>250) of all DMRs derived by pairwise comparison between
peak regions of tumor and adjacent normal tissue samples
separates two clusters. Each cluster harbored tumor samples
and their adjacent normal samples, although the tumor and
normal samples separated in both clusters. (B) Kaplan-Meier
estimates of both clusters revealed significant (p ¼ 0.0304)
differences in relapse-free survival between both clusters.
(C) Schematic overview of two peak regions derived from the
MCIp-seq analysis with differences in the “relapse” and “no
relapse” cohorts. Amplicons (MA-amplicon) for quantitative
methylation analysis using the MassCLEAVE assay (MassAR-
RAY) and the results for each CpG unit are reported in a
heatmap and a scattergram for the relapse cohort (pink) and
the no relapse cohort (blue). CI, confidence interval; DMR,
differentially methylated region; HR, hazard ratio; MCIp-seq,
methylated-CpG-immunoprecipitation sequencing; RPKMs,
reads per kilobase per million mapped reads.
Statistical Analysis
The primary end point of the statistical analysis was

RFS, defined as the time from surgical procedure to tu-
mor recurrence or death from any cause. The secondary
end points were OS, defined as the time from surgical
procedure to death from any cause, and disease-free
survival (DFS). Events for DFS are the same as for RFS
but, in addition, include any signs or symptoms of the
disease, and time to event was also measured (whatever
occurs first). Patients without an observed event were
censored at the last available follow-up time point.

Distributions of survival times were estimated by
using the method of Kaplan and Meier. The distribution
of follow-up times was estimated by the reverse Kaplan-
Meier estimate.

To investigate the influence of the DMRs on the sur-
vival end points (RFS, DFS, OS), multivariable Cox
regression models were applied. A backward variable
selection was used to recursively reduce the model size
and keep only DMRs with p values less than 0.5 using the
pooled residual chi-square as the stopping rule.

For illustration purposes, Kaplan-Meier curves for
cohorts of patients with low- and high-methylation levels
were computed for each DMR. Groups of low- and high-
methylation levels were defined using the median
methylation level (0.3) of validation cohort 1 as the cutoff.

Prediction error curves were calculated using the
time-dependent Brier score, the quadratic difference
between the 0 to 1 response status, and the predicted
survival probability at time point t.32 The 0.632þ boot-
strap method was applied to reduce the bias in esti-
mating the predictive accuracy. The integrated Brier
score (IBS) over time was used as a statistic for com-
parison of models, including the model for the average
methylation of the whole amplicon, the model using all
single CpGs, and the model of CpGs after backward se-
lection. The empty model, that is, the Kaplan-Meier es-
timate was used as a reference.
All statistical tests were two-sided. Values of p less than
0.05 were considered statistically significant. All calcula-
tions were done using the statistical software environment
R, version 3.1.3 (R packages: pec_ 2.4.7, prodlim_1.5.1,
rms_4.3-1, survival_2.38-1, and glmnet_2.0-2).

Results
Distinct Genome-Wide Methylation Patterns
Between the Early and Late Relapse Groups in
the Discovery Cohort

Genomic DNA of 30 paired samples of bronchial
adenocarcinoma and adjacent normal lung tissue were
analyzed for genome-wide methylation using MCIp.
Analysis by real-time PCR revealed that methylation



