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CANCER

Matching cell lines with cancer type and
subtype of origin via mutational, epigenomic,

and transcriptomic patterns

Marina Salvadores', Francisco Fuster-Tormo'?, Fran Supek1’3*

Cell lines are commonly used as cancer models. The tissue of origin provides context for understanding biological
mechanisms and predicting therapy response. We therefore systematically examined whether cancer cell lines
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exhibit features matching the presumed cancer type of origin. Gene expression and DNA methylation classifiers
trained on ~9000 tumors identified 35 (of 614 examined) cell lines that better matched a different tissue or cell type
than the one originally assigned. Mutational patterns further supported most reassignments. For instance, cell lines
identified as originating from the skin often exhibited a UV mutational signature. We cataloged 366 “golden set” cell
lines in which transcriptomic and epigenomic profiles strongly resemble the cancer type of origin, further proposing
their assignments to subtypes. Accounting for the uncertain tissue of origin in cell line panels can change the
interpretation of drug screening and genetic screening data, revealing previously unknown genomic determinants

of sensitivity or resistance.

INTRODUCTION

Cell lines are an important research tool, often used in place of
primary cells and intact organisms to study biological processes.
Cell lines are used for various applications such as testing drug
metabolism and cytotoxicity, study of gene function, generation of
artificial tissues, and synthesis of biological compounds (1). In
cancer research, cell lines derived from tumors are commonly used
as models, because they are presumed to carry the genomic and
epigenomic alterations that arise in tumors (2). To understand the
response of tumors to therapy, many studies have linked genetic
and/or epigenetic alterations with drug response across cell line
panels, generating datasets such as the Genomics of Drug Sensitivity
in Cancer (GDSC) (3) and the Cancer Cell Line Encyclopedia (CCLE)
(4). These efforts have advanced our understanding of tumor biology
by generating a massive resource of genomic, transcriptomic,
epigenomic, and drug response data for hundreds of cell lines (2).

As a model for cancer, cell lines are cost-effective, convenient,
and amenable to high-throughput screening (1, 2). However, a major
question associated with the use of cell lines is whether they are repre-
sentative of the cancer they are meant to model, which may be
complicated by issues of misidentification (1, 2, 5).

Misidentified cell lines may lead to inconsistent conclusions across
studies using the affected cell lines. For instance, the cell lines re-
ferred to as HEp-2 and INT 407 in the literature are commonly
cross-contaminated with HeLa (cervical cancer) cells, rather than
being laryngeal cancer and normal intestinal epithelium cells, re-
spectively (6, 7). Because of the potential for contamination, demon-
strating cell line identity via genetic markers is now a routine
quality-control step. Current resources based on large-scale cancer
cell panels are therefore largely unaffected by this issue (4).
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However, even if the genetic identity of the cell line is correct, its
properties may not match the cancer type it is meant to model. In
particular, the tissue of origin might be incorrect. One way in which
this error could arise is that tumors thought to originate in a cer-
tain tissue might be metastatic lesions originating from a distal site
(8). Cell lines derived from these tumors would have a different tissue/
cell type identity than that assigned at isolation, constituting a case
of mislabeling. It is conceivable that, also in the case of primary tu-
mors, ambiguous histological or anatomical features may cause the
tumor type or subtype to be misdiagnosed and therefore also for a
cell line derived from that tumor. Furthermore, the process of es-
tablishing the culture might select for a rare cell type that is not
representative of the tumor isolate on the whole, meaning that the
derived cell line would again effectively be mislabeled with a differ-
ent cell type (9). In addition to the initial changes upon adaptation
to culture, cell lines evolve over time due to selection and due to ge-
netic drift, potentially diverging from the characteristics of the origi-
nating tissue (I).

Tissue and/or cell type is a key determinant of response of cul-
tured cells to a variety of experimental conditions, including drug
exposure and genetic perturbation (10, 11). Therefore, having accu-
rate information on the tissue and cell type identity of a tumoral cell
line is important for interpreting the experimental results obtained
using these cell lines.

Recent work has examined cell line panels of certain cancer
types, showing discrepancies between the features of cell lines and
corresponding tumor types or subtypes. For example, a gene ex-
pression analysis of lung tumors and lung cell lines (9) suggested
that some lung adenocarcinoma cell lines did not resemble adeno-
carcinoma tumors but instead clustered with other lung tumor subtypes
(small cell and squamous cell tumors). A study of high-grade serous
ovarian cancer cell lines that used gene expression, driver gene
mutations, and copy number alteration (CNA) data reported that
two frequently used cell lines showed poor genetic similarity to
molecular profiles of this ovarian cancer subtype (12). A study of a
panel of renal cancer cell lines compared their CNA to kidney
tumors, finding that some cell lines used as models of the clear cell
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carcinoma more closely resemble papillary renal cell cancer (13).
These examples highlight the need to systematically identify the cell
lines whose genotype and/or molecular phenotypes do not resem-
ble the characteristics of the matched human tumor type. A major
challenge in the use of human tumor molecular data to classify cell
lines are the widespread global changes in gene regulation between
cell lines and tumors that arise in cell culture conditions.

We performed a systematic analysis that aligned mRNA expression
and DNA methylation data between ~600 cancer cell lines and ~9000
tumors from 22 different cancer types, adjusting for global differ-
ences in transcriptomes and epigenomes. Classifiers trained on
human tumor mRNA and DNA methylation profiles were used to
identify those cell lines whose genomic and epigenomic profiles are
highly consistent with human tumors of their declared cancer type
of origin. Conversely, we used the same classifiers to identify those
cell lines that might be mislabeled with an incorrect cancer type or
that might have diverged from their original tissue and/or cell type
identity. Our data suggest that tens of cell lines might be epigenetically
and/or genetically not consistent with their stated tissue or cell type
of origin, which is an important consideration for experiments that
use these cell lines. We demonstrate this by reanalyzing associations
between drug sensitivity and genetic variation in a large panel of cell
lines. After explicitly accounting for putative cases of cell lines with
mislabeled tissue identity, many previously unknown associations
of genes with drug sensitivity or resistance were revealed.

