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Abstract. Given p, q ∈ Z≥2 with p 6= q, we study generalized Abel differential equations

dx

dθ
= A(θ)xp +B(θ)xq,

where A and B are trigonometric polynomials of degrees n,m ≥ 1, respectively, and we are
interested in the number of limit cycles (i.e., isolated periodic orbits) that can have. More
concretely, in this context an open problem is to prove the existence of an integer, depending only
on p, q,m, and n and that we denote by Hp,q(n,m), such that the above differential equation has
at most Hp,q(n,m) limit cycles. In the present paper, by means of a second order analysis using
Melnikov functions, we provide lower bounds of Hp,q(n,m) that, to the best of our knowledge,
are larger than the previous ones appearing in the literature. In particular, for classical Abel
differential equations (i.e., p = 3 and q = 2), we prove that H3,2(n,m) ≥ 2(n+m)− 1.

1. Introduction and statements of main results

The study of the existence of periodic orbits in ordinary differential equations has been an
interesting problem for years in many areas of mathematics, particularly in qualitative theory
of differential equations. In this area of interest, when we focus on planar polynomial vector
fields, one of the most renowned classical problems arises: to know the number and location of
isolated periodic orbits, the so-called limit cycles, in terms of its degree n. The study of this
problem began at the end of the 19th century with the seminal works by Poincaré, but takes its
name after Hilbert because of his famous list of unsolved problems published in 1900. From the
original list of 23 problems, the 16th is still open, in particular its second part. More precisely
(see [26] or [36] for details), the ‘existential’ Hilbert’s 16th problem is to prove that for any n ≥ 2
there exists a finite number H(n) such that any polynomial vector field of degree ≤ n has less
than H(n) limit cycles.

Motivated by 16th Hilbert’s problem, a very related line of research is to investigate the
periodic solutions of scalar differential equations

ẋ :=
dx

dθ
=

k∑

i=0

ai(θ)x
i,

where ai are periodic analytic functions. In this context an isolated periodic solution is called
limit cycle and it occurs that its number increases with k. (The reader is referred to [15] for an
enlightening explanation of this fact.) Linear differential equations have at most 1 limit cycle,
whereas the quadratic ones have at most 2. The latter are known as Riccati equations and
the upper bound follows from the fact that the return map is a Möbius function. Nevertheless
the situation is more intricate for degree three. The well-known trigonometric Abel differential
equation writes as

ẋ = A(θ)x3 +B(θ)x2 + C(θ)x, (1)

being A,B, and C trigonometric polynomials. Pliss [33] proves using the Schwarzian derivative
that if A does not change sign then the maximum number of limit cycles is 3. However it was
Lins-Neto [31] the first to show that, in general, there is no upper bound for the number of
limit cycles. Indeed, he proves that for every positive integer ` there exists an Abel differential
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equation with periodic coefficients having ` limit cycles. He does it by studying the perturbation
ẋ = εA(θ)x3 +B(θ)x2, where both coeficients are trigonometric polynomials of degree `.

In this paper we are interested in the number of limit cycles of generalized Abel equations in
terms of the trigonometric polynomial degree of their coefficients. More concretely, we study
the differential equation

ẋ = A(θ)xp +B(θ)xq, (2)

where A and B are trigonometric polynomials and p, q ∈ Z≥2, with p 6= q. We say that a
solution x = x(θ) of this differential equation is a periodic orbit if it satisfies x(−π) = x(π). As
before, a periodic orbit is called limit cycle if it is isolated in the set of periodic orbits. For fixed
exponents p and q, we define the Hilbert number H = Hp,q(n,m) as the maximum number of
limit cycles that the differential equation (2) can have for any trigonometric polynomials A and
B of degrees n and m, respectively. For the classical Abel equation, i.e., (p, q) = (3, 2), it is
known as the Smale–Pugh problem, see [37]. So far it is even unknown whether H exists. Our
main contribution in the present paper is to provide a lower bound of H that, to the best of our
knowledge, improves the previous ones appearing in the literature. We shall restrict ourselves
to the case n,m ≥ 1 because from the results in [16, 18, 31] the problem is completely solved
when n = 0 or m = 0.

It is proved in [18] that the upper bound for the number of limit cycles of the differential
equation (1) is three provided that A or B does not change sign. The authors use this result
in order to bound the number of hyperbolic limit cycles in some planar polynomial differential
systems. (This idea is also used in many other papers, see [1, 2, 12, 20, 25] for example.) The
natural extension of this result to the equation ẋ = A(θ)xp + B(θ)xq + C(θ)x is considered in
[16] where, under the same hypothesis, it is proved that the upper bound is 5 (respectively, 4)
when max(p, q) is odd (respectively, even). This result, particularised to C = 0, gives Hp,q(n,m)
in case that nm = 0. Therefore, as we explain before, for the the problem that we tackle in the
present paper is natural to assume that n,m ≥ 1. Certainly the problem is much more difficult
when the coefficients A and B do change sign. This is the case studied in [4] where, under
some other hypotheses on the coefficients, it is proved that only one limit cycle exists. Another
upper bounds for the number of periodic solutions are given in [29] under some conditions on
the number of zeros of B(θ). More generally, it is also to be referred the result in [3], where
it is proved that the differential equation ẋ =

∑m
i=0 ai(θ)x

ni , with 1 ≤ ni ≤ n and ai periodic
analytic functions, can have at most 3n − 1 limit cycles provided some transversal conditions
are verified. The extension of the aforesaid Lins-Neto result to generalized Abel differential
equations is also done in [16].

There are also some problems coming from planar polynomial differential systems that can
be brought to a differential equation as in (1) or (2). Among others, the homogeneous nonlinear

perturbations of the harmonic oscillator or the so-called rigid systems (θ̇ = 1), see [10] and [19],
respectively. More recently, it is shown in [5] that Abel differential equations (2) have also limit
cycles of alien type. They are not of small amplitude, like in a Hopf bifurcation, neither arising
by the perturbation of an annulus foliated of periodic orbits. Among the long list of references
to Abel differential equations (there are more than three hundred in the literature) there are
some that reduce real problems to this type of differential equation. In [13] it is computed an
approximation of an unstable limit cycle that appears in an Abel equation arising in a tracking
control problem that affects an elementary, nonminimum phase, second order bilinear power
converter. The authors in [23] study a second order differential equation that describes the
relativistic evolution of a causal dissipative cosmological fluid in a conformally flat space-time.
They reduce this evolution equation to an Abel differential equation. The same authors, in a
more recent work [24], consider quasi-stationary (traveling wave type) solutions of a nonlinear
reaction-diffusion equation, which describes the evolution of glioblastomas. These aggressive
primary brain tumors are characterized by extensive infiltration into the brain and are highly
resistant to treatment. The second order nonlinear equation describing the glioblastoma growth
through traveling waves is reduced to a differential equation of Abel type. The relationship
between the Einstein–Friedmann and Abel equations is studied in [38]. In that work the authors
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demonstrate how the latter might be applied to the inflationary analysis in a spatially-flat
Friedmann universe filled with a real-valued scalar field. They use an Abel equation to provide
the necessary and sufficient conditions for both slow-rolling and inflation are estimated with
respect to the initial value of the field.

Coming back to the original Hilbert’s 16th problem, due to the difficulty to find uniform
upper bounds for even subclasses of polynomial differential systems, some weak versions have
appeared during last decades. One of them was proposed by Arnold [8] and it focus on the study
of limit cycles bifurcating from the period annulus of Hamiltonian systems. Closely related to
this, our approach in order to improve the lower bounds for Hp,q(n,m) when n,m ≥ 1 is to
consider a second order perturbation of the generalized Abel differential equation

ẋ = (sin θ + εP1(θ) + ε2P2(θ))x
p + (εQ1(θ) + ε2Q2(θ))x

q, (3)

where the coefficients of the perturbation are trigonometric polynomials of degrees n and m,
that is

Pi(θ) = bi0 +
n∑

k=1

(
aik sin(kθ) + bik cos(kθ)

)
and Qi(θ) = di0 +

m∑

k=1

(
cik sin(kθ) + dik cos(kθ)

)

for i = 1, 2. We note that the parameter space associated to (2) is R2(n+m+1) and that by

taking (3) we study the perturbation of a specific point, say ξ0 ∈ R2(n+m+1), corresponding to

ẋ = sin θ xp. The coefficients of Pi and Qi, once determined, give a curve in R2(n+m+1) passing
through ξ0 at ε = 0. In what follows, for the sake of convenience, we will treat these coefficients
as parameters too, setting µ = (a,b, c,d) where

a = (a1k, a2k; k = 1, 2, . . . , n), c = (c1k, c2k; k = 1, 2, . . . ,m),
b = (b1k, b2k; k = 0, 1, . . . , n), d = (d1k, d2k; k = 0, 1, . . . ,m).

