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A B S T R A C T   

We deal with the Hamiltonian system (HS) associated to the Hamiltonian in polar coordinates 

H = 1
2

(

p2
r +

p2
ϕ

r2

)

− 1
r −

∊
2r2, where ∊ is a small parameter. This Hamiltonain comes from the correction given by the 

special relativity to the motion of the two-body problem, or by the first order correction to the two-body problem 
coming from the general relativity. This Hamiltonian system is completely integrable with the angular mo
mentum C and the Hamiltonian H. We have two objectives. 

First we describe the global dynamics of the Hamiltonian system (HS) in the following sense. Let Sh and Sc are 
the subset of the phase space where H = h and C = c, respectively. Since C and H are first integrals, the sets Sc, Sh 
and Shc = Sh ∩ Sc are invariant by the action of the flow of the Hamiltonian system (HS). We determine the global 
dynamics on those sets when the values of h and c vary. 

Second recently Tudoran (2017) provided a criterion which detects when a non-degenerate equilibrium point 
of a completely integrable system is Lyapunov stable. Every equilibrium point q of the completely integrable 
Hamiltonian system (HS) is degenerate and has zero angular momentum, so the mentioned criterion cannot be 
applied to it. But we will show that this criterion is also satisfied when it is applied to the Hamiltonian system 
(HS) restricted to zero angular momentum.   

1. Introduction 

In celestial mechanics, the Kepler problem is a special dynamical 
system coming from the two-body problem. In this model, two objects 
move under their mutual Newtonian gravitational force [1]. This 
attractive force varies in size as the inverse square of the separation 
distance between them and it is proportional to the product of the 
masses of the two bodies. This system is used to find the position and the 
velocity vectors of the two bodies at specified time. Using the laws of 
classical mechanics, the solution can be provided as a Kepler orbit 
through finding the six orbital elements. This problem is called the 
Kepler problem in honor of the German astronomer Johannes Kepler, 
after he proposed Kepler’s laws of the motion of the planets and illus
trated the kinds of forces which can provide orbits obeying those laws 
[2]. 

The Kepler problem appears in various fields, some of these are 
beyond the physics, which have been studied by Kepler himself. This 
problem is important in celestial mechanics because the Newtonian 

gravity obeys the law of inverse square distance between two bodies. 
Thus for example, the motion of two stars around each other, the planets 
moving surrounding the Sun, a satellite orbiting a planet, and many 
other examples of orbital motion. The Kepler problem has also a sig
nificant relevance in the study of the motion of two charged particles, 
because Coulomb’s law of electrostatics follows the law of inverse 
square distance too. For Example the hydrogen atom, muonium and 
positronium, which have played serious roles as models of dynamical 
systems to test physical theories and measuring constants of nature, see 
[3–5]. 

The importance of the Kepler problem is not only related to its varied 
applications in different fields of science, but rather to its use in devel
oping some mathematical methods. Thus, this problem has been used to 
develop new methods in classical mechanics, like Hamiltonian me
chanics, the Hamilton-Jacobi equation, Lagrangian mechanics and 
action-angle coordinates. Furthermore, the Kepler and simple harmonic 
oscillator problems are two of the most fundamental problems in clas
sical mechanics. They are also the only integrable dynamical systems 

* Corresponding author. 
E-mail addresses: elbaz.abouelmagd@nriag.sci.eg (E.I. Abouelmagd), juan.garcia@upct.es (J.L.G. Guirao), jllibre@mat.uab.cat (J. Llibre).  

Contents lists available at ScienceDirect 

Results in Physics 

journal homepage: www.elsevier.com/locate/rinp 

https://doi.org/10.1016/j.rinp.2020.103406 
Received 1 May 2020; Received in revised form 23 August 2020; Accepted 11 September 2020   

mailto:elbaz.abouelmagd@nriag.sci.eg
mailto:juan.garcia@upct.es
mailto:jllibre@mat.uab.cat
www.sciencedirect.com/science/journal/22113797
https://www.elsevier.com/locate/rinp
https://doi.org/10.1016/j.rinp.2020.103406
https://doi.org/10.1016/j.rinp.2020.103406
https://doi.org/10.1016/j.rinp.2020.103406
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rinp.2020.103406&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Results in Physics 19 (2020) 103406