RESULTS
Identification of tissue/cell type of origin for cell lines by
a joint analysis with tumors
The tissue that originated a tumor is well known to be a major
determinant of drug responses, including drugs targeted to specific
genetic mutations, both in vitro (10, 11) and in vivo (14, 15). Tissue
of origin is an important factor in shaping the networks of genetic
interactions in cancer (16), and it also determines the phenotypes
resulting from genetic perturbation (11). Therefore, ascertaining
the tissue/cell type identity of cell lines is relevant for interpreting
results of various experiments. For this reason, here, we have
systematically examined the global features of the transcriptome
and epigenome to identify the tissue of origin of tumoral cell lines.
During the process of adaptation to cell culture, the cells under-
go changes in gene regulation that affect many genes (17, 18). The
global alterations in gene expression and DNA methylation mean
that it is not straightforward to directly compare cell line transcrip-
tomes and epigenomes with data obtained from tumors. To adjust
for these cell culture-associated shifts, we introduce a computational
methodology—HyperTracker—which can unify transcriptome,
epigenome, and mutational data across tumors and cell lines and
provide robust predictions of tissue, cell type, and subtype identity.
In particular, we collected gene expression [RNA sequencing
(RNA-Seq)] and DNA methylation data (microarrays) for 9681 and
9039 human tumors, respectively (TCGA), and additionally for
614 cell lines (CL) of various solid cancer types and 69 CL of blood
tumors. For gene expression data (GE), we examined transcript-per-
million (TPM) normalized counts for the 12,419 genes, where
RNA-Seq data could be linked between cell lines and tumors. For DNA
methylation data (MET), we examined beta values for 10,141 probes
from methylation arrays after selecting a single probe per gene pro-
moter with the highest variance across the dataset. To align human
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tumor and cell line data, we quantile-normalized the data and applied
ComBat, a batch effect correction method (19), which is highly
performant compared to other related methods (20). In brief, ComBat
estimates parameters for location and scale adjustment of each batch
(TCGA and CL in our case) for each gene. Then, it removes the
variability that is particular to the CL but not present in TCGA,
while retaining the intra-dataset variability of the tumors, which
should presumably be evident in both the tumor and in the cell line
datasets.

A principal components analysis (PCA) in the data (before and
after adjustment) suggests that there were strong global differences
between TCGA and CL, which are largely removed by our approach
(Fig. 1A and fig. S1A). To quantify this, we calculated the effect size
(Cohen’s d statistic) for each gene/probe between TCGA and CL
before and after adjustment. It can be observed that these differences
are reduced to the minimum after adjustment (fig. S1C). In addition,
we trained a classification model that predicts the CL versus TCGA
origin of the data points based on GE and MET (Fig. 1B and fig.
S1B). The model is able to distinguish CL versus TCGA perfectly
when using the preadjustment datasets [area under the receiver
operating characteristic (ROC) curve (AUC) = 1/area under the
precision-recall (PR) curve (AUPRC) = 1], while the post-adjustment
datasets do not perform better than random (~0.5 for AUC and ~0
for AUPRC), suggesting that the cell type-specific signal has been
largely removed. Last, we tested the optimal number of features
(genes/probes) using tumor classifiers and calculating the accuracy
in the cell line data (table S1A); we selected 5000 features with the
highest SD for subsequent analyses.

Once the data were aligned, we set out to determine which cell
lines have tissue identity not matching the declared tissue of origin
(henceforth, “suspect set”) and, conversely, which cell lines have
largely retained their tissue identity (henceforth, “golden set”), by
comparing against a large set of tumors from 17 tissues in the TCGA
(Fig. 1C). Using TCGA data, we derived one-versus-rest classifica-
tion models (using ridge regression), separately for the GE and the
MET data. These two data types were used because they yielded
higher accuracies for the one-versus-rest setting than the four different
mutation-based classifier types we tested (fig. S1G); the mutation-
based classifiers were nonetheless useful for subsequent validation
analyses (see below). Some pairs of cancer types were considered
jointly based on their overall similarity, for example, stomach
adenocarcinoma (TCGA code: STAD) and esophageal adenocarci-
noma (subset of samples from TCGA code: ESAD); see Materials
and Methods for a full list. Our study examines solid cancer types
and blood cancers in separate analyses.

Differential tumor purity across the TCGA does not have a
notable bearing on our tissue classification: Accuracies of models
from higher-purity tumor samples were similar to models from
other tumor samples (fig. S1D). Moreover, introducing GE data of
healthy tissues [from Genotype-Tissue Expression (GTEx)] into a
joint analysis with the TCGA tumor data did not further improve
the GE classifier (fig. S1F). GE data from healthy tissues, considered
by themselves, were less informative for assigning cancer cell lines
to tissues of origin than GE data from tumors (fig. S1E), consistent
with a tumoral origin of the cell lines.

Next, we obtained predictions of cancer type identity for each
cell line. For every cancer type, we split TCGA data randomly into
training and testing sets, and we used the calculated PR curve of the
TCGA testing dataset to obtain the precision score for every cell line
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Fig. 1. Methodology for data alignment and cancer type classification. (A) Principal component (PC) 1 and PC2 of a PCA, in the gene expression (GE) data, before
adjustment for batch effects (raw data) and after adjustment [quantile normalization (QN) + ComBat] [see fig. S1 for PCA of DNA methylation data (MET)]. Colors represent
the dataset sources (GDSC and CCLE are two sources for the cell line data, and TCGA is the source for the tumor data). (B) ROC curves for classifying tumors versus cell lines
in the data before adjustment (orange) and after adjustment (blue) for GE and MET. (C) Schematic overview of the HyperTracker methodology. First, we systematically
identified possible mislabeled cell lines using GE and MET data, independently. Second, we used various types of mutation-based data to corroborate the predictions.
Third, we further validated the cell lines (CL) suspected to originate from skin using independent data, such as drug sensitivity. CT, cancer type.

(details in Materials and Methods; all TCGA-derived precision
score values are listed in table S1, B and C). The higher the precision,
the more likely the cell line is to belong to that particular cancer
type. As expected, most of the cancer type labels of the cell lines
match the declared tissue of origin of that cell line—they tend to
cluster at high precision values for the cognate cancer type (red dots
in Fig. 2A and fig. S2). However, among these many correctly clas-
sified cell lines (red dots), there are some with similarly high preci-
sion scores, but which were originally annotated as belonging to
another cancer type (Fig. 2A, blue dots with labels shown). A cluster-
ing analysis of the GE and MET values for the genes with the highest
weights in the classification models (Fig. 2B and fig. $3) showed
that the samples generally cluster by cancer type, but not by CL versus
TCGA label. Moreover, we observed that the suspect cell lines (i.e.,
cell lines with highly confident precision scores to a different cancer
type) tend to cluster with the newly assigned cancer type, rather than
with the original one (Fig. 2B).