(4)

Thus µ ∈ R4(n+m+1) although as we already mentioned the ‘ambient’ parameter space is
R2(n+m+1). That being said we denote by x(θ, ρ;µ, ε) the solution of (3) with initial condi-
tion x(−π, ρ;µ, ε) = ρ. One can readily prove (see Corollary 2.3) that the unperturbed system
verifies x(π, ρ;µ, 0) = ρ for all ρ ∈ I := (κp,+∞), where

κp :=

{
−∞, if p is odd,

−(2(p− 1))
− 1

p−1 , if p is even.
(5)

Then, thanks to the analytic dependence of solutions with respect to initial conditions and
parameters, we can write the Taylor series of the Poincaré transition map as

x(π, ρ;µ, ε) = ρ+
∞∑

i=1

εiMi(ρ;µ),

where Mi is an analytic function on I× R4(n+m+1). Setting R+ = (0,+∞) and R− = (−∞, 0),
in our first main result we study the case M1 = 0 and M2 6= 0 assuming that n,m ≥ 1.

Theorem 1.1. The function M1( · ;µ) vanishes identically if, and only if,

µ ∈ L = {µ ∈ R4(n+m+1) : b10 = d10 = · · · = d1m = 0}.
For a fixed µ ∈ L , let K± be the number of zeros of M2( · ;µ) on I ∩ R± taking multiplicities
into account. Then the following properties hold:

(a) If p and q are odd, then K± ≤ n + m. Moreover, there exists µ0 ∈ L such that M2( · ;µ0)
has 2(n+m) simple zeros in I \ {0}.

(b) If p is odd and q is even, then K± ≤ n+m and both equalities do not hold simultaneously.
Moreover:

(i) When p < q, there exists µ0 ∈ L such that M2( · ;µ0) has 2(n + m) − 1 simple zeros
in I \ {0}.

(ii) When p > q, there exists µ0 ∈ L such that M2( · ;µ0) has 2(n + m − 1) simple zeros
in I \ {0}.
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(c) If p is even, q is odd, and p < q, then K+ + K− ≤ n + m. Moreover, there exists µ0 ∈ L
such that M2( · ;µ0) has n+m simple zeros in I \ {0}.

(d) If p is even and, either q is even or p > q, then K+ + K− ≤ n + m + 1. Moreover, there
exists µ0 ∈ L such that M2( · ;µ0) has n+m+ 1 simple zeros in I \ {0}.

Since x(π, 0;µ, ε) = 0 for all ε, note that Mi(0;µ) = 0 for all i ≥ 1 but we stress that the zero
ρ = 0 is not counted in the previous result. That being said, in order to be consistent with the
abovementioned papers on Abel differential equations, we do count this zero limit cycle in our
next main result. Before giving its statement let us mention that in what follows we shall call Mi

the Melnikov function of ith order for the perturbed differential equation (3). These functions
are clearly analytic on I and, by applying the Weierstrass Preparation Theorem, the number of
zeros (multiplicities taking into account) of the first non-identically zero Melnikov function gives
an upper bound for the number of roots of x(π, ρ;µ, ε) = ρ for ε ≈ 0. In other words, it provides
an upper bound for the number of limit cycles that bifurcate from the continuum of periodic
orbits of the unperturbed differential equation. In its turn a lower bound is given by the number
of simple zeros thanks to the Implicit Function Theorem. In short this is how the general lower
bound of the Hilbert number that we give in our next result follows from Theorem 1.1.

Theorem 1.2. The Hilbert number for the Abel differential equation (2) with p = 3 and q = 2
verifies

H3,2(n,m) ≥ 2(n+m)− 1,

where n,m ≥ 1 are respectively the degrees of the trigonometric polynomials A and B. Moreover,
H3,2(1, 3) ≥ 8 and H3,2(4, 1) ≥ 10.

As we explain above, the general lower bound in the first assertion follows by Melnikov theory.
(The Melnikov theory for planar autonomous differential equations is equivalent to the so-called
averaging theory, see [9].) By contrast the second assertion, which improves the bound by one
limit cycle in two particular cases, follows by using Lyapunov constants. In order to make this
clear and to facilitate the reading of the paper, for reader’s convenience we prove the second
assertion separately in an appendix, where we also introduce the basic notions on Lyapunov
constants.

There are two previous papers with results about the Hilbert number of Abel differential
equations that should be referred. Recall that the general lower bound in Theorem 1.2 is obtained
by a second order perturbation in ε. The authors in [6] give lower bounds for H3,2(1,m) and
H3,2(n, 1) by a first order perturbation. On the other hand, the authors in [17] give a lower
bound for Hp,q(n, 1) by a first order perturbation as well.

The paper is organized in the following way. In Section 2 we study the perturbed differential
equation ẋ = h(x)f(θ) + H(θ, x; ε) and we give the expression of its first non-identically zero
Melnikov function (Theorem 2.1). This is a rather general result that, we believe, could be
very useful in the development of further research on the issue. Next, in Section 3, we recall
the notion of Chebyshev system and explain the related basic results. We also state a key
result from [17] that turns out to be very important for our purposes (Theorem 3.4). Section 4
is devoted to show that the Melnikov function M2 for the perturbed differential equation (3)
belongs to an appropriate Chebyshev system (Proposition 4.4). The proofs of our two main
results are given in Section 5. Finally in the appendix we prove by using Lyapunov constants
that H3,2(1, 3) ≥ 8 and H3,2(4, 1) ≥ 10 (Propositions A.2 and A.3, respectively), which improve
in these particular cases the general lower bound that we obtain by using Melnikov theory of
second order. These two lower bounds also improve some previous ones obtained using Lyapunov
constants as well. Here we follow a new approach using first and second order developments of
the Lyapunov constants at some specific parameters having a center. Finally we explain some
numerical evidences in order to increase by using Lyapunov constants the lower bound given in
Theorem 1.2 for H3,2(1, 4) and H3,2(2, 3).
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2. Melnikov functions

In this section we consider the perturbed differential equation

dx

dθ
= h(x)f(θ) +H(θ, x; ε), (6)

where

• h is analytic on R,
• f is a 2π-periodic analytic function with

∫ π
−π f(s)ds = 0, and

• H is an analytic function on R×R× (−ε0, ε0), for some ε0 > 0, such that θ 7→ H(θ, x; ε)
is 2π-periodic and H(θ, x; 0) ≡ 0.

Given ρ ∈ R, let x(θ, ρ; ε) denote the solution of (6) such that x(−π, ρ; ε) = ρ. (We shall
use sometimes the more compact notation xε(θ, ρ) for the sake of shortness.) In this section
we assume that the unperturbed differential equation, i.e., (6) with ε = 0, has a stripe of
periodic orbits. More precisely, that there exists an open interval I of initial conditions such
that x(π, ρ; 0) = ρ for all ρ ∈ I. Note that, due to H(θ, x; 0) ≡ 0, a necessary condition for this
is that

∫ π
−π f(s)ds = 0. Under this assumption, a sufficient condition for the existence of such

an interval is that h vanishes at some point x0 ∈ R. This is precisely the setting that we have
for the perturbed differential equation (3), for which x0 = 0 and, as we will see, I = (κp,+∞)
where κp < 0 is given in (5).

By the analytic dependence of solutions with respect to initial conditions and parameters, the
solution x(θ, ρ; ε) is well defined and analytic for all (θ, ρ, ε) ∈ [−π, π]× U, where U is an open
neighbourhood of I × {0} in R2. We can thus consider the Taylor series of x(π, ρ; ε) at ε = 0,

x(π, ρ; ε) = ρ+
∞∑

i=1

Mi(ρ)εi,

where each Mi is an analytic function on I. We aim to study the fixed points of ρ 7→ x(π, ρ; ε)
that persist for small ε 6= 0 and to this end an explicit expression of the first Mi 6= 0 is needed.
Our first result is addressed to this and in order to state it we introduce some more notation.
We write the Taylor series of the perturbation at ε = 0 as

H(θ, x; ε) =
∞∑

i=1

`i(θ, x)εi.