Figure 2. (continued).
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enrichment failed for six samples. The recovered DNA of
the remaining 54 samples was sequenced using the
Illumina HiSeq 2000 platform. Six libraries required
resequencing to reach a saturation greater than 95%.
One tumor sample was excluded from the analysis owing
to suspected sample mix-up. The total number of
sequence reads, mapped reads, and unique reads for
each sample are represented in Supplementary Table 2.
For the final analysis, sequence reads of 24 paired
sample sets and additional three tumor samples and two
normal lung samples were available. In total 572.354
peaks could be identified in 200 bp genomic windows
after normalization. On comparing the peaks in each
paired sample for regions found to be differentially
methylated in at least one tumor when compared with
its lung counterpart, 238.331 DMRs between normal and
tumor tissue were observed. Unsupervised hierarchical
clustering of the RPKMs of all 238.331 DMRs separated
the samples into two clusters. Clustering was performed
using the package “pheatmap” in R Bioconductor
(distance ¼ average, k-means ¼ 1000). The normal tis-
sue samples clustered separately to their respective
paired tumor tissue sample in each cluster (Fig. 2A), as
expected. Kaplan-Meier estimates of the two clusters
with distinct methylation patterns revealed significant
differences in RFS (hazard ratio [HR]: 2.23; 95% confi-
dence interval [CI]: 0.66–7.53; p ¼ 0.03) (Fig. 2B). A total
of 99 DMRs were significantly different between the
relapse cohort and the no relapse cohort (p < 0.05;
Fisher’s exact test; Benjamini-Hochberg). For further
candidate marker selection, we focused (after multiple
testing corrections) on the nonrepetitive DMRs that were
also significantly different in RPKMs between the two
subcohorts (p < 0.05; Wilcoxon rank sum test;
Benjamini-Hochberg). A total of 27 DMRs fulfilled the
selection criteria. The distribution of the DMRs among
the genomic features is shown in Supplementary
Figure 2.

Quantitative Methylation Analysis Reveals DMRs
Between the Two Subcohorts

For technical validation of the results obtained with
MCIp sequencing, the same genomic DNA of the dis-
covery cohort was assessed for quantitative methylation
in the 27 candidate marker regions by MALDI-TOF MS.
For all selected regions, we confirmed differences be-
tween normal and tumor tissue and at least a trend
between the relapse and no relapse cohorts. Significant
differences between the subgroups were detected for the
DMRs annotated to the closest genes BTG2 and OSTM1-
AS (t test, p < 0.05). In some cases, an individual CpG
unit within an analyzed amplicon revealed significantly
stronger methylation differences between the two co-
horts, compared with the average methylation of all



Figure 3. Analysis of the DMR upstream of the lncRNA PLUT.
(A) Schematic overview of the DMR 22 bp upstream of the
lncRNA. The DMR (MassARRAY amplicon) was quantitatively
analyzed for methylation using the MassCLEAVE Assay and is
annotated to a CpG island region enriched for H3K4Me1 mark
(ChiP-seq ENCODE) for the transcription factor EZH2 (TF
ChiP-seq ENCODE). A total of three CpGs (cg01193690,
cg10034364, and cg15992563) within the amplicon are pre-
sent on the Illumina Human Methylation 450kBeadChip. (B)
The region (gene reporter amplicon) was cloned in the
pGL4.10 luciferase vector and transfected in HEK-293 Tcells.
The transfection of the empty pGL4.10 vector served as a
control. Luciferase promoter assay was performed in three
independent experiments. bp, base pair; ChiP-seq, chro-
matin immunoprecipitation sequencing; DMR, differentially
methylated region; ENCODE, encyclopedia of DNA elements;
lncRNA, long noncoding RNA.
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CpGs of the whole amplicon (Fig. 2C). None of the top 10
DMRs with the highest differences were located in pro-
moter regions of coding regions. Two DMRs were located
in promoter regions of lncRNAs: PLUT and LOC648987
(uncharacterized RNA gene). The aberrant methylated
region 22 bp upstream of the lncRNA PLUT (NR_
047484.2) is located in CpG islands within silico bind-
ing of H3K4me3 and revealed promoter activity in the
reporter gene assay (Fig. 3). Peak regions of the 10 best
DMRs derived from MCIp sequencing and amplicon in-
formation with annotations to genomic features are
summarized in Supplementary Tables 1A and 1B.
DMRs Correlate With Clinical Outcome in
Patients With Stage I Lung Adenocarcinoma

To discover markers prognostic of risk of relapse in
early stage lung adenocarcinoma, 10 candidate DMRs
annotated to HERC5, Loc648987, PAX3, SEC14L5,
AF524019, BTG2, KIF1A, RPTOR, FYN, and PLUT obtained
from the quantitative methylation analysis (MALDI-TOF
MS) (Fig. 4) were further investigated in 142 samples of
validation cohort 1. The influence of the 10 candidate
DMRs on clinical outcome was evaluated by multivariate
Cox regression analysis. After backward selection, the
average methylation of the amplicons PLUT (p ¼ 0.01)
and FYN (p ¼ 0.03) revealed a significant prognostic
impact on RFS. Figure 5A shows the corresponding
Kaplan-Meier curves for PLUT using a median split (HR:
0.54; 95% CI: 0.31–0.93; p ¼ 0.026).