In further analyses, we designated as the golden set those cell
lines that have precision >0.7 (see fig. S4 and Materials and Methods
for threshold selection) for both GE and, independently, MET in
their originally declared cancer type (1 = 366 of 614 examined cell
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lines, 60%). For these cell lines, two independent types of evidence—
transcriptomes and epigenomes—support that they match their
expected cancer type well, suggesting that these cell lines would be
preferred experimental models. Further, we designated as the “silver
set” those cell lines that have precision >0.7 for one classifier (either
GE or MET but not both) (n = 131 of 614, 21%). From the remaining
117 cell lines, we selected as suspect set those CL that exhibit a pre-
cision of >0.7 for both GE and for MET, but for a different cancer
type than declared for that cell line (n = 43 of 614, 7% of analyzed
cell lines) (Fig. 2C and fig. S4C). This set of cell lines may consist
either of mislabeled cell lines, where the cancer type of origin is dif-
ferent than initially thought, or of heavily diverged cell lines, where
the genomic and/or epigenomic alterations accumulating during
culture have overridden the original cancer type identity. Notably,
cell line cross-contamination issues (21) cannot commonly underlie
the trends we observe, because the repositories that provided GE
and MET data have used genetic markers to ascertain the identity of
the cell lines (4). The fact that two classifiers based on independent
data types—one transcriptomic and one epigenomic—reached the
same predictions adds confidence that these are bona fide cases of
mistaken tissue/cell type identity. In case of blood cancer classifiers,
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Fig. 2. Detection of cell lines suspected to be mislabeled with a different cancer type. (A) TCGA-based precision scores for 614 cell lines were calculated in the MET
and GE cancer type classifiers (one-versus-rest) and for 69 blood cancer cell lines. The higher the precision, the higher the confidence that the sample belongs to that
particular cancer type (here, showing cases of SKCM, KIRC, and CRAD from left to right; see fig. S2 for the other cancer types). The cell lines that were originally annotated
as the cancer type that is being tested are shown in red, and the rest in blue. (B) Heat map showing the 25 genes (GE) and CpG probes (MET) with the highest absolute
values of ridge regression coefficients for each of the cancer types in the plot in one-versus-rest classifiers. The suspected skin cell lines are labeled. The cancer types
shown are the suspected cancer type [melanoma (SKCM) in this case] and, additionally, the originally declared cancer types of the suspected cell lines [here, esophagus
and stomach cancer (ESTAD), sarcoma (SARC), colorectal cancer (CRAD), and ovarian and uterus cancer (GYNE)]. See fig. S3 for the heat maps for the rest of the suspected
cell lines. (C) Overview of the results from the systematic mislabeling testing of all cell lines. Cell lines with a TCGA_precision > 0.7 to its original cancer type in (i) both in
GE and in MET are assigned to the golden set group and (i) either in GE or in MET are assigned to the silver set. If, however, the TCGA-based precision > 0.7 to a different

cancer type in GE and in MET, the cell line is assigned to the suspect set.

which were highly accurate in distinguishing myeloid and lymphoid
lineages, there were no cell lines suspected to be mislabeled between
the lineages (fig. S2B).

Validation of individual examples of suspected mislabeled
cell lines using genomic classifiers

We detected 43 cell lines that bear both transcriptomic and epigenomic
features of a different cancer type than the one they were originally
annotated with. We next turned to support individual examples of
reassigned tissue identity by analyzing independent data. In partic-
ular, we used genomic sequence-based classifiers, which are able to
predict the tissue of origin based on somatic mutation patterns
(22, 23), in particular, the trinucleotide mutation spectra and the
presence of oncogenic mutations and CNA profiles (22, 23). In this
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validation setting, we applied these genomic classifiers to a problem
of one-versus-one classification, where we contrasted the originally
assigned cancer type versus the newly proposed cancer type for each
reassignment. We found that these one-versus-one classifiers based
on genomic data had satisfactory accuracy with whole-exome
sequencing (WES) datasets that we used [fig. S5; notably, our recent
work (22) suggests that whole-genome sequences, when available,
would provide more powerful classifiers that draw on regional muta-
tion density (RMD) patterns].

For the 43 examples of suspect cell line tissue identity, we first
derived one-versus-one classification models separately for GE and
MET and prioritized reassignments that were consistently observed
across multiple runs of the classification algorithm. We randomized
the labels to obtain a background model of expected values of the
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consistency score for the reclassification (Fig. 3B and fig. S6A).
From the 43 suspect cell lines, 35 are consistently reassigned to the
other tissue (score > 10) (Fig. 3A and fig. S6B). Next, we calculated
the same score for the genomic classifiers (based on mutations and
CNA, as described above) on these 35 suspect cell lines (Fig. 3A).
Of these, approximately two-thirds (n = 22 cell lines) received
high support for the new tissue label by one or more genomic
classifiers [Fig. 3A; consistency score > 15, corresponding to
randomization-based false discovery rates (FDRs) of 0, 0, and 18%
for the CNA, OGM, and MS96 classifiers, respectively; Fig. 3B].
These data suggest that 22 cell lines are candidates for assignment to
another cancer type, based on converging evidence from the levels
of the genome, epigenome, and transcriptome, which provides

A Genomic B

higher confidence. Reassuringly, this list contains two cell lines that
have been previously shown to be misclassified: SW626, which was
initially annotated as ovarian cancer but later discovered to be
derived from colon cancer (24), and COLO741, which was originally
thought to be a colon adenocarcinoma cell line but later shown to
originate from a melanoma (25). The fact that these two known
examples were detected and reassigned to the correct cancer type
provides evidence that our HyperTracker method is overall reliable.

The two plausible reasons why a cell line thought to originate
from one cell type would be reassigned to a different cell type are (i)
that, at the time of isolation, the cell line was not of the type that it
was thought to be (mislabeling) and (ii) that, during prolonged cell
culture, the cell line diverged greatly and now resembles another
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Fig. 3. Additional evidence supporting tissue identity of the suspected mislabeled cell lines. (A) Prediction consistency score (0 to 20) for each suspected cell line
for 20 runs of one-versus-one classifiers that predicted suspected versus original cancer type in GE, MET, CNA, trinucleotide mutation spectrum (MS96), and oncogenic
mutations (OGM). A value of 20 means that the cell line is predicted as suspected consistently in the 20 runs of the classification algorithm, and a value of 0 means that it
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name label.
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cell type (transdifferentiation). Our data allow us to examine how
prevalent each case is: Mislabeling is expected to be reflected equally
in both the epigenome and the genome, while transdifferentiation is
expected to be reflected more strongly in the (presumably more
malleable) epigenome, and less so in the genome, which retains the
mutations from the original tumor. We suggest that mislabeling at
isolation is a much more common scenario (Fig. 3C, many reassigned
cell lines are in the upper right corner). However, it is possible that
there exist individual examples of cell lines that have effectively
transdifferentiated during culture, because their genomic features
are consistent with the original tissue identity, while the epigenomic
features are consistent with another tissue (Fig. 3C, lower left corner;
e.g., the RPMI2650 and OACMS51 cell lines are possible candidates).