We also use the differential operator
Θx := h(x)∂x

and denote Θk
x = Θx ◦

(k· · · ◦ Θx. Furthermore we consider the incomplete exponential Bell
polynomials Bn,k(x1, x2, . . . , xn−k+1), which can be defined recursively by means

Bn,k =
n−k+1∑

i=1

(
n− 1

i− 1

)
xiBn−i,k−1,

setting B0,0 = 1, Bn,0 = 0 for n ≥ 1, and B0,k = 0 for k ≥ 1 (see for instance [14, 27]).

Theorem 2.1. If M1 = M2 = · · · = Mn−1 = 0 then Mn(ρ) = 1
n!h(ρ)Ln(π, ρ) for all ρ ∈ I such

that h(ρ) 6= 0, where the sequence {Ln}n∈Z≥1
is defined recursively by means

Ln(θ, ρ) =
n−1∑

i=0

n!

i!

i∑

k=0

∫ θ

−π
Θ k
x

(
`n−i(s, x)

h(x)

)∣∣∣∣
x=x0(s,ρ)

Bi,k
(
L1(s, ρ), L2(s, ρ), . . . , Li−k+1(s, ρ)

)
ds.

Proof. For each (θ, ρ) ∈ [−π, π]× I, let the Taylor series of x(θ, ρ; ε) at ε = 0 writes as

xε(θ, ρ) = x0(θ, ρ) +
∞∑

i=1

Si(θ, ρ)εi.

Notice in particular that, by definition, Mi(ρ) = Si(π, ρ).
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Fix any ρ0 ∈ I such that h(ρ0) 6= 0. We claim that there exists δ > 0 small enough such
that Mn(ρ) = 1

n!h(ρ)Ln(π, ρ) for all ρ ∈ I with |ρ − ρ0| < δ. Clearly, due to the arbitrariness
of ρ0, the result will follow once we prove this claim. With this aim in view note first that
if for a given ρ ∈ I there exists θ∗ ∈ [−π, π] such that h(x0(θ

∗, ρ)) = 0 then x0(θ, ρ) = ρ for

all θ ∈ [−π, π]. Thus, if we denote by Î the connect component of I \ {x ∈ R : h(x) = 0}
that contains ρ0, then h(x0(θ, ρ)) 6= 0 for all (θ, ρ) ∈ [ − π, π] × Î. In other words, setting

Ĩ := {x0(θ, ρ) : θ ∈ [−π, π], ρ ∈ Î }, we have that 0 /∈ h(Ĩ). Accordingly, if

G(ρ) :=

∫ ρ

ρ0

du

h(u)

then G : Ĩ → G(Ĩ) is a well-defined diffeomorphism. One can readily verify that the coordinate
change y = G(x) brings the differential equation (6) to

dy

dθ
= f(θ) + Ĥ(θ, y; ε), with Ĥ(θ, y; ε) :=

H(θ, x; ε)

h(x)

∣∣∣∣
x=G−1(y)

. (7)

For each ρ ∈ G(Î) we denote by yε(θ, ρ) the solution of (7) with initial condition yε(−π, ρ) = ρ.

Due to x0(θ,G
−1(ρ)) ∈ Ĩ, for each fixed ρ there exists ε > 0 small enough such that

yε(θ, ρ) = G
(
xε(θ,G

−1(ρ))
)

for all θ ∈ [−π, π].

Consequently, by continuity, there exists δ > 0 small enough such that if |ρ− ρ0|+ |ε| < δ then

xε(θ, ρ) = G−1
(
yε(θ,G(ρ))

)
for all θ ∈ [−π, π].

Clearly Ĥ is an analytic function in a neighbourhood of any (θ, y, ε) ∈ [−π, π]×G(Ĩ)×{0} and
so we can consider its Taylor series at ε = 0,

Ĥ(θ, y; ε) =

∞∑

i=1

ˆ̀
i(θ, y)εi where ˆ̀

i(θ, y) =
`i(θ, x)

h(x)

∣∣∣∣
x=G−1(y)

. (8)

Let us consider at this point the Taylor series of yε(θ, ρ) at ε = 0, say

yε(θ, ρ) = y0(θ, ρ) +
∞∑

i=1

Ŝi(θ, ρ)εi, (9)

and set M̂i(ρ) := Ŝi(π, ρ), which is well-defined for any ρ ∈ G(Î) such that |G−1(ρ) − ρ0| < δ.
Then, taking the derivative with respect to θ on both sides of the above equality, from (7)
and (8) we get that

∂θŜn(θ, ρ) =
1

n!
∂ nε

( ∞∑

i=1

εi ˆ̀i(θ, yε(θ, ρ))

)∣∣∣∣∣
ε=0

=
1

n!

∞∑

i=1

n∑

k=0

(
n

k

)
dkεi

dεk
∂ n−kε

(
ˆ̀
i(θ, yε(θ, ρ))

)∣∣∣∣
ε=0

=
1

n!

n∑

i=1

(
n

i

)
i! ∂ n−iε

(
ˆ̀
i(θ, yε(θ, ρ))

)∣∣∣
ε=0

.

Accordingly

∂θŜn(θ, ρ) =
n∑

i=1

1

(n− i)! ∂
n−i
ε

(
ˆ̀
i(θ, yε(θ, ρ))

)∣∣∣
ε=0

=
n−1∑

i=0

1

i!
∂ iε

(
ˆ̀
n−i(θ, yε(θ, ρ))

)∣∣∣
ε=0

. (10)

By applying Faà di Bruno’s formula for the chain rule (see [14, 27]) we can assert that

∂ iε

(
ˆ̀
j(θ, yε(θ, ρ))

)
=

i∑

k=0

∂ ky

(
ˆ̀
j(θ, yε(θ, ρ))

)
Bi,k

(
∂εyε(θ, ρ), ∂ 2

ε yε(θ, ρ), . . . , ∂ i−k+1
ε yε(θ, ρ)

)
.
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Thus, on account of ∂ kε yε(θ, ρ)
∣∣
ε=0

= k!Ŝk(θ, ρ), we get

∂ iε

(
ˆ̀
j(θ, yε(θ, ρ))

)∣∣∣
ε=0

=

i∑

k=0

∂ ky

(
ˆ̀
j(θ, y0(θ, ρ))

)
Bi,k

(
Ŝ1(θ, ρ), 2Ŝ2(θ, ρ), . . . , (i− k + 1)!Ŝi−k+1(θ, ρ)

)
.

Therefore, since Ŝn(−π, ρ) = 0, from (10) it follows that

Ŝn(θ, ρ) = (11)

n−1∑

i=0

1

i!

i∑

k=0

∫ θ

−π
∂ ky

(
ˆ̀
n−i(s, y0(s, ρ))

)
Bi,k(Ŝ1(s, ρ), 2Ŝ2(s, ρ), . . . , (i− k + 1)!Ŝi−k+1(s, ρ)) ds.

Recall now that xε(θ, ρ) = G−1
(
yε(θ,G(ρ))

)
= x0(θ, ρ) +

∑∞
i=1 Si(θ, ρ)εi for all θ ∈ [−π, π]

provided that |ρ− ρ0|+ |ε| < δ. Hence, since (G−1)′(y) = h(G−1(y)) by definition,

Mn(ρ) = Sn(θ, ρ)|θ=π =
1

n!
∂ nε

(
G−1

(
yε(θ,G(ρ))

))∣∣∣
ε=0,θ=π

=
1

n!
∂ n−1ε

(
(G−1)′

(
yε(θ,G(ρ))

)
∂εyε(θ,G(ρ))

)∣∣∣
ε=0,θ=π

=
1

n!
∂ n−1ε

(
h
(
xε(θ, ρ)

)
∂εyε(θ,G(ρ))

)∣∣∣
ε=0,θ=π

=
1

n!

n−1∑

k=0

(
n− 1

k

)
∂ n−1−kε

(
h
(
xε(θ, ρ)

))
∂ k+1
ε

(
yε(θ,G(ρ))

)∣∣∣
ε=0,θ=π

=
1

n!

n−1∑

k=0

(
n− 1

k

)
∂ n−1−kε

(
h
(
xε(θ, ρ)

))∣∣∣
ε=0,θ=π

(k + 1)!M̂k+1(G(ρ)),

where in the last equality we use (11) and M̂i(ρ) = Ŝi(π, ρ). If M̂1 = M̂2 = · · · = M̂n−1 = 0 then
only the term for k = n− 1 remains and

Mn(ρ) = h(ρ)M̂n(G(ρ)) = h(ρ)Ŝn(π,G(ρ))

for all ρ ∈ (ρ0 − δ, ρ0 + δ). Note that by arguing recursively we get the same equality assuming
M1 = M2 = · · · = Mn−1 = 0.