2

which have closed orbits for open sets of possible initial conditions. 
The Kepler problem is an unperturbed version form of the two-body 

problem, which must be extended or generalized to include to additional 
forces as perturbations, that represent realistic natural phenomena or to 
obtain precise and accuracy results. Within the frame of anisotropic 
perturbation in [6], the authors have showed that the anisotropic Kepler 
problem is equivalent to two massless particles which move in a plane or 
on perpendicular lines and which interact according to the Newton’s law 
of gravitation. They have also proved that the generalized issue of 
anisotropic Kepler problem and anisotropic two centres problem are 
non-integrable systems. For an analysis of the Kepler problem, specific 
to radial periodic perturbation of a central force field, it has been proved 
the existence of rotating periodic solutions nearly circular orbits [7]. 
Implicit Function Theorem is used to find such solutions. 

The solution of the Kepler problem allowed researchers to investi
gate the unperturbed and the perturbed Lagrange’s planetary motion. 
Thus, these motions were clarified entirely by the classical mechanics 
and the Newton’s law of universal gravitation [8,9]. More recently, the 
perturbed Kepler problem have been investigated by [10,11]. The per
turbed models are not limited to Kepler models but also include the 
restricted three-body problem, which can be reduced to the perturbed 
Kepler problem in some cases [12–14]. 

The Manev Hamiltonian is 

H =
1
2

(

p2
r +

p2
ϕ

r2

)

+
a
r
+

b
r2,

where a and b are arbitrary constants. This Hamiltonian describes the 
motion of a two-body problem, which is governed by the potential a/r +

b/r2, where r is the separation distance between the two bodies and (pr,

pϕ) are the momenta in polar coordinates. 
The analysis of the motion in the two-body problems has a long 

history. Just after the Newton’s work on the two-body gravitational 
problem, some discrepancies appeared between the theoretical motions 
of the pericenters of the planets and the observed ones. Consequently, 
some doubts on the accuracy of the inverse square law of Newton for 
gravitation. Motivated scientists to construct alternative gravitational 
models and corrections trying to reconcile these discrepancies. In fact, 
Newton was the first to consider what we now call the Manev systems, 
see the book I, section IX, proposition XLIV, theorem XIV and Corollary 2 
of the Principia. 

Several authors tried to find or construct an appropriate model with 
the features of the Newtonian one but with the convenient corrections, 
to make closer theory and observation. 

There were several pre- and post-relativistic attempts to get such 
modified models. This is the case of the Manev Hamiltonian introduced 
by Manev in [15–18]. See for more information on the two-body prob
lem, for instance, [19–23]. 

The correction given by the special relativity to the motion of the 
two-body problem, or by the first order correction to this problem 
coming from the general relativity is 

H =
1
2

(

p2
r +

p2
ϕ

r2

)

−
1
r
−

∊
2r2, (1)  

where |∊|≪1 is a small parameter, for details see [24–28]. Note that, 
when ∊ = 0, we have the rotating Kepler problem, for more information 
on this last problem see [29]. 

Note that the Hamiltonian H is a particular case of the Manev 
Hamiltonian H when a = − 1 and b = − ∊/2. 

The Hamiltonian system defined by the Hamiltonian H is 

ṙ = pr , ϕ̇ =
pϕ

r2 , ṗr =
p2

ϕ − ∊
r3 −

1
r2, ṗϕ = 0. (2) 

For a fixed ∊ < 0 small, this Hamiltonian system has the circle of 
equilibria 

{q(ϕ) = (r,ϕ, pϕ, pr) = ( − ∊,ϕ, 0, 0) : ϕ ∈ S1}.

The Hamiltonian dynamical system (2) is perfectly integrable within 
frame the of Liouville-Arnold because it has two independent first in
tegrals the Hamiltonian H and the angular momentum pϕ in involution. 
For more details on perfectly integrable Hamiltonian systems see 
[30,31]. 

The objective of this paper is double. Our first objective is to describe 
the global dynamics of the Hamiltonian system (2) in the following 
sense. Let Sh, Sc are the subset of the phase space, H = h and pϕ = c 
where h and c are the constants of integration. Due to the fact that H and 
pϕ are first integrals, the sets Sh, Sc and Shc = Sh ∩ Sc are invariant under 
the flow of the Hamiltonian system (2). We determine the global dy
namics on those sets when h and c vary. Moreover, we describe the 
foliation of the phase space by the invariant sets Sh, and the foliation of 
Sh by the invariant sets Shc. See Section 2. 