After backward selection methylation of the single
CpGs of PLUT_CpG17 (p < 0.0002) and FYN_CpG13.14 (p
< 0.01), FYN_CpG6 (p ¼ 0.01) and FYN_CpG9 (p ¼ 0.01)
could be identified as significantly predictive of RFS
(data not shown).

The predictive accuracy was estimated using the
0.632þ bootstrap method. Prediction error curves are
shown in Supplementary Figure 3. The IBS over 59
months of follow-up revealed improvement of the model
using selected CpGs (IBS ¼ 0.180) compared with the
Kaplan-Meier reference (IBS ¼ 0.185) and using the
model with the average methylation of the amplicon
(IBS ¼ 0.198). Regarding DFS and OS, average methyl-
ation of the DMR KIF1A (DFS: p ¼ 0.02; OS: p ¼ 0.01),
and again, PLUT (DFS: p ¼ 0.004; OS: p ¼ 0.005)
revealed a statistically significant prognostic impact
(data not shown).
Aberrant Methylation of the Promoter Region of
lncRNA PLUT Predicts Clinical Outcome in an
Independent Validation Cohort

The prognostic model including the DMRs PLUT and
FYN was further tested in a second independent vali-
dation cohort with stage Ia or Ib (patient characteristics
are shown in Table 1). Validation cohort 2 included 71
patients with a median follow-up of 36.2 months (95%
CI: 31.1–47.1). The methylation levels of the same 10
DMRs that were tested in validation cohort 1, including
PLUT and FYN, were analyzed by MALDI-TOF MS using
the same amplicons and primers as for the discovery
cohort and validation cohort 1. After backward selec-
tion, methylation of PLUT could be validated with
respect to RFS (HR; 0.32; 95% CI: 0.12–0.86; p ¼ 0.024)
(Fig. 5B). The DMR FYN was not significantly associated
with RFS in validation cohort 2. The prediction error
estimation revealed an IBS over 87.7 months of follow-
up within the same range for the reference model
(IBS ¼ 0.151), the average methylation model (IBS ¼
0.166), and the model including the selected CpGs
(IBS ¼ 0.160).

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&amp;db=Nucleotide&amp;term=NR_047484&amp;doptcmdl=GenBank&amp;tool=genome.ucsc.edu
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&amp;db=Nucleotide&amp;term=NR_047484&amp;doptcmdl=GenBank&amp;tool=genome.ucsc.edu
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Aberrant Methylation of BTG2, FYN, RPTOR, and
PLUT Correlates With Expression in the
Discovery Cohort

To investigate whether the four detected DMRs with
the highest ability to predict prognosis were involved in
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Figure 5. Kaplan-Meier survival estimates on the basis of promo
with respect to methylation of the promoter region of PLUTare
2. Subgroups of low- and high-methylation levels were generate
a cutoff. CI, confidence interval; HR, hazard ratio; lncRNA, lon
the transcriptional regulation of their annotated genes
BTG2, FYN, RPTOR, and PDX1, mRNA expression was
determined in the two subgroups (no relapse versus
relapse) of the discovery cohort and six additional
samples. Expression levels for BTG2, FYN, and RPTOR
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ter methylation of lncRNA PLUT. Relapse-free survival curves
reported for (A) validation cohort 1 and (B) validation cohort
d using the median methylation level in validation cohort 1 as
g noncoding RNA.



Table 2. Multivariate Regression Analysis Reveals
Significant Correlation With RFS for PLUT, Sex, and Stage

HR 95% CI P value

PLUT methylation 5.53 1.33–22.92 0.018
Sex 2.19 1.22–3.95 0.008
Age (y) 1 0.97–1.03 0.99
P-stage (TNM seventh edition) 2.25 1.23–4.12 0.008

CI, confidence interval; HR, hazard ratio; lncRNA, long noncoding RNA; RFS,
relapse-free survival.
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significantly differed between the two groups. PLUT
expression analysis could not be performed owing to
lack of sufficient material and technical reasons. Never-
theless, expression of PDX1 as a target gene of PLUT
revealed a trend without reaching significance, but
owing to assay performance, quantitative PCR could not
be performed for all samples (22 of 36) (Supplementary
Fig. 1B).