It only remains to express Ŝn(θ, ρ) in terms of the solution x0(θ, ρ) of (6). To this end notice
that, on account of (G−1)′(y) = h(G−1(y)) once again, from (8) we get

∂ ky
ˆ̀
i(θ, y) = Θ k

x

(
`i(θ, x)

h(x)

)∣∣∣∣
x=G−1(y)

.

Accordingly, due to y0(θ, ρ) = G
(
x0(θ,G

−1(ρ))
)
, we can assert that

∂ ky

(
ˆ̀
i(s, y0(s, ρ))

)
= Θ k

x

(
`i(s, x)

h(x)

)∣∣∣∣
x=x0(s,G−1(ρ))

.

Taking this into account and setting Li(θ, ρ) := i!Ŝi(θ,G(ρ)) for all i ∈ N, from (9) we obtain

Ln(θ, ρ) = n!Ŝn(θ,G(ρ)) =

n−1∑

i=0

n!

i!

i∑

k=0

∫ θ

−π
Θ k
x

(
`i(s, x)

h(x)

)∣∣∣∣
x=x0(s,ρ)

Bi,k
(
L1(s, ρ), L2(s, ρ), . . . , Li−k+1(s, ρ)

)
ds,

and hence Mn(ρ) = h(ρ)Ŝn(π,G(ρ)) = 1
n!h(ρ)Ln(π, ρ) for all ρ ∈ (ρ0 − δ, ρ0 + δ). This proves

the claim and concludes the proof of the result. �
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Note that if we take ρ̂ ∈ I such that h(ρ̂) = 0 then x0(θ, ρ̂) = ρ̂ for all θ. It happens then
that the function Ln(θ, ρ) is not well-defined at ρ = ρ̂ due to the denominator h(x0(s, ρ)) in its
integrand. However, since Mn is continuous (in fact analytic) at ρ = ρ̂, the limit of h(ρ)Ln(π, ρ)
as ρ tends to ρ̂ exists and is equal to n!Mn(ρ̂). Thus the singularity of h(ρ)Ln(π, ρ) at ρ = ρ̂
is removable. Our next result shows this for the perturbation associated to the differential
equation (3), for which we have ρ̂ = 0. In its statement recall that κp is given in (5).

Remark 2.2. For reader’s convenience we give the first terms in the recurrence of Theorem 2.1.
Since B0,0 = 1, B1,0 = B2,0 = 0, B1,1(x1) = x1, B2,1(x1, x2) = x2, and B2,2(x1) = x21, we get

L1(θ, ρ) =

∫ θ

−π

`1(s, x)

h(x)

∣∣∣∣
x=x0(s,ρ)

ds,

L2(θ, ρ) = 2

∫ θ

−π

(
`2(s, x)

h(x)
+ Θx

(
`1(s, x)

h(x)

)
L1(s, ρ)

)∣∣∣∣
x=x0(s,ρ)

ds,

and

L3(θ, ρ) = 3

∫ θ

−π

(
2
`3(s, x)

h(x)
+ 2Θx

(
`2(s, x)

h(x)

)
L1(s, ρ)

+Θx

(
`1(s, x)

h(x)

)
L2(s, ρ) + Θ 2

x

(
`1(s, x)

h(x)

)
(L1(s, ρ))2

)∣∣∣∣
x=x0(s,ρ)

ds.

Corollary 2.3. Following the previous notation, for the differential equation (3) we have

x(θ, ρ; 0) =
ρ

(
1 + ρp−1(p− 1)(1 + cos θ)

)1/(p−1) ,

so that x(π, ρ; 0) = ρ for all ρ ∈ I = (κp,+∞). Moreover

M1(ρ) = ρp
∫ π

−π

(
P1(θ) +Q1(θ)x0(θ, ρ)q−p

)
dθ

and if M1(ρ) ≡ 0 then

M2(ρ) = ρp
∫ π

−π

(
P2(θ) +Q2(θ)x0(θ, ρ)q−p + (q − p)Q1(θ)S(θ, ρ)x0(θ, ρ)q−1

)
dθ,

where

S(θ, ρ) =

∫ θ

−π

(
P1(s) +Q1(s)x0(s, ρ)q−p

)
ds.

Proof. The statement concerning the unperturbed equation follows from an easy computation.
The second part follows by Theorem 2.1 particularizing the expressions given in Remark 2.2 for
the case f(θ) = sin θ, h(x) = xp, and `i(θ, x) = Pi(θ)x

p +Qi(θ)x
q, for i = 1, 2. �

3. ECT-systems

We begin this section by recalling some properties about Chebyshev systems, then we extend
some results in [17]. All of them will be necessary in order to prove our main results.

Definition 3.1. Let f0, f1, . . . , fn be analytic functions on an open interval I ⊂ R. The ordered
set (f0, f1, . . . , fn) is an Extended Complete Chebyshev system (for short, an ECT-system) on
I if for each k = 0, 1, 2, . . . , n every nontrivial linear combination

α0f0(x) + α1f1(x) + · · ·+ αkfk(x)

has at most k isolated zeros on I counted with multiplicities.
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Definition 3.2. Let f0, f1, . . . , fk be analytic functions on an open interval I ⊂ R. Then

W [f0, f1, . . . , fk](x) = det
(
f
(i)
j (x)

)
0≤i,j≤k =

∣∣∣∣∣∣∣∣∣

f0(x) · · · fk(x)
f ′0(x) · · · f ′k(x)

...
. . .

...

f
(k)
0 (x) · · · f

(k)
k (x)

∣∣∣∣∣∣∣∣∣

is the Wronskian of (f0, f1, . . . , fk) at x ∈ I.

The following is a well-known result (see for instance [28, 32]) that enables to characterize
Chebyshev systems in terms of Wronskians.

Lemma 3.3. (f0, f1, . . . , fn) is an ECT-system on an open interval I ⊂ R if and only if, for
each k = 0, 1, 2, . . . , n,

W [f0, f1, . . . , fk](x) 6= 0 for all x ∈ I.

To study the zeros of the Melnikov functions in Corollary 2.3 we will apply [17, Theorem A],
that we state next for reader’s convenience. In its statement g is an analytic function, Ig is the
connected component of

{
y ∈ R : 1 − yg(θ) > 0 for all θ ∈ [−π, π]

}
containing the origin and,

for each k ∈ Z≥0 and α ∈ R,

Tk,α(y) :=

∫ π

−π

gk(θ)(
1− yg(θ)

)αdθ for all y ∈ Ig. (12)

Theorem 3.4. Consider α ∈ R and n ∈ Z≥0. The following holds:

(a) If α /∈ Z≤0, then (T0,α, T1,α, . . . , Tn,α) is an ECT-system on Ig.
(b) If α ∈ Z≤0, then (T0,α, T1,α, . . . , Tn,α) is an ECT-system on Ig if and only if n ≤ −α.

The following technical lemmas extend some of the results in [17].

Lemma 3.5. If α ∈ R and k ∈ Z≥0, then (yαTk,α(y))′ = αyα−1Tk,α+1(y) for all y ∈ Ig∩(0,+∞).

Proof. This is an easy consequence of the following computation

(yαTk,α(y))′ = αyα−1
∫ π

−π

g(θ)k(
1− yg(θ)

)αdθ + αyα
∫ π

−π

g(θ)k+1

(
1− yg(θ)

)α+1dθ = αyα−1Tk,α+1(y).

�

Lemma 3.6. If α ∈ R \ Z≤0 and n ∈ Z≥0 then

(a)
(
1, yαT0,α(y), . . . , yαTn,α(y)

)
is an ECT-system on Ig ∩ (0,+∞), and

(b)
(
1, (−y)αT0,α(y), . . . , (−y)αTn,α(y)

)
is an ECT-system on Ig ∩ (−∞, 0).