Validation of cell lines suspected to originate from the skin
From the previous analysis, we identified six cell lines that are reas-
signed from various cancer types to skin cancer. We note that, of
skin cancers, the TCGA study contains only melanoma but not the
nonmelanoma skin cancers, so we were not able to distinguish
between cell type identities of different skin cancers.

To further support that these cell lines are skin cells, we performed
an independent analysis based on mutational signatures. Large-scale
analyses of trinucleotide mutation spectra across human tumors
have revealed at least 30 different types of mutational signatures
(26). Of these, signature 7 (C>T changes in CC and TC contexts)
was associated with exposure to ultraviolet (UV) light and is highly
abundant in sun-exposed melanoma tumors (27). The same signa-
tures were recently estimated in cancer cell lines (28, 29), which
enabled us to use the existence of UV-linked signature 7 to examine
whether these cell lines originated from the skin. On the basis of
mutational burden of signature 7, the known melanoma cell lines
are clearly separated from the rest (Fig. 3E), meaning the approach
can distinguish skin-derived cells. Among the melanoma cell lines
with high mutational burden of signature 7, we found four of five of
the suspected cell lines (Fig. 3E), in particular, GCT, SW684, ES2,
and MDSTS8 are very likely skin cell lines, and not sarcoma, sarcoma,
ovarian cancer, or colorectal cancer, respectively, as originally thought.
For the sixth suspected cell line COLO741, the mutational signature
data are not available; however, COLO741 has previously been
reported to express skin-specific genes (25).

The RF48 cell line (originally considered stomach, here putatively
reassigned to skin) does not exhibit the UV signature or the DNA
methylation patterns of skin; therefore, a highly confident call cannot
be made. Nonetheless, a pattern of cancer driver mutations in RF48
suggests that it is not a stomach cell line (Fig. 3A). Previous work
based on gene expression proposed a lymphoid origin for RF48 (30).

Next, we sought to substantiate these findings using drug sensi-
tivity data. In particular, two drugs (dabrafenib and trametinib) that
target mutant BRAF are approved for treating melanoma in the
clinic. These drugs are known to have poor efficacy in other cancer
types bearing BRAF mutations, such as in colon cancers (31).
Therefore, sensitivity to these drugs adds confidence that we are
looking at a melanoma cell line (note that the converse does not
necessarily hold here: resistance does not imply that the cell line is
not a melanoma). Therefore, we compared the median inhibitory
concentration (ICs) of these two drugs for all cell lines (Fig. 3D). As
expected, many melanoma cell lines cluster at low values of ICs, for
the two drugs, meaning that these cells are sensitive to the drug.
This includes two of five of our suspected cell lines (ES2 and
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MDSTS8), providing further supporting evidence that these are of
skin, likely melanoma, origin.

In conclusion, out of six cell lines suspected to originate from
skin, four were confirmed by the UV mutational signatures and
two were additionally confirmed by the drug sensitivity to BRAF/MEK
(mitogen-activated protein kinase kinase) inhibitors. This notable
example demonstrates how the transcriptome- and epigenome-based
tissue/cell type classifiers are able to link cultured human cell lines
with their correct cancer type of origin.

In addition to these examples of skin cell lines, we were able to
support several other cancer type reassignments using drug sensi-
tivity (results are summarized in table S1D) (32). The DANG cell
line is consistent with squamous cell carcinoma of the lung or of the
head and neck (SCC), rather than with its original assignment of
pancreatic adenocarcinoma (notably, this reassignment is also ob-
served with multiple genomic classifiers; Fig. 3A). Similarly, SW1710
may be a kidney, rather than a bladder, cell line, based on the original
reassignment via transcriptome and epigenome, supported by the
mutation patterns (Fig. 3A) and additionally supported in the global
analysis of drug responses (table S1D). We note that such analyses
of drug screening data can be applied to distinguish only certain
pairs of tissues and not all reassignments can be reliably validated in
this test (see AUC scores in table S1D).

Identification of subtypes for cell lines using

multi-omics analyses

Tumors are heterogeneous, and major differences exist between
tumor samples of the same cancer type. To manage this variability,
cancer types are subdivided on the basis of their molecular charac-
teristics, including global patterns in gene expression and DNA
methylation (33-35). However, with the exception of a few tumor
types, prominently breast cancer, molecular subtypes are still being
established or refined, often with the goal of better predicting
disease progression in response to particular treatments. Because
drug screens and genetic screens performed on cell line panels have
the goal of serving as models for actual tumors, it is useful to be able
to transfer the subtype assignments from tumors to cell lines, thereby
establishing which cell lines are the most appropriate model for
each cancer subtype.

Previously, molecular subtypes from tumors have been inferred
in cell lines using different strategies, often based on gene expres-
sion, for example, in breast (36), colorectal (37), and renal cancer
(13). In a recent pan-cancer study, subtypes have been assigned to a
set of 600 cell lines (38).

Our approach to assign subtypes to cell lines is to apply the same
strategies that yielded accurate cancer type classifiers: first, the inte-
gration of transcriptomic and epigenomic data to boost confidence
in the predictions, and second, careful adjustment of the datasets to
make them comparable between TCGA tumors and cell lines (fig. S1).
An important consideration here is the lack of known labels needed
to assess accuracy; thus, assignments should be treated as tentative.
However, for breast cancer cell lines, the subtype labels are available
and can be used as a benchmark (36).

We examined subtypes proposed for 15 cancer types in the
TCGA and generated subtype classifiers (see Materials and Methods)
for each cancer type. The combination of both data types (GE and
MET) achieved a higher cross-validation accuracy in the TCGA
(median AUPRC across cancer types: 0.81) than GE (0.76) or MET
(0.72) individually. Therefore, we used the combined datasets to
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generate subtype classifiers and propose assignments of the cell
lines to cancer subtypes. Most were uniquely assigned to a single
subtype (fig. S7A); we used only those in further analysis. As a
benchmark, we calculated the accuracy for the breast cancer cell
lines with subtypes available (fig. S7B): The median AUPRC across
subtypes for CL is 0.83. This suggests acceptable performance in
obtaining tentative subtype assignments for cell lines in all 15 cancer
types, which we provide in table S1E. This resource is complemen-
tary to a recent set of subtype predictions for nine cancer types
based on transcriptomes (38).

Next, we examined whether the relative prevalence of subtypes is
similar between tumors and cell line panels of the same cancer type.
Cell line panels of some cancer types have good representation of
subtypes, for instance, lung squamous cell cancer, head and neck
squamous cell cancer, lung adenocarcinoma, and gastric/esophageal
cancers (fig. S7C). However, the converse is the case for liver, skin,
and thyroid cancer cell lines, where a single subtype predominates
in cell line panels, unlike in tumors (statistics are listed in table S1F).
In addition, we observe suboptimal representation (half of the
tumor subtypes are not represented) in the kidney, bladder, and
brain cancer cell line panels, when considering the 463 cell lines we
analyzed. This suggests that, in some cancer types more than others,
the commonly used cell line panels do not represent the diversity of
molecular subtypes in tumors well. One possible reason for this is
the relative ease of culturing certain subtypes compared to others (2).