In fact, this first objective is a particular case of the general cases 
studied inside the Manev Hamiltonian H with arbitrary values of a and 
b, see [32]. However, from that work, it is not easy to obtain the global 
dynamics for the particular case a = − 1 and b = − ∊/2, corresponding to 
our Hamiltonian (1). We cover this case in this work. 

Second, we shall show that every equilibrium point q(ϕ) of the 
Hamiltonian system (2) restricted to zero angular momentum is Lya
punov stable. However, our interest in this Lyapunov stability rises in 
showing that the criterion provided recently by Tudoran in [33] which 
detects when a non-degenerate equilibrium point of a completely inte
grable system is Lyapunov stable, also can be extended to the degenerate 
equilibrium points of the completely integrable system (2) restricted to 
zero angular momentum, where the equilibrium points of system (2) 
live, see Section 3. 

2. On the global dynamics 

2.1. Critical points and critical values 

We will consider the notation and terminology of [32], as conse
quence, we suppose that Sh and Sc are the subset of the phase space 
where H = h and pϕ. Science H and pϕ are first integrals, the sets Sh, Sc 

and Shc = Sh ∩ Sc are invariant under the flow of the Hamiltonian system 
(2), i.e. if an orbit of the Hamiltonian system has a point on the set Shc 
then the whole orbit is contained in this set. 

Let r ∈ R+ = (0,∞),ϕ ∈ S1, (pr, pϕ) ∈ R2 and ℵ = R+ × S1 × R2, 
where 

Sh = {(r,ϕ, pr, pϕ) ∈ ℵ : H(r,ϕ, pr, pϕ) = h},
Sc = {(r,ϕ, pr, pϕ) ∈ ℵ : pϕ = c}.

In this case the set of critical points of H is 

C = {(r,ϕ, pr , pϕ) ∈ ℵ : r+ ∊ = 0,ϕ ∈ S1}

since r > 0, then 

C =

{
∅ if ∊⩾0,

− ∊ if ∊ < 0.

}

hence the critical value of H is 1/2∊ if ∊ < 0 

2.2. Hill Regions 

Let ℵ and R = R+ × S1 be the phase space and the configuration 
space of the Hamiltonian system (2), and let Γ : ℵ→R be the projection 
from ℵ to R . Then for each h belongs to real set R, the regions of motion 
Rh (Hill regions) of Sh are defined by Γ(Sh) = Rh, for more details see 
[34,32], hence 
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Rh = {(r,ϕ) ∈ R : −
1
r
−

∊
2r2⩽h}

= {r ∈ R+ : 2hr2 + 2r + ∊⩾0} × S1.

Therefore, if h < 0 then Rh is homeomorphic to 

∅ if ∊ <
1
2h

,

{

−
1
h

}

× S1 if ∊ =
1
2h

,

[

−
1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 2h∊

√

h
, −

1 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 2h∊

√

h

]

× S1 if
1

2h
< ∊ < 0,

(

0, −
1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 2h∊

√

h

]

× S1 if ∊⩾0.

(3) 

If h = 0 then Rh is homeomorphic to 
[
−

∊
2
,∞

)
× S1 if ∊ < 0,

R+ × S1 if ∊⩾0.
(4) 

If h > 0 then Rh is homeomorphic to 
[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − 2h∊
√

− 1
h

,∞
)

× S1 if ∊ < 0,

R+ × S1 if ∊⩾0.

(5)  

2.3. The sets Sh 

Now we determine the topology of the invariant energy levels Sh by 
using the fact: 

Sh = {(r,ϕ, pr, pϕ) ∈ ℵ : g(r, pr, pϕ) = h}
≈ {g− 1(h)} × S1,

where 

g(r, pr, pϕ) =
1
2

(

p2
r +

p2
ϕ

r2

)

−
1
r
−

∊
2r2,

If h is a regular momentum value of the map g : R+ × R2⟶R and the 
set of points {g− 1(h)} ∕= ∅, then the set {g− 1(h)} is a surface in R+ × R2. 
Hence the intersection of {g− 1(h)} with {r = r0 = constant}, is. either an 
ellipse if 1

r0
+ ∊

2r2
0
+ h > 0, or a point if 1

r0
+ ∊

2r2
0
+ h = 0, or the empty set if 

1
r0
+ ∊

2r2
0
+ h < 0. 