Proof. For the sake of shortness let us prove the first assertion only (the other one follows exactly
in the same way). We claim that, for each k = 0, 1, . . . , n,

W [1, yαT0,α(y), . . . , yαTk,α(y)] = (αyα−1)k+1W [T0,α+1, T1,α+1, . . . , Tk,α+1] (y)

for all y ∈ Ig ∩ (0,+∞). Notice that, by applying Lemma 3.3 and Theorem 3.4, the result will
follow once we show the claim. To this end a computation shows that

W [1, yαT0,α(y), . . . , yαTk,α(y)] = W
[
(yαT0,α(y))′, . . . , (yαTk,α(y))′

]

= W
[
αyα−1T0,α+1(y), . . . , αyα−1Tk,α+1(y)

]
= (αyα−1)k+1W [T0,α+1, . . . , Tk,α+1] (y),

where the second equality follows by applying Lemma 3.5 and the third one by the so-called
Hesse–Christoffel’s identity (see [30, 34] for instance). This proves the validity of the claim and
hence the result follows. �
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4. Melnikov functions for the differential equation (3)

Recall that Corollary 2.3 provides an expression of M2 assuming that M1 = 0. Our goal in
this section is to write it as a linear combination of functions belonging to an ECT-system. This
will be done in Proposition 4.4. With this aim in view we first particularise the integrals Tk,α
defined in (12) with a specific choice of function g and parameter α that is very related with
the solution of the unperturbed system. In order to stress this, and for reader’s convenience, we
introduce the following additional notation

Ik(y) :=

∫ π

−π

gk(θ)(
1− yg(θ)

)αdθ with g(θ) = −(p− 1)(1 + cos θ) and α =
q − p
p− 1

. (13)

Related to this we also define

Ck(y) :=

∫ π

−π

cos(kθ)
(
1 + y(p− 1)(1 + cos θ)

) q−p
p−1

dθ. (14)

As it will be clear in a moment, these integrals constitute the building blocks for the Melnikov
functions of the perturbed differential equation (3). In what follows recall that κp is given in (5).

Proposition 4.1.
(
1, ρq−pI0(ρp−1), . . . , ρq−pIn(ρp−1)

)
is an ECT-system on (κp, 0) and (0,+∞)

for every n ∈ Z≥0. In addition the following equality between linear spans holds

〈1, ρq−pI0(ρp−1), . . . , ρq−pIn(ρp−1)〉 = 〈1, ρq−pC0(ρp−1), . . . , ρq−pCn(ρp−1)〉.

Proof. Note, see (12) and (13), that Ik(y) is Tk,α(y) particularised with g(θ) = −(p−1)(1+cos θ)

and α = q−p
p−1 . One can readily see that in this case the connected component of

{
y ∈ R : 1− yg(θ) > 0 for all θ ∈ [−π, π]

}

containing the origin turns out to be Ig =
(
−1

2(p−1) ,+∞
)

. Moreover, since q−p
p−1 ∈ (−1,+∞) \ {0}

due to p, q ∈ Z≥2 with p 6= q, we have that α ∈ R\Z≤−1. Consequently, by applying Lemma 3.6,

(i)
(
1, yαI0(y), . . . , yαIn(y)

)
is an ECT-system on (0,+∞), and

(ii)
(
1, (−y)αI0(y), . . . , (−y)αIn(y)

)
is an ECT-system on

(
−1

2(p−1) , 0
)
.

Next we make the substitution y = ρp−1. This formally corresponds to compose each function
with ρ 7→ ρp−1, which restricted to (−∞, 0) and (0,+∞) is a diffeomorphism. In the first case
we get that (

1, ρq−pI0(ρp−1), . . . , ρq−pIn(ρp−1)
)

(15)

is an ECT-system on (0,+∞) for every p and that it is an ECT-system on (−∞, 0) in case that
p is odd. In the second case we obtain that

(
1, (−ρ)q−pI0(ρp−1), . . . , (−ρ)q−pIn(ρp−1)

)

is an ECT-system on (−(2(p − 1))
− 1

p−1 , 0) if p is even. On account of the fact that (−1)q−p is

constant this implies that (15) is an ECT-system on (−(2(p−1))
− 1

p−1 , 0) if p is even. Accordingly,
on account of the definition of κp given in (5), we have proved so far the validity of the first
assertion in the statement.

Finally, the assertion concerning the linear spans follows by noting that if we define Ek :=
〈1, cos θ, . . . , cos(kθ)〉 then dim(Ek) = k + 1 and

Ek = 〈1, cos θ, . . . , cosk θ〉 = 〈1, g(θ), . . . , gk(θ)〉.
To get the first equality one can use that cos(kθ) = Tk(cos θ), where Tk is the Chebyshev
polynomial of the first kind and degree k. This proves the result. �

Next result provides a more explicit expression of the Melnikov functions M1 and M2 for (3).
In its statement we point out that aik, bik, cik, and dik are the coefficients of the trigonometric
polynomials in the perturbation and Ck is the function defined in (14).
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Proposition 4.2. The following holds for the perturbed differential equation (3).

(a) The first Melnikov function is given by M1(ρ) = 2πb10ρ
p +

∑m
k=0 d1kρ

qCk
(
ρp−1

)
. Moreover,

M1 = 0 if, and only if, b10 = d10 = · · · = d1m = 0.
(b) If M1 = 0, then the second Melnikov function is given by M2(ρ) = M21(ρ)+(q−p)ρpM22(ρ),

where

M21(ρ) := 2πb20ρ
p +

m∑

k=0

d2kρ
qCk(ρp−1)

and

M22(ρ) :=
∑

1≤k≤n
1≤l≤m

b1kc1l
k

∫ π

−π
sin(kθ) sin(lθ)x0(θ, ρ)q−1dθ.

Proof. By applying Corollary 2.3, we get that the first Melnikov function writes as

M1(ρ) = 2πb10ρ
p + ρp

m∑

k=0

d1k

∫ π

−π
cos(kθ)x0(θ, ρ)q−p dθ = 2πb10ρ

p +
m∑

k=0

d1kρ
qCk
(
ρp−1

)
,

where in the first equality we use that the solution x0(θ, ρ) of the unperturbed equation is even
in θ, whereas in the second one we take (14) into account. Then the second assertion in (a)
follows by Proposition 4.1, which shows that the ordered set

(
ρp, ρqC0(ρp−1), . . . , ρqCn(ρp−1)

)
is

an ECT-system on (κp, 0) and (0,+∞).

Let us turn next to the proof of (b). If M1 = 0 then, by Corollary 2.3 again, the second
Melnikov function writes as

M2(ρ) = ρp
∫ π

−π

(
P2(θ) +Q2(θ)x0(θ, ρ)q−p + (q − p)Q1(θ)S(θ, ρ)x0(θ, ρ)q−1

)
dθ,

where

S(θ, ρ) =

∫ θ

−π

(
P1(s) +Q1(s)x0(s, ρ)q−p

)
ds.

That the first summand in M2 writes as ρp
∫ π
−π (P2(θ) +Q2(θ)x0(θ, ρ)q−p) dθ = M21(ρ) can be

shown exactly as we did in (a). With regard to the second summand note that, on account
of (a),

P1(θ) =
n∑

k=1

(a1k sin(kθ) + b1k cos(kθ)) and Q1(θ) =
m∑

l=1

c1l sin(lθ).

Thus, Q1(θ)x0(θ, ρ)q−1 and
∫ θ
−π Q1(s)x0(s, ρ)q−pds are odd and even functions in θ, respectively.

Hence the second summand in M2 writes as
∫ π

−π
Q1(θ)S(θ, ρ)x0(θ, ρ)q−1dθ =

∫ π

−π
Q1(θ)x0(θ, ρ)q−1

(∫ θ

−π
P1(s)ds

)
dθ

=

∫ π

−π
Q1(θ)x0(θ, ρ)q−1

(
n∑

k=1

b1k
k

sin(kθ)

)
dθ

=
∑

1≤k≤n
1≤l≤m

b1kc1l
k

∫ π

−π
sin(kθ) sin(lθ)x0(θ, ρ)q−1dθ,

which is equal to M22(ρ). This completes the proof. �

As it is clear from the previous result, the function Skl that we introduce in next statement
is a building block of the second Melnikov function.