Accounting for mislabeled cell lines reveals associations

in drug screening data

We detected 35 cell lines that may have a tissue or cell type identity
different than the one originally assigned to them. Because the cell
type is an important determinant of drug response in cancer cell
lines and in tumors (10), we hypothesized that the inclusion of this
new tissue information when searching for genetic determinants of
drug sensitivity may change the results. In a comprehensive study,
Torio et al. (10) searched for associations between drug response
and cancer functional events (CFEs): recurrent mutations, CNA,
and hypermethylation events present in human tumors. Here, we
used GDSCTools (39) to reproduce the results of that study, however,
after filtering the cell lines to those that better represent the cancer
type in question. In particular, we repeated the same analysis using
for each tissue (i) all the cell lines, (ii) only the cell lines in the golden
set (G), and (iii) as a less stringent filtering criterion, only the cell
lines in the golden set and silver set (G&S). In addition, as controls,
we included a random subset of cell lines that matches (iv) the number
of cell lines in golden set (r_G) and (v) the number in “golden and
silver set” combined (r_G&S).

For most of the cancer types, we observed that one of the filtered
subsets recovered a higher number of significant [at FDR < 25%, as
applied in the original study (10)] associations of CFE with drug
sensitivity or resistance than were recovered using all cell lines (fig.
S8A and table S1G). For instance, for glioblastoma, using the golden
set cell lines, we found 23 associations, which were not recovered
from the entire cell line panel or from the random subset controls
(Fig. 4B). For example, this recovers the positive association of
CDKN2A loss with camptothecin sensitivity (Fig. 4C), which was
previously reported in an independent analysis of the NCI-60 cell
line panel screening data (40). Similarly, for pancreatic adenocarci-
noma, benefits were observed by focusing on cell lines that resemble
the corresponding cancer type better: Using only the golden set plus
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silver set cell lines, 10 significant, previously unknown associations
were found (Fig. 4B). For instance, we detected that SMAD4-mutant
cell lines are more resistant to piperlongumine, a natural product that
exerts antitumor properties via multiple pathways (41). Mutations
in the tumor suppressor gene EP300 were associated with higher sen-
sitivity to three drugs in pancreatic cancer cell lines (Fig. 4D). The
observation that more associations were found despite using a
somewhat lower number of cell lines (thus less statistical power)
emphasizes the importance of focusing on the cell lines that more
closely model the tissue and/or cell type of origin of the cognate tumor.

Colorectal cancer provides an illustrative example of the impor-
tance of removing nonrepresentative cell lines from drug screening
efforts. In the original study (10), 50 colorectal adenocarcinoma
(CRAD) cell lines were tested. Of those, we strongly suspected that
MDST8 derives from skin. To test the influence of this individual
mislabeled cell line, we have performed association testing with all
colorectal cell lines and again after excluding MDSTS. For the asso-
ciation between dabrafenib response and BRAF mutation status, we
observed that CRAD cell lines in general (i.e., irrespective of BRAF
mutation) are not sensitive to dabrafenib, except for MDST8, which
is strongly sensitive to dabrafenib (Fig. 4A). The FDR of the analysis
of variance (ANOVA) analysis when using all (allegedly) colorectal
cell lines is significant at 6%, while when removing MDST8 the FDR
for BRAF-dabrafenib association in colon becomes nonsignificant
(45%). Therefore, in this case, the presence of a single mislabeled
cell line is sufficient to cause the appearance of an association
between a drug and a feature, which is likely not relevant for this
cancer type. This is evidenced in the clinical responses of patients:
BRAF-mutant melanoma patients respond well to dabrafenib, while
colorectal tumors with the same BRAF V600 mutation are not
sensitive to BRAF or MEK inhibitor monotherapy (31).

Accounting for mislabeled cell lines in genetic screening
data analyses

Motivated by the associations revealed by reanalyzing the drug
screening data, we asked whether the same extends to genetic
screening data in cancer cell lines, because results in genetic screens
also depend on cell lineage (11). To further investigate, we analyzed
CRISPR screening data from Project Score and Project Achilles (see
Materials and Methods), from which 347 cell lines overlap our tested
cell lines. Then, we applied the same association testing method,
which was, however, underpowered, because the number of avail-
able overlapping cell lines was smaller. Nonetheless, in colorectal
and ovarian cancer (which have the largest number of cell lines in
this dataset), we observed that by focusing only on the golden set
and/or silver set, the number of recovered associations increased
(as a control, there were no increases in randomly chosen cell line
subsets of the same size; fig. S8B and table S1H).

To illustrate the importance of removing suspect cell lines in
gene dependency screenings, we provide two examples of associa-
tions that were originally not significant because of the presence of
a mislabeled cell line. For ovarian cancer, the presence of SW626
[mislabeled cell line confirmed by the literature (24)] prevents find-
ing the association between MEDS8 dependency and a copy number
gain in the region containing ASXLI [“cnaOV72” in (10)] as signifi-
cant (fig. S9A). Similarly, for colorectal cancer, the presence of
MDSTS8 (mislabeled cell line confirmed by the UV mutational
signature) prevents detection of the association between TUBB4B
dependency and a copy number gain in the region containing STK4
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Fig. 4. Drug sensitivity association testing using high-confidence sets of cell lines. (A) Drug sensitivity (ICso) to dabrafenib in all colorectal (CRAD) cell lines (left) and
all CRAD cell lines except MDST8 (right), which is suspected of being skin cancer. Cell lines with a BRAF mutation and without (wild type) are compared. ANOVA FDR for
this association (dabrafenib sensitivity with BRAF mutation status) is shown in blue for both datasets. Horizontal line is shown at 0, because score < 0 implies sensitivity to
the drug. Dots and error bars represent the mean and SEM. (B) Number of significant associations between “CFEs” (includes mutations and CNAs in cancer genes) and
drug associations detected (at FDR 25%) in the ANOVA test for all cell lines (“all”), cell lines in the golden set (“G"), cell lines in the golden plus silver sets (“G&S"), random
subset of cell lines that match the number in the golden set (“r_G"), and random subset of cell lines that match the number in the golden plus silver sets (“r_G&S"). For the
random subsets, the number of significant associations is calculated from 10 random selections and median shown. P values for a sign test (one-tailed) between the
number of associations in the G/G&S and in r_G/r_G&S are shown. See fig. S7 for the remaining cancer types. (C) Differential sensitivity of drugs was analyzed by ANOVA
for all brain cancer cell lines (left) and the brain cancer cell lines in the golden set only (right). Each point is an association between the sensitivity of a drug and a genetic
feature (CFE). (D) Differential sensitivity of drugs was analyzed by ANOVA for all pancreatic (PAAD) cell lines (left) and PAAD cell lines in the golden and silver set only
(right). Each point is an association between the sensitivity of a drug and a genetic feature (CFE). n.s., not significant.