From the definition of the energy levels Sh we obtain 

Sh =
⋃

(r,ϕ)∈Rh

ℵ(r,ϕ) (6)  

where 

ℵ(r,ϕ) = {(r,ϕ, pr , pϕ) ∈ ℵ : p2
r +

p2
ϕ

r2 =
1

4r2

(
2hr2 + 2r + ∊

)}
.

For every point (r,ϕ) ∈ Rh the set ℵ(r,ϕ) is an ellipse, a point or the 
empty set if the point (r,ϕ) belongs to the interior of the Hill region Rh, 
to the boundary of Rh, or does not belong to Rh, respectively. Hence 
every energy level Sh of the planar relativistic Kepler problem is ho
meomorphic, from (3) and (6), to 

∅ if ∊ <
1

2h
,

S1 if ∊ =
1

2h
,

S2 × S1 if
1
2h

< ∊ < 0,

(S2 × S1)⧹S1 if 0⩽∊,

if h < 0; and from ()()()(4)–(6) to 

(S2 × S1)⧹S1 if ∊ < 0,
R+ × S1 × S1 if ∊⩾0,

if h⩾0. 

2.4. The sets Sc 

Since Sc = {(r,ϕ,pr,pϕ) ∈ ℵ : pϕ = c}, we get that Sc is homeomorphic 
to R+ × S1 × R for all c ∈ R. 

2.5. The foliation of Sh by Shc 

We can evaluate the invariant set Shc from knowing the set {g− 1(h)}
and 

Shc = Sh ∩ Sc
= Sh ∩ {pϕ = c}
= ({g− 1(h)} ∩ {pϕ = c}

)
× S1 

Hence the foliation of Sh by Shc can be described when h varies 
through the following cases: 

Case 1: h < 0. Then the surface g− 1(h) is the topological plane R2 of 
Fig. 1(a). The curves γhc = {g− 1(h)} ∩ {pϕ = c} for each |c|⩽c1 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(2∊h − 1)/(2h)

√
are homeomorphic to:  

• one component homeomorphic to R if 0⩽c⩽c2,  
• one component homeomorphic to S1 if c2 =

̅̅̅
∊

√
< |c| < c1, and  

• one component homeomorphic to a point if |c| = c1. 

The manifold Sh is homeomorphic to a solid torus without its 
boundary. Hence we can find the dynamics on Sh by rotating Fig. 1(b) 

Fig. 1. When h < 0 : (a) The surface g− 1(h). (b) Manifold Sh/S1.  
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around the e-axis. From this figure we have.  

• one periodic orbit (topologically a circle) Shc for |c| = c1,  
• one two-dimensional torus Shc for c2 < |c| < c1, and  
• one cylinder Shc for 0 < |c| < c2, 

which foliate Sh. 
Case 2: h⩾0 and ∊⩾0. Then g− 1(h) is homeomorphic to a cylinder R ×

S1 see Fig. 2(a), and the curves γhc are formed by.  

• two components each of them homeomorphic to R if c = 0, and  
• one component homeomorphic to R if c⩾0. 

The manifold Sh is homeomorphic to a solid torus without its 
boundary and without its central circular axis. Hence we can find the 
dynamics on Sh by rotating Fig. 2(b) around the e axis. From this figure 
we obtain one cylinder Shc for every c ∈ R⧹{0}, and two cylinders Shc for 
every c = 0, which foliate Sh. 

Case 3: h⩾0 and ∊ < 0. Now g− 1(h) is homeomorphic to a plane R2 

see Fig. 3(a), and the curves γhc are homeomorphic to R. 
The manifold Sh is homeomorphic to a solid torus without its 

boundary. The dynamics of Sh can be obtained by rotating Fig. 3(b) 
around the e axis. From this figure the foliation of Sh is done by the 
cylinders Shc for every c ∈ R⧹{0}. Figs. ()1–3 already have been 
appeared in [32] in a more general context. 

3. On the Lyapunov stability of the equilibria 

Let ϒt(p) be the solution of a differential system (S) such that ϒt(p) =

p, i.e. ϒt(p) is the flow defined by the system (S). An equilibrium point q 
of the differential system (S) is called Lyapunov stable if for each open 

neighborhood U of q, there exists an open neighborhood V⊆U of q where 
ϒt(p) ∈ U for any p ∈ V and any t⩾0. An equilibrium state which is not 
Lyapunov stable is called unstable. 