12 JIANFENG HUANG, JOAN TORREGROSA, AND JORDI VILLADELPRAT

Proposition 4.3. For each r ∈ Z≥0, define Br := 〈ρq−pC0
(
ρp−1

)
, . . . , ρq−pCr

(
ρp−1)〉. Then

Skl(ρ) :=

∫ π

−π
sin(kθ) sin(lθ)x0(θ, ρ)q−1dθ

belongs to Bk+l−1 for all k, l ∈ Z≥1. Furthermore,

Bk+l−1= 〈ρq−pC0
(
ρp−1

)
, . . . , ρq−pCk

(
ρp−1),Sk2(ρ), . . . ,Skl(ρ)〉

for all k ≥ 0 and l ≥ 2.

Proof. In order to prove the first assertion we can suppose without loss of generality that k ≥ l.
It is well-known that cos(iθ) = Ti(cos θ) and sin((i+ 1)θ) = sin θUi(cos θ), where Ti and Ui are
the ith degree Chebyshev polynomials of the first and second kind, respectively. (The reader is
referred to [35] for the formulas relating the Chebyshev polynomials that we shall use hereunder.)
Thus

Skl(ρ) =

∫ π

−π
Uk−1(cos θ)Ul−1(cos θ) sin2 θ x0(θ, ρ)q−1dθ

=
1

p− q

∫ π

−π

(
Uk−1(cos θ)Ul−1(cos θ) sin θ

)′
x0(θ, ρ)q−pdθ,

(16)

where the second equality follows using that x0(θ, ρ) is the solution of the unperturbed differential
equation (3) to perform an integration by parts. Since

Uk−1(x)Ul−1(x) =

l−1∑

r=0

Uk−l+2r(x)

and, thanks to (x2 − 1)U ′r(x) = (r + 1)Tr+1(x)− xUr(x),
(
Ur(cos θ) sin θ

)′
= (r + 1)Tr+1(cos θ) = (r + 1) cos((r + 1)θ),

we get that

(
Uk−1(cos θ)Ul−1(cos θ) sin θ

)′
=

k+l−1∑

r=k−l+1
step 2

r cos(rθ).

On account of (14), the substitution of this identity in (16) yields

Skl(ρ) =
ρq−p

p− q
k+l−1∑

r=k−l+1
step 2

r Cr(ρp−1). (17)

Accordingly the first assertion is true. With regard to the second one, it suffices to show that

ρq−pCk+r
(
ρp−1) ∈ 〈ρq−pC0

(
ρp−1

)
, . . . , ρq−pCk

(
ρp−1),Sk2(ρ), . . . ,Skl(ρ)〉

for all r = 1, 2, . . . , l− 1, which can be proved by induction on r taking (17) into account again.
This completes the proof of the result. �

In what follows we will need to further emphasize the dependence of the Melnikov functions on
the perturbative parameters. For this reason we use the notation µ = (a,b, c,d) as introduced

in (4), so that µ ∈ R4(n+m+1), and we denote the ith order Melnikov function associated to the
perturbed differential equation given in (3) by Mi(ρ;µ).

Proposition 4.4. Setting L = {µ ∈ R4(n+m+1) : M1(ρ;µ) = 0 for all ρ ∈ I}, there exists a
surjective map β : L −→ Rn+m+1 such that

M2(ρ;µ) = β1(µ)ρp + ρq
n+m−1∑

k=0

βk+2(µ)Ik(ρp−1).
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Proof. We claim that there exists a surjective map β̂ : L −→ Rn+m+1 such that

M2(ρ;µ) = β̂1(µ)ρp + ρq
n+m−1∑

k=0

β̂k+2(µ)Ck(ρp−1).

The result will follow once we prove this because, by Proposition 4.1, we know that the linear
spans 〈1, ρq−pI0(ρp−1), . . . , ρq−pIk(ρp−1)〉 and 〈1, ρq−pC0(ρp−1), . . . , ρq−pCk(ρp−1)〉 are equal and
have dimension k+ 2 for all k ∈ Z≥0. In order to prove the claim let us fix any µ = (a,b, c,d) ∈
L . Then, by applying Proposition 4.2,

M2(ρ;µ) = 2πb20ρ
p +

m∑

k=0

d2kρ
qCk(ρp−1) + (q − p)ρp

∑

1≤k≤n
1≤l≤m

b1kc1l
k
Skl(ρ). (18)

By the first assertion in Proposition 4.3, for all k = 1, 2, . . . , n and l = 1, 2, . . . ,m,

Skl(ρ) ∈ 〈ρq−pC0
(
ρp−1

)
, . . . , ρq−pCn+m−1

(
ρp−1)〉.

On account of (18), this shows that M2(ρ;µ) ∈ 〈ρp, ρqC0
(
ρp−1

)
, . . . , ρqCn+m−1

(
ρp−1)〉, which has

dimension n+m+ 1 by Proposition 4.1. Hence there exists a unique β̂ = β̂(µ) ∈ Rn+m+1 such
that

M2(ρ;µ) = β̂1ρ
p + ρq

n+m−1∑

k=0

β̂k+2Ck(ρp−1).

It only remains to be proved that β̂ : L −→ Rn+m+1 is a surjective map. To this end it suffices
to verify that Rn+m+1 = β̂(L ∩P), where

P := {µ ∈ R4(n+m+1) : b11 = 0, c1l = 0, for l = 1, . . . ,m− 1, and c1m = 1}.
Indeed, if µ ∈ L ∩P then from (18) we get that

M2(ρ;µ) = 2πb20ρ
p +

m∑

k=0

d2kρ
qCk(ρp−1) + (q − p)ρp

n∑

k=2

b1k
k
Skm(ρ).

Hence the inclusion Rn+m+1 ⊂ β̂(L ∩P) follows from the second assertion in Proposition 4.3.
Since the other inclusion is clear, this proves the validity of the claim and so the result follows. �

5. Proof of the main results

This section is devoted to prove Theorems 1.1 and 1.2. Let us advance that in order to
complete the proof of the latter we will need some additional results that for the sake of simplicity
in the exposition we gather in the Appendix.

Proof of Theorem 1.1. The fact that M1( · ;µ) ≡ 0 if, and only if, b10 = d10 = · · · = d1m = 0
follows from (a) in Proposition 4.2. By applying Proposition 4.4, there exists a surjective map β
such that if µ ∈ L then

M2(ρ;µ) = ρp
∼
M2(ρ;µ) with

∼
M2(ρ;µ) := β1(µ) + ρq−p

n+m−1∑

k=0

βk+2(µ)Ik(ρp−1). (19)

It is clear that M2 and the rescaled
∼
M2 have the same number of positive and negative zeros

counted with multiplicities. For the sake of convenience we also define

N(ρ;µ) := ρq−p
n+m−1∑

k=0

βk+2(µ)Ik(ρp−1).

Recall, see (12) and (13), that Ik(y) is equal to Tk,α(y) particularised with g(θ) = −(p− 1)(1 +

cos θ) and α = q−p
p−1 . By abusing notation, in what follows we will write Ik(y) = Tk,α(y) for
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simplicity. Taking this into account, by applying Lemma 3.5, we get that the derivative of N is

N ′(ρ;µ) = (q − p)ρq−p−1
n+m−1∑

k=0

βk+2(µ)Tk,α+1(ρ
p−1). (20)

In addition, the application of Theorem 3.4 to these Tk,α and Tk,α+1 shows easily the following:

Claim 1: N has at most n+m− 1 zeros in (κp, 0) counted with multiplicities. The same
is true in the interval (0,+∞).

Claim 2: N ′ has at most n+m− 1 zeros in (κp, 0) counted with multiplicities. The same
is true in the interval (0,+∞).

Claim 3: In case that p is even, N has at most n+m− 1 zeros in (κp,+∞) \ {0} counted
with multiplicities. The same is true for N ′.

Above we have omitted the dependence on µ for the sake of shortness. We will also do it in
what follows when there is no risk of confusion. Let us prove next each one of the assertions in
the statement of the result:

(a) From (19), by applying Proposition 4.1, we get that K± ≤ n + m. In addition, thanks to

the surjectivity of β, we can assert that there exists µ0 ∈ R4(n+m+1) such that
∼
M2(ρ;µ0) has

exactly n+m positive simple zeros. Since
∼
M2(ρ;µ0) is an even function in ρ in case that p

and q are odd, we can conclude that it has the same number of negative simple zeros.
(b) Exactly as before K± ≤ n+m. We prove by contradiction that the equalities can not hold

simultaneously. So suppose that M2 has n + m positive zeros, say 0 < ρ+1 ≤ · · · ≤ ρ+n+m,

and n + m negative zeros, say 0 > −ρ−1 ≥ · · · ≥ −ρ−n+m, counted with multiplicities. Note
that N(ρ) is an odd function because q − p is odd and p− 1 is even. Therefore

N(ρ+i ) =
∼
M2(ρ

+
i )− β1 = −β1 and N(ρ−j ) = −

∼
M2(−ρ−j ) + β1 = β1 (21)

for all i, j ∈ {1, 2, . . . , n + m}. This shows in particular that β1 6= 0 (otherwise we get a
contradiction with Claim 1 ), which in turn implies that ρ+i 6= ρ−j for all i and j.