(“cnaCOREAD32”) (fig. S9B). Next, a significant association between
WRN dependency and MLL2 (also known as KMT2D) gene muta-
tion is recovered only with the filtered cell lines in ovarian cancer
(fig. S9C). This WRN-MLL2 association has been recently reported
using a different set of cell lines (from Project Score) (42) that par-
tially overlap our set.

Last, our reanalyses of drug screening and genetic screening data
revealed an interesting association independently supported in
both drug and genetic data. The drug afatinib inhibits the epidermal
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growth factor receptor (EGFR) protein and is clinically indicated
for EGFR-mutated lung cancer; however, in EGFR-altered glioblas-
toma, afatinib is generally not considered to elicit a response (43).
Consistently, afatinib sensitivity was associated with EGFR alterations
in lung cancer previously (10), as well as in our reanalysis (FDR lung
G&S sets = 0.6%), but not in the brain cell line panel (all cell lines,
FDR 2> 25%). However, using the focused (golden set) of brain cancer cell
lines revealed a significant association (ANOVA FDR = 15%; fig. S9D)
between afatinib sensitivity and a different genetic alteration: copy
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number loss in a region at 1p32.3 containing the CDKN2C and
FAFI genes [“cnaGBM68” in (10)]. The same loss at 1p32.3 is asso-
ciated with sensitivity to genetic knockout of EGFR in brain cell line
panels in two independent large-scale genetic screens (Project Scores
and Project Achilles; fig. S9, F and G) and to pharmacological inhibi-
tion in another drug screen (PRISM,; fig. S9E). The meta-analysis of the
two drug screens and two genetic screens suggests high strength
of combined evidence (P = 0.00094, Fisher’s method of combining
P values) linking the CNA loss at 1p32.3 (chrl: 51169045-51472178)
with sensitivity to pharmacological or genetic EGFR inhibition in
brain cells, suggesting a candidate marker for follow-up work.

In summary, the presence of cell lines with dubious or incorrect
labels of tissue identity may strongly affect association studies of
drug or CRISPR screening data in two different ways. First, the
presence of mislabeled cell lines can cause the appearance of spurious
associations that do not reflect the biology of the cancer type of
interest. Second, the presence of mislabeled or divergent cell lines
can prevent the recovery of true associations.

DISCUSSION

Cell lines are commonly used as models for tumors; however, it is
an open question how to best apply the available cell line panels to
learn about cancer biology. The availability of genomic data from
large tumor cohorts and from cell line panels has spurred efforts to
find which cell lines are closer to tumors by their transcriptomic
(9, 37, 38) and/or genomic features (12, 13), presumably making better
models, and which are more distant from examples of actual tumors,
thus making less good models.

Our work addresses a different question: We attempt to detect
the cancer type (i.e., tissue and/or cell type) that originated the cell
line to ascertain whether this matches the declared origin of the cell
line. A mismatch may conceivably stem from the sampling step, for
instance, a metastasis might have a different tissue of origin than
thought at the time of surgical collection. The work-up after collecting
the tumor sample may have inaccurately assigned the cancer type,
based on unclear histological or anatomical features. Another possi-
bility is that the mismatch might stem from the step of adaptation to
cell culture, where a minority cell type that is not representative of
the tumor prevails over other tumoral cells. We consider these to be
cases of cell line mislabeling during isolation. In addition, we would
also detect cases where the cell line might have acquired some prop-
erties of a different tissue/cell type during extended periods in culture;
however, our analyses (Fig. 3C) suggest that this is a less common
occurrence, although individual examples cannot be ruled out.

This phenomenon of tissue/cell type mislabeling is distinct from
well-known and widespread cell line misidentification issues (21),
where one cell line (often HeLa) was mistakenly used in place of
another cell line originating from a different individual, commonly
due to cross-contamination. The cell line panels that provided data
used in our analyses (GDSC and CCLE) have authenticated their
cell lines (4, 42); thus, misidentification/cross-contamination cannot
underlie our observations of mislabeling of the cancer type of origin.
[We note that there were rare cases of misidentified cells reported in
these panels (42); however, these do not overlap our results.]

Methodologically improving over previous work, we introduce
the HyperTracker framework that performs global analyses, which
independently examine transcriptomic, epigenomic, and mutational
features. In addition, we carefully adjust for the known bulk dif-
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ferences between cell lines and tumors, which might have resulted,
e.g., from impurities in tumors or from altered expression of cell
cycle-related genes in cell lines (38). Parallel analyses of different
omics data provide increased confidence in our inferences, which
suggested, remarkably, that 5.7% (35 of total 614 considered cell
lines) exhibit significant transcriptomic and epigenomic features of
a different tissue/cell type than the declared cell type of origin. For
3.6% (22 cell lines), these reassignments to a different cancer type
were additionally supported in at least one type of genomic evidence.
This increased confidence that these were examples of cell lines
with mislabeled (or, less likely, diverged) tissue/cell type identity.
Notable examples are cell lines GCT, SW684, ES2, and MDST8 that
we predict to originate from the skin, based on the presence of
the UV mutational signature, in addition to strong evidence in
transcriptome/epigenome data. These cases are reminiscent of the
recent reports of UV mutational signatures found in some cases of pre-
sumed lung cancers, suggesting that they may instead be metastases
originating from sun-exposed skin (44).

In interpreting our data, an important consideration is that the
cancer sample types in TCGA may not necessarily reflect the full diver-
sity of rarer subtypes within a cancer type, which may cause some
ambiguous predictions. For instance, the ECC10 and ECC12 cell lines
are assigned to STAD cancer type (stomach adenocarcinoma) when
matched with TCGA tumors. These cell lines originate from gastric
small cell neuroendocrine carcinomas. This might explain why, in our
analysis, gene expression patterns point toward brain tissues, while
mutational features suggest stomach cancer. In such cases of disagree-
ment between different types of features, a future use of a more ex-
haustive set of reference tumor data, which includes rarer cancer types,
may resolve the ambiguity and improve confidence in predictions.