Multivariate Regression Analysis Identifies
Aberrant Promoter Methylation of PLUT as an
Independent Prognostic Marker

Because clinical parameters are known to influence
the outcome, we performed a multivariate analysis in the
142 patients of validation cohort 1 to test whether the
DMR PLUT may serve as an independent prognostic
marker for early recurrence. Using Cox regression, be-
sides methylation status (binary) of PLUT, age, stage, and
sex were included, and hypermethylation of PLUT could
be detected as an independent unfavorable prognostic
factor (HR: 5.53; 95% CI: 1.3–22.9) (Table 2). Further-
more, a significant difference in outcome regarding sex
was apparent in both validation cohorts. As illustrated
by the Kaplan-Meier curves, women revealed signifi-
cantly better survival than men (Supplementary Fig. 4A).
Men with promoter hypermethylation of PLUT had the
worst outcome with an estimated DFS of 33% after 60
months compared with 76% for women with hypo-
methylation of the promoter region of PLUT (p ¼ 0.001)
(Supplementary Fig. 4B), the other subcohorts revealing
intermediate outcomes.

Discussion
Clinical management in lung cancer will be greatly

aided by the discovery of reliable prognostic biomarkers
to guide treatment decisions. Stratification of patients by
the need, or lack of it, for (neo)adjuvant treatment is
highly warranted. We report that the methylation status
of the promoter of lncRNA PLUT distinguishes between
patients at risk and not at risk for early relapse.

This study represents the most comprehensive anal-
ysis of genome-wide DNA methylation in primary lung
adenocarcinoma. Previous DNA methylation studies
were limited to analyses of promoter hypermethylation
of CpG island methylation.18,19,33-35 Other DNA methyl-
ation profiles were approached with a lower resolution
in small cohorts and not selective for stage I cancers.22,34

Suggested surrogate markers like p16, APC, CDH13, and
RASSF1A promoter hypermethylation were found to be
associated with early recurrence36 but not validated in
independent cohorts. Also, a signature on the basis of
promoter hypermethylation of the five genes HIST1H4F,
PCDHGB6, NPBWR1, ALX1, and HOXA9 was recently
reported to determine two subgroups associated
with survival33; besides lung adenocarcinoma, the
study also included SCLC with a different molecular
pathomechanism.

Whereas it is well accepted that promoter hyper-
methylation and silencing of tumor suppressor genes are
involved in carcinogenesis, DNA methylation is involved
in different epigenetic processes genome-wide.37 Altered
transcription and gene regulation may also be influenced
by DNA methylation of regions other than promoter re-
gions of coding genes.19 Furthermore, the spread of DNA
methylation and its interaction with chromatin remod-
eling also play important roles.38,39 The methylation
patterns unraveled in this study are in line with these
observations, in that, just 10% of DMRs differentiating
the two subgroups are annotated in transcription start
site regions (Supplementary Fig. 2), as opposed to more
than 40% of DMRs mapping to intergenic regions. None
of the previously suggested candidate genes in promoter
regions were among the best 100 DMRs, underscoring
the importance of sequencing-based genome-wide
methylation analyses, whereas the Illumina Human-
Methylation 450k BeadChip just covers 1.7% of all CpGs
in the whole genome and is focused on promoter and
CpG island regions.

In this study, promoter CpG island hypermethylation
of the lncRNA PLUT was found to correlate significantly
with early recurrence. This region has a high density of
transcription factor binding sites and is enriched for
H3K4me1 histone marks in the encyclopedia of DNA
elements data (ENCODE) set. Owing to the shortness of
tissue material, the expression of the lncRNA PLUT could
not be investigated and correlated to the methylation
status of its promoter region in this study. However,
aberrant methylation of this genomic region is present in
all disease stages of patients with lung adenocarcinoma
when looking at publicly available The Cancer Genome
Atlas Program (TCGA) Infinium HumanMethylation450
BeadChip data, implying a role in carcinogenesis
(Supplementary Fig. 5). However, its possible role and
downstream molecular mechanism in lung adenocarci-
noma remains to be determined.