On the other hand, N ′ =
∼
M ′2 has n + m − 1 positive zeros, say 0 < %+1 ≤ · · · ≤ %+n+m−1,

and n + m − 1 negative zeros, say 0 > −%−1 ≥ · · · ≥ −%−n+m−1, counted with multiplicities,

satisfying %±i ∈ [ρ±i , ρ
±
i+1] for all i. Since N ′ is even, taking Claim 2 into account we can

assert that %+i = %−i for all i. In particular

[ρ+i , ρ
+
i+1] ∩ [ρ−i , ρ

−
i+1] 6= ∅ for all i. (22)

For each i = 1, 2, . . . , n+m, let Ji be the open interval with endpoints ρ+i and ρ−i . Then, on
account of (22), it is easy to show that J1, J2, . . . , Jn+m are pairwise non-intersecting. Since,
due to (21), each Ji contains at least one zero of N , this contradicts Claim 1. Accordingly,
either K+ < n+m or K− < n+m.

(i) By Theorem 3.4, we have that
(
ρq−pI0(ρp−1), ρq−pI1(ρp−1), . . . , ρq−pIn+m−1(ρp−1)

)
is

an ECT-system on (0,+∞). Thus there exist β∗2 , . . . , β
∗
n+m+1 ∈ R such that the func-

tion

ρ 7−→ ρq−p
n+m−1∑

k=0

β∗k+2Ik(ρp−1)

has n+m− 1 positive simple zeros and n+m− 1 negative simple zeros. Here we use
that the above function is odd due to the parity assumption on p and q. For the same
reason, ρ = 0 is a zero with odd multiplicity. Hence, taking β∗1 ≈ 0, the function

ρ 7−→ β∗1 + ρq−p
n+m−1∑

k=0

β∗k+2Ik(ρp−1)

has 2(n+m)− 1 simple zeros on (κp,+∞) \ {0}. We use at this point the surjectivity
of µ 7→ β(µ) to choose some µ0 ∈ L such that β(µ0) = (β∗1 , β

∗
2 , . . . , β

∗
n+m+1). Then by

construction, see (19), M2(ρ;µ0) has 2(n+m)− 1 simple zeros on (κp,+∞) \ {0}.
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(ii) Exactly the same argument as before, but choosing β∗1 = 0, guarantees the existence
of µ0 ∈ L such that M2(ρ;µ0) has 2(n+m− 1) simple zeros on (κp,+∞) \ {0}.

(c) Let ρ+1 ≤ · · · ≤ ρ+
K+ and ρ−1 ≤ · · · ≤ ρ−

K− be the zeros of
∼
M2(ρ;µ) on (0,+∞) and (κp, 0),

respectively. Then
∼
M ′2 = N ′ has at least K+ − 1 zeros on [ρ+1 ,+∞) and at least K− − 1

zeros on (κp, ρ
−
1 ], counted with multiplicities. Since p is even, it is clear, cf. (20), that

E(y;µ) :=
n+m−1∑

k=0

βk+2(µ)Tk,α+1(y)

has at least K+−1 zeros on
[
(ρ+1 )p−1,+∞

)
and at least K−−1 zeros on

(
−1

2(p−1) , (ρ
−
1 )p−1

]
,

counted with multiplicities. (Here we use that κp−1p = −1
2(p−1) .) By Theorem 3.4,

(T0,α+1, T1,α+1, . . . , Tn+m−1,α+1)

is an ECT-system on
(
−1

2(p−1) ,+∞
)
. Hence E can have at most n + m − 1 zeros counted

with multiplicities in this interval. If E(0) = 0 then E has at least K+ + K− − 1 zeros
counted with multiplicites in this interval. Consequently K+ + K− ≤ n + m. If E(0) 6= 0

then the multiplicity of
∼
M ′2 = N ′ at ρ = 0 is exactly q − p− 1, which is an even number by

assumption. On account of this, and the fact that M2(ρ
±
1 ) = 0 with ρ−1 < 0 < ρ+1 , one can

easily conclude the existence of a zero of
∼
M ′2 = N ′ on (ρ−1 , ρ

+
1 ) \ {0}. Thus N ′ has at least

n+m−1 zeros on (κp,+∞)\{0} counted with multiplicities. By Claim 3 we get the upper
bound K+ +K− ≤ n+m also in this case.

Exactly as we did in the previous cases, Proposition 4.1 and the surjectivity of µ 7−→ β(µ)
ensure the existence of some µ0 ∈ L such that M2( · ;µ0) has n + m simple zeros in, for
instance, the interval (0,+∞).

(d) The number of zeros of N ′ =
∼
M ′2 on (κp,+∞) \ {0} counted with multiplicities is at least

K+ + K− − 2. Then, by Claim 3 again, we get K+ + K− ≤ n + m + 1. In order to prove
that this upper bound is sharp we will use that, by Theorem 3.4,

(
I0, I1, . . . , In+m−1

)
is an

ECT-system on
(
−1

2(p−1) ,+∞
)

and we consider two cases:

Case 1: q even and p < q.
We take β∗2 , . . . , β

∗
n+m+1 ∈ R such that

F(ρ) :=
n+m−1∑

k=0

β∗k+2Ik(ρp−1) (23)

vanishes at 0 < ρ1 < ρ2 < · · · < ρn+m−1 with multiplicity one and satisfies F(0) 6= 0. Thus
ρq−pF(ρ) has a zero at ρ = 0 of multiplicity q − p, which is an even number, and vanishes
with multiplicity one at ρi, i = 1, 2, . . . , n + m − 1. Consequently we can choose β∗1 small
enough such that β∗1 + ρq−pF(ρ) has n+m− 1 simple zeros near ρ1 < ρ2 < · · · < ρn+m−1,
together with one positive and one negative zero near ρ = 0, both being simple as well.
Now, as we did before, we use the sujertivity of µ 7−→ β(µ) to choose some µ0 ∈ L such
that β(µ0) = (β∗1 , β

∗
2 , . . . , β

∗
n+m+1). Then by construction, see (19), M2(ρ;µ0) has n+m+ 1

simple zeros on (κp,+∞) \ {0} as desired.
Case 2: p > q.
In this case we choose β∗2 , . . . , β

∗
n+m+1 ∈ R such that

∑n+m−1
k=0 β∗k+2Ik(y) has exactly

n + m − 1 simple zeros in
(
−1

2(p−1) ,+∞
)

, one of them being y = 0 and the other ones

positive. Thus the function F(ρ) in (23) has exactly n + m − 2 positive simple zeros, say
ρ2 < ρ3 < · · · < ρn+m−1, and there exists an analytic function η such that

F(ρ) =
n+m−1∑

k=0

β∗k+2Ik(ρp−1) = η(ρ)ρp−1 with η(0) 6= 0.
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Let us suppose, without loss of generality, that η(0) > 0. Then, since p is even, there exists
ρ̂ ∈ (0, ρ2) such that ρF(ρ) > 0 for all ρ ∈ (−ρ̂, ρ̂) \ {0}. Let us define at this point

M̂2(ρ;β1, σ) := η(ρ)ρp−1 + β1ρ
p−q + σI0(ρp−1)

and split the proof into two subcases depending on the parity of q.
Subcase 2a: q odd.
In this case M̂2(ρ;β1, 0) = ρp−q

(
η(ρ)ρq−1 + β1

)
with p − q odd and q − 1 > 0 even.

Hence, by continuity, there exist small enough β∗1 < 0 and ρ̃ ∈ (0, ρ̂) such that M̂2(ρ;β∗1 , 0)
has n+m− 2 positive simple zeros near ρ2, . . . , ρn+m−1 and, moreover,

M̂2(−ρ̂;β∗1 , 0) < 0, M̂2(−ρ̃;β∗1 , 0) > 0, M̂2(ρ̃;β∗1 , 0) < 0, M̂2(ρ̂;β∗1 , 0) > 0.