The genomic classifiers we used here were based on whole-exome
sequences and were overall less powerful than the transcriptome/
DNA methylation classifiers in our data (figs. S1G and S5). Recent
work by us and others (22, 23) suggest that analyzing whole-genome
sequences of these cell lines would permit use of additional, highly
predictive features based on RMD of chromosomal domains. This
may provide further genomic evidence for the identity of the cell of
origin for the 35 suspected cell lines. Furthermore, targeted experi-
mental follow-up work on these cell lines will provide further
evidence to support or refute our predictions, which are based on
global, multi-omics analyses.

Knowing the correct tissue-of-origin label for a cell line is im-
portant, because this has a strong bearing on the response of the cell
line to drug treatment and to genetic perturbation. We demonstrate
the implications of this general principle to analyses of drug and
genetic screening data: By accounting for suspect cell lines, the power
to discover determinants of sensitivity to pharmacological and to
genetic perturbation may increase substantially for some cancer
types, such as brain, lung, and pancreatic cancers. Therefore, when
designing future screening efforts, it is important not only to increase
the number of cell lines to gain more power but also to focus on the
cell lines that best reflect the tissue and/or cell type of interest.

MATERIALS AND METHODS

Omics data collection and preparation

DNA methylation data

We downloaded DNA methylation data as beta values (platform:
lumina HumanMethylation450) from the GDC Data Portal (45)
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for TCGA samples and from GDSC (3) for CL samples. We filtered
out all probes outside promoter regions and probes with not avail-
able (N'A) values in more than 100 samples. For the probes in pro-
moter regions, we selected only one probe per gene that had the
highest SD across samples. We transformed the beta values to m-values
(log, ratio of the intensities of methylated probe versus unmethylated
probe). In total, this yielded 10,141 features for 942 CL samples
and 8453 TCGA samples.

Gene expression data

We downloaded gene expression data as TPM from GDC Data
Portal (45) for TCGA samples, from GDSC (3) and the CCLE (4)
for CL samples, and from GTEx Portal for healthy data. We filtered
out genes with NA values in more than 100 samples and selected the
overlapping genes between the four sources. We removed low
expressed genes (TPM < 1 in 90% of the samples) and applied a
square-root transformation to the TPM data. In total, we have
12,419 features for 942 CL samples and 9149 TCGA samples.

For both DNA methylation (MET) and gene expression (GE),
we created datasets of different sizes: 1000, 2000, 3000, 5000, and
8000 features by selecting the genes/probes with the highest SD
across TCGA samples. In addition, we downloaded tumor purity data
from Aran et al. (46) and used consensus measurement of purity
estimations (CPE) for creating the groups of high- versus low-purity
samples. High-purity samples were defined as CPE > 0.75, and for
the lower-purity group, we took a subset of samples (same number
of samples that are in high-purity subset) with the lowest purity.
CNA data
We downloaded CNA data (computed by gene) from GDC Data
Portal (45) for TCGA samples and from DepMap (47) for CL sam-
ples. In total, we have 20,491 features for 942 CL samples and 9188
TCGA samples. To reduce the dataset, we selected CNA events in
299 known cancer driver genes (48).

Mutation data

For human tumors, we downloaded mutation data as WES MC3
dataset (49) from the GDC Data Portal for TCGA samples. For cell lines,
aligned short reads (bam files) were obtained from the European
Genome-phenome Archive (ID number: EGAD00001001039). Variant
calling was performed using Strelka (version 2.8.4) with default pa-
rameters. Variant annotation was performed using ANNOVAR
(version 2017-07-16). In samples where Strelka was unable to run, a
realignment was performed using Picard tools (version 2.18.7) to
convert the bams to FASTQ, and following that, the alignment was
performed by executing bwa sampe (version 0.7.16a) with default
parameters. The resulting bam files were sorted and indexed using
Picard tools. To account for germline variants, we removed all
mutations that were present in the gnomAD v2.1.1 database (50) at
an allele frequency of >0.001 in any of the populations. Last, using
the filtered somatic mutations, we calculated three sets of mutational
features: RMD, mutation spectra (MS96), and oncogenic mutations
(OGM) as described by Salvadores et al. (22). RMD features did not
exhibit high accuracy when applied to exome-sequencing data and
so were not considered further in this analysis.

For the cell line samples, we matched their cancer types to the
TCGA cancer types using the cell line metadata from GDSC (3) and
manually annotated those that did not have a TCGA cancer type
label using Cellosaurus (51). Next, we selected the cell lines from
solid tumors that had a matching cancer type in TCGA, yielding a
total of 614 cell lines from 22 cancer types. Blood cancers (LAML
and DLBC) are tested separately, because the cell lines there
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commonly grow in suspension, making them less likely to be
confounded with solid tumors. For further analysis, we merged the
cancer types that were overall similar: HNSC with LUSC and ESCC
(jointly known as SCC), GBM with LGG (LGGBM), STAD with
ESAD (ESTAD), and OV with UCEC (GYNE).

The identification of the cell line samples was performed by the
laboratories generating the cell line databases, using short tandem
repeat analysis (4, 42). They reported a few commonly misidentified
cell lines: Ca9-22, RIKEN, MKN28, KP-1N, OVMIU, and SK-MG-1
(42). These cell lines do not overlap with our suspected samples, and
additionally, the misidentification does not affect tissue or cancer
type of origin.

Data alignment between tumors and cell lines

For the alignment of TCGA and CL data, we first applied quantile
normalization (R package preprocessCore 1.46.0) and next applied
ComBat (R package sva 3.32.1), a batch effect correction method.
We used ComBat as if our dataset was the TCGA and CL data com-
bined, and the batch effects labels were whether a sample belongs to
TCGA or CL (for MET) or a sample belongs to TCGA, GDSC, or
CLLE (for GE). We applied this method for GE, MET, CNA, MS96,
and RMD. For validation, we calculated a PCA, subsampling TCGA
data to match the number of CL samples (stratified by cancer types).
In addition, we calculated Elastic Net classifiers to predict (in the
processed dataset) TCGA versus CL and calculated the AUC and
AUPRC to check whether the process of alignment is being successful
or not. In addition to the chosen adjustment method, we tested other
approaches based on canonical correlation analysis, partial least
squares, and PCA, which did not exceed accuracy of ComBat and
therefore were not examined further.

Cancer type classifiers

For the TCGA dataset, we generated ridge regression model for pre-
dicting the cancer type in a one-versus-rest manner (using cv.glmnet
function with alpha = 0 and family = binomial, R package glmnet
2.0.18). To calculate the accuracy, we trained classifiers in the TCGA
dataset and tested in the CL dataset. In particular, we calculated the
AUC and the AUPRC for each cancer type versus the rest (all the
rest of cancer types combined).