Methylation analysis at individual CpG sites within
the DMRs revealed variations in methylation and
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detected single CpGs discriminating the two subgroups
with a higher statistical significance than the whole
amplicon. The functional regulation of single CpG sites is
not yet well-known and needs further investigation,
though the importance of single CpG sites was previously
commented on.18,40 However, functional studies and
causal explanations of aberrant single CpG methylation
in lung cancer are rare.

LncRNAs are believed to play critical regulatory roles
as tumor suppressors or oncogenic drivers.41,42 In lung
cancer, MALAT1, HOTAIR, HNF1A-AS1, and linc00673
are believed to increase proliferation and invasiveness
by regulating protoadhesion factors (e-cadherin), tran-
scription factors, and reorganization of chromatin and by
acting as oncogenic lncRNAs.43-47 Conversely, the
lncRNAs MEG3 and PANDAR are believed to inhibit tu-
mor growth by regulating TP53 or BCL2 or by inhibition
of epithelial-mesenchymal transition.45,48,49

lncRNA PLUT(O) (PDX1-associated lncRNA, up-
regulator of transcription) was recently found to regu-
late the transcription of PDX1 by promoting contacts
between the PDX1 promoter region and enhancer clus-
ters in human pancreatic b-cells.50 In this study, PDX1
expression in the discovery cohort revealed differences;
however, sample numbers were too small for correlation
analysis with methylation data of the lncRNA PLUT.

PDX1 is a homeobox transcription factor and a key
regulator in the embryonic development of the pancreas
and pancreatic b-cell function and also in the differen-
tiation of the gastric mucosa and pseudopyloric
glands.51,52 For pancreatic cancer, there is evidence that
PDX1 acts as an oncogene and regulates cell proliferation
and invasion45,46; its overexpression is associated with
poor survival.39,53 In addition to pancreatic cancer,
overexpressed PDX1 is associated with several solid tu-
mors, including breast, colon, prostate, and kidney car-
cinoma.54 Its role in tumorigenesis remains unclear and
may differ among tissues. In gastric cancer, the expres-
sion of PDX1 is aberrantly reduced by promoter hyper-
methylation and histone deacetylation, and PDX1 is,
therefore, considered a tumor suppressor.55,56 We
postulate that the transcription of PLUT among others is
regulated by methylation in lung adenocarcinoma.
Hypermethylation of its promoter region resulted in
reduced expression, and subsequent translation of the
gene PDX1 was unhindered, resulting in a higher
expression in patients with early relapse in our discov-
ery cohort. To our knowledge, this is the first study
revealing an association of the methylation status of the
promoter region of PLUT with lung adenocarcinoma.
Whether aberrant methylation of this gene region me-
diates tumorigenesis in lung adenocarcinoma mainly by
transcriptional regulation of PLUT and subsequent
translational modulation of PDX1 or whether other
downstream molecular mechanisms are involved is not
known. The idea of using PDX1 or other PLUT-induced
genes as therapeutic molecular targets is certainly
compelling.

However, the tremendous advances made in deci-
phering the molecular mechanisms involved in lung
tumorigenesis have not yet translated into better prog-
nosis for patients, especially those with early stage tu-
mors for whom cure is most feasible. Although new
sensitive screening methods like low-dose computed
tomography may increase the numbers of patients
diagnosed in early stage I disease,57 the need for prog-
nostic biomarkers to identify newly diagnosed patients
with a high risk of recurrence will gain further impor-
tance. The results of ongoing studies with EGFR tyrosine
kinase inhibitors (ALCHEMIST; NCT02201992,
NCT02193282) or immunotherapy (PEARLS/KEYNOTE-
09, NCT02504372) are eagerly awaited; however, these
will only be applicable for a subgroup of patients. This
study reveals that promoter hypermethylation of the
lncRNA PLUT significantly correlates with early recur-
rence, especially in male patients. Whether the methyl-
ation status of this genomic region will serve as another
puzzle piece for implementation in personalized medi-
cine as a biomarker for adapted treatment modalities in
early stage lung cancer to overcome bad prognosis has to
be proved in further studies.
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