For ∊ < 0 sufficiently small we restrict the dynamics of the Hamil
tonian system (2) to the space pϕ = 0, where we have the circle of 
equilibria q(ϕ) for ϕ ∈ S1. Then we have the differential system 

ṙ = pr, ϕ̇ = 0, ṗr = −
1
r2 −

∊
r3 . (7) 

This differential system is completely integrable because it has the 
two functionally independent first integrals 

C1 = ϕ and C2 =
1
2

p2
r −

1
r
−

∊
2r2 .

According with [33] for our system (7) a non-degenerate equilibrium 
point is a point which satisfies that the determinant of the Hessian of the 
function C2 is non-zero at that equilibrium, see Definition 3.3 of [33]. 
Then every equilibrium point ( − ∊,ϕ,0) of system (7) is degenerate, 
because the determinant of the Hessian of the function C2 at this equi
librium is zero. Indeed, the mentioned Hessian is 
⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 1

0 0 0

1
∊3 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
(r,ϕ,pr)=(− ∊,ϕ,0)

, (8)  

and clearly its determinant is zero. 
In [33] to a non-degenerate equilibria q is associated a real number 

I(q) as follows. If P(x) is the characteristic polynomial defined by the 
linear part of the complete integrable differential system at q, then 

Fig. 2. When h⩾0 and ∊⩾0 : (a) The surface g− 1(h). (b) Manifold Sh/S1.  

Fig. 3. When h⩾0 and ∊ < 0 : (a) The surface g− 1(h). (b) Manifold Sh/S1.  
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P(x) = (− x)n− 2
(x2 +I(q)) where n is the dimension of the differential 

system, see Theorem 5.4 of [33]. 
In Theorem 5.4 of [33] it is also shown that a non-degenerate equi

librium point q is unstable if I(q) < 0, and in Theorem 5.6 it is proved 
that a non-degenerate equilibrium point q is Lyapunov stable if I(q) > 0. 
From (8) the characteristic polynomial of the linear part of system (7) at 
the equilibrium is ( − ∊,ϕ, 0) is 

λ
(

λ2 −
1
∊3

)

.

So applying the Tudoran criterium (which in fact we cannot apply 
because the equilibrium ( − ∊,ϕ, 0) is degenerate) we obtain that 

I( − ∊,ϕ, 0) = −
1
∊3 > 0. (9)  

because ∊ < 0, and by the mentioned criterium the equilibrium 
( − ∊,ϕ,0) would be Lyapunov stable. 

Now we shall prove that really the equilibrium point ( − ∊,ϕ,0) is 
Lyapunov stable for all ϕ ∈ S1. Consequently we have proved that the 
criterion of Tudoran also works for the degenerate equilibrium points of 
the completely integrable system (7). 

We note that we cannot apply the so-called “Arnol’d stability test” to 
the equilibrium ( − ∊,ϕ,0) because the second condition of that test does 
not hold, see the statement of this test in Theorem 5.5 of [33]. From the 
differential system (7) it is clear that the variable ϕ is constant for any 
solution. So for studying the Lyapunov stability at an equilibrium 
( − ∊,ϕ,0) of system (7) we can restrict to study it at the equilibrium 
( − ∊, 0) of the Hamiltonian system with one degree of freedom 

ṙ = pr , ṗr = −
1
r2 −

∊
r3 . (10)  

with Hamiltonian C2. Since the potential V(r) = − 1/r − ∊/r2 of system 
(10) has the graphic of the Fig. 4, and the minimum of this graphic takes 
place at r = − ∊, recall that ∊ < 0 is fixed and small, it follows that the 
equilibrium point ( − ∊,0) of system (10) is a center, i.e. all the orbits in a 
convenient neighborhood of it are periodic with the exception of the 
equilibrium point (see [35] for more information). Hence given any 
neighborhood U of ( − ∊,0) in the plane (r, pr) there is another neigh
borhood V⊆U of ( − ∊,0) formed by sufficiently small periodic orbits 
surrounding the point ( − ∊,0), and consequently contained in U. Hence 
the equilibrium point ( − ∊, 0) is Lyapunov stable for system (10), and 
consequently for the system (7). 

In summary, we have proved that the degenerate equilibrium points 
of the completely integrable system (7) satisfies the Tudoran criterion 
(see (9)) and are Lyapunov stable. 
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