TCGA_precision score

For each cell line, we calculated a TCGA_precision score of belong-
ing to a particular cancer type. For this, we divided the TCGA data
into two datasets (training and testing) of the same size, keeping the
cancer type proportions. For each cancer type, we trained classifiers
in the TCGA training dataset, and we introduced the cell lines one
by one with the testing data and calculated the PR curve (TCGA
testing + 1CL). We set the cell line precision score for that specific
cancer type as the precision at the threshold where the cell line is
situated in the PR curve. Overall, for every cell line, we obtained
17 precision scores, 1 for each possible cancer type. We repeated
this procedure five times and calculated the median precision for
every case to get more robust values. In addition, when training for
one cancer type (label = 1) versus the rest of cancer types combined
(label = 0), we made some exceptions and removed those cancer
types that are similar, and therefore, the classifier is not good at separat-
ing them (e.g., when we calculated precision for ESTAD, we removed
from the rest CRAD and PAAD, all hidden cases in table S1I). This
is conservative with respect to reassigning cell lines to another cancer
type; however, some resolution is traded off, because the more
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closely related cancer types are, by design, not distinguished. We
have further attempted to reclassify cell lines within these hidden
tissues and the combined ones. However, when using one-versus-one
classifiers, the accuracy is not good enough for distinguishing the
two cancer types in the cell lines. We selected TCGA-based preci-
sion score > 0.7 as a threshold to separate the different sets (golden,
silver, and suspected sets), because this cutoff value approximately
maximizes the F1 score for cell line classification (fig. S4A). At the
TCGA-based precision threshold >0.7, the FDRs estimated on the
original cell line labels for gene expression and DNA methylation
classifiers would be 28 and 22%, respectively (fig. S4A); because the
original labels are not always correct, these FDR estimates are con-
servative. Also, by visual inspection of the distribution densities of
putatively correct predictions (originally labeled as the matching
cancer type) and putatively incorrect predictions (originally labeled
as another cancer type) for cell line tissue labels, one can appreciate
how a TCGA_precision >70% threshold separates well the two
groups (fig. S4B).

Once we have a list of suspected cell lines, we have an “original”
cancer type and a “suspected” cancer type. Therefore, we generated
one-versus-one classifiers (original versus suspected) using TCGA
dataset (balancing the classes), and for each suspected cell line, we
checked whether it is predicted as original or suspected. We repeated
this prediction 20 times and counted the number of times a cell line
is predicted as suspected. Therefore, we defined a consistency score
(range between 0 and 20) for every cell line, where 0 means never
predicted as suspected and 20 always predicted as suspected. As a
control, we repeated the same procedure with randomized cancer
type labels, providing estimates of false discovery for different con-
sistency score thresholds (Fig. 3B and fig. S6A). We calculated this
prediction score for GE, MET, CNA, OGM, and MS96 datasets. For
calculating the FDR at a score > 15, we applied the following for-
mula: FDR = FP/(FP + TP), where FP is the number of cell lines
with score > 15 in the randomized data and TP is the number of cell
lines with score > 15 in the actual data.

Independent validation
We downloaded drug sensitivity for the CL from the GDSC
database (3). From the provided drugs, we selected trametinib and
dabrafenib, U.S. Food and Drug Administration-approved drugs
for melanoma treatment. We compared ICs values for these two
drugs for all cancer types.

We downloaded mutational signatures from cell lines available
from Jarvis et al. (29) and Petljak et al. (28), and we compared the
exposures of all cell lines for signature 7 (UV light). In Petljak et al.
dataset, signature 7 is divided into signature 7a, b, ¢, and d. Therefore,
we used the sum of exposures across all four subtypes of signature 7.

We downloaded another set of drug screening data (PRISM 19Q3)
(32) for the CL dataset. For the suspected cell lines, we generated
one-versus-one classifiers (using cv.glmnet function with alpha =0
and family = binomial, R package glmnet 2.0.18) for predicting
original versus suspected cancer type, based on the drug sensitivity
data. We performed 20 runs of each case and counted how many
times it is predicted as suspected (consistency score, which can vary
from 0 to 20). In addition, we calculated the AUC for each classifier.

Subtype classifiers
We downloaded cancer subtypes for the TCGA samples from the R
package TCGAbiolinks 2.12.6, which comprises many available
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molecular subtype classifications that have been described by
TCGA-related publications [nRNA, DNA methylation, protein,
miRNA, CNA, integrative (iCluster), and others]. From those, we
selected the “subtype_selected,” which is the classification that was
chosen as the representative one in that cancer type (usually mRNA
or integrative; see documentation of PanCancerAtlas_subtypes func-
tion for the complete list). We combined the GE and MET datasets
to predict subtypes. For these data, we generated ridge regression
model for predicting the subtypes in a one-versus-rest manner
(using cv.glmnet function with alpha = 0 and family = binomial,
R package glmnet 2.0.18) within each cancer type. We trained models
in TCGA, and we predicted subtypes for the cell lines. In addition,
we used cell line’s subtypes for breast cancer from a previous paper
(36) to calculate the confusion matrix and the AUPRC.

We performed a chi-square test (R package stats 3.6.0) and
calculated the Cramer’s V statistic (R package Isr 0.5) for checking
whether the proportion of subtypes between TCGA and CL is main-
tained for each cancer type.

Drug and CRISPR screening data
We downloaded drug sensitivity and CFE data from Iorio et al. (10).
CEFEs are a collection of recurrent mutations, CNA, and hypermethyla-
tion events present in human tumors (10). We used GDSCTools
(39) to search for associations between the drugs and the CFEs in
every cancer as they did. In particular, we performed this analysis
using for each tissue (i) all the cell lines, (ii) only the cell lines in the
golden set (G), and (iii) only the cell lines in the golden and silver set
(G&S). In addition, as controls, we included a random subset of all
cell lines matching (iv) the number of cell lines in the golden set
(r_G) and (v) the number in golden and silver set combined (r_G&S).
We counted the number of significant hits (at FDR < 25%) for each
of the cancer types. For the controls, we repeated the subsampling
10 times and took the median of significant hits. We compared the
number of hits for all the cell lines (same as in Iorio et al. study) with
the number of hits for the different subsets of cell lines according to
our grouping. In addition, we performed a sign test (R package
BSDA 1.2.0) comparing the significant hits in the G/G&S subsets versus
the significant hits over 10 runs in the random G/random G&S and
calculated the P value for all cancer types (alternative = “less”).
Similarly, we downloaded gene dependency data from Project
Score (42) and Project Achilles (52) processed with the Project
Score pipeline and combined them. From a total of 696 unique cell
lines, 357 overlap with the 614 cell lines tested with our method. For
those 357 tested cell lines, we repeated the same procedure as de-
scribed above for the drug sensitivity data.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/27/eaba1862/DC1

View/request a protocol for this paper from Bio-protocol.
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