Note also, see (13), that I0(ρp−1) > 0 for all ρ. Thus, by continuity, we can take σ∗ > 0 small
enough, such that M̂2(ρ;β∗1 , σ

∗) still has n+m−2 positive simple zeros near ρ2, . . . , ρn+m−1
and also verifies M̂2(0;β∗1 , σ

∗) > 0, together with

M̂2(−ρ̂;β∗1 , σ
∗) < 0, M̂2(−ρ̃;β∗1 , σ

∗) > 0, M̂2(ρ̃;β∗1 , σ
∗) < 0, M̂2(ρ̂;β∗1 , σ

∗) > 0.

Therefore M̂2(ρ;β∗1 , σ
∗) vanishes at least once in each interval (−ρ̂,−ρ̃), (0, ρ̃) and (ρ̃, ρ̂).

So the total number of zeros of M̂2(ρ;β∗1 , σ
∗) on (κp,+∞) \ {0} is at least n + m + 1. On

account of the surjectivity of β : L −→ Rn+m+1, we can take µ0 ∈ L such that

β(µ0) = (β∗1 , β
∗
2 + σ∗, β∗3 , . . . , β

∗
n+m−1).

Hence, by construction, M2(ρ;µ0) = ρqM̂2(ρ;β∗1 , σ
∗) has at least n+m+1 zeros on (κp,+∞)\

{0}. Finally, since we have already proved that K+ +K− ≤ n+m+ 1, these zeros must be
simple, as desired.

Subcase 2b: q even.
In this case M̂2(ρ;β1, 0) = ρp−q

(
η(ρ)ρq−1 + β1

)
with p− q even and q− 1 > 0 odd. Then,

by continuity, we can take small enough β∗1 < 0 and ρ̃ ∈ (0, ρ̂) such that M̂2(ρ;β∗1 , 0) has
n+m− 2 positive simple zeros near ρ2, . . . , ρn+m−1 and

M̂2(ρ̂;β∗1 , 0) > 0, M̂2(−ρ̂;β∗1 , 0) < 0, M̂2(ρ̃;β∗1 , 0) < 0.

Due to I0(ρp−1) > 0 for all ρ, taking σ∗ > 0 small enough, M̂2(ρ;β∗1 , σ
∗) still has n+m− 2

positive simple zeros near ρ2, . . . , ρn+m−1 and, additionally,

M̂2(ρ̂;β∗1 , σ
∗) > 0, M̂2(−ρ̂;β∗1 , σ

∗) < 0, M̂2(ρ̃;β∗1 , σ
∗) < 0, M̂2(0;β∗1 , σ

∗) > 0.

Thus M̂2(ρ;β∗1 , σ
∗) vanishes at least once in each interval (−ρ̂, 0), (0, ρ̃) and (ρ̃, ρ̂). Exactly

as we did in the previous subcase, there exists µ0 ∈ L such that M2(ρ;µ0) = ρqM̂2(ρ;β∗1 , σ
∗)

has exactly n+m+ 1 simple zeros on (κp,+∞) \ {0}.
�

Remark 5.1. If we only consider K+ in Theorem 1.1, then by (19) and Proposition 4.1, K+ ≤
n+m always holds and the upper bound can be achieved.

Proof of Theorem 1.2. Taking p = 3 and q = 2, from point (ii) in assertion (b) of Theorem 1.1 we

know that there exists µ0 ∈ R4(n+m+1) with M1(ρ;µ0) = 0 for all ρ ∈ I and such that M2(ρ;µ0)
has 2(n+m− 1) simple zeros in I \ {0}. Hence, due to x(π, ρ;µ0, ε) = ρ+ ε2M2(ρ;µ0) + o(ε2),
by applying the Implicit Function Theorem we can assert that ρ 7→ x(π, ρ;µ0, ε) has at least
2(n + m − 1) fixed points in I \ {0} for all ε ≈ 0. Since x(π, 0;µ0, ε) = 0 for all ε, the first
assertion follows. With regard to the second assertion, the bound H3,2(1, 3) ≥ 8 is proved in
Proposition A.2, whereas H3,2(4, 1) ≥ 10 is proved in Proposition A.3. �

Appendix A. Improvements using Lyapunov constants

Our goal in this appendix is to use Lyapunov constants in order to improve the general lower
bound H3,2(n,m) ≥ 2(n+m)−1 in case that (n,m) ∈ {(1, 3), (4, 1)}. At the end we shall discuss
the difficulties we have found to tackle two other particular cases using the same approach.
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In the last two decades, there have been several works about the Hilbert number H3,2(n,m).
Unfortunately the problem is far from being solved even for the case n = m = 1. We gather in
the following theorem the main results obtained in [6].

Theorem A.1. For any nonnegative integers n and m, H3,2(n, 0) = H3,2(0,m) = 2, H3,2(n, 1) ≥
n+ 2, and H3,2(1,m) ≥ 2m+ 1. Moreover, H3,2(3, 1) ≥ 7 and H3,2(2, 2) ≥ 7.

As it occurs with our proof of Theorem 1.2, the general lower bounds in the above result follow
by using Melnikov functions, whereas the improvements for the particular cases follow by means
of Lyapunov constants, that enable to study those limit cycles bifurcating from ρ = 0. With this
aim let us consider the differential equation ẋ = A(θ)x3 + B(θ)x2 and write its trigonometric
polynomials as

A(θ) = b0 +
n∑

k=1

(
ak sin(kθ) + bk cos(kθ)

)
and B(θ) = d0 +

m∑

k=1

(
ck sin(kθ) + dk cos(kθ)

)
. (24)

If x(θ, ρ) denotes the solution with initial condition x(0, ρ) = ρ then the hyperbolic limit cycles
near ρ = 0 can be viewed as simple zeros of the displacement map

∆(ρ) :=
x(2π, ρ)− ρ

2π
=
∞∑

j=2

Xjρ
j . (25)

The coefficients Xj of the Taylor development of ∆ at ρ = 0 are polynomial on ak, bk, ck, dk
and the first Xj which is not identically zero is called the jth order Lyapunov constant of the
corresponding Abel equation. Usually the Lyapunov constants appear in the context of planar
polynomial vector fields when studying the stability of equilibrium points of monodromic type.
They are polynomial in the coefficients of the vector field when we restrict the analysis to the
trace zero class and typically they are computed writing the planar differential equation in polar
coordinates, see [11]. In fact, equation (1) is the third degree truncation of this type of equations
and the zero trace class here is reduced to C = 0, which is precisely the equation that we are
analyzing. Hence, the standard Lyapunov scheme applies, so that the Lyapunov constants that
we obtain are polynomials in the coefficients of A and B. As in the standard scheme here we
consider the transition map from θ = 0 to θ = 2π. Only a constant translation θ 7→ θ − π is
needed to obtain the transition from θ = −π to θ = π. Clearly, the number of limit cycles does
not depend on this initial angle. Moreover, the Lyapunov constants are always defined modulus
the vanishing of all the previous ones, i.e., Xj := Xj |X1=···=Xj−1=0. For simplicity, by abusing
notation we keep the same symbol to denote them. As it is usual, we say that ρ = 0 is a weak
focus of order k if Xk 6= 0 and Xj = 0, for j = 2, . . . , k − 1. Moreover, we say that ρ = 0 is a
center if all the solutions in a neighborhood of ρ = 0 are periodic, i.e. ∆(ρ) ≡ 0. This theory
was initially developed for planar ordinary differential systems having an equilibrium point of
center-focus type (see [7]) but writing in polar coordinates both are equivalent. We point out
that here, contrary to what happens in the standard planar scheme, the coefficients with an even
subindex do not vanish identically. The bifurcation phenomenon is known as the degenerated
Hopf bifurcation. In our context, since we have that X1 = 0, one limit cycle is always missing
when we perturb a weak focus or a center. Note that if bk and dk in (24) are all zero then the
equation ẋ = A(θ)x3 + B(θ)x2 is invariant by the change θ 7→ −θ and, consequently, it has
a reversible center at the origin, so that all Xj vanish. Therefore, when b = (b0, . . . , bn) and
d = (d0, . . . , dm) are nonzero parameters, we can write the truncated first order Taylor series of
Xj at (b, d) = (0, 0) as

X1
j :=

n∑

k=0

fj,k(a, c)bk +
m∑

k=0

gj,k(a, c)dk, for all j ≥ 2, (26)

where a = (a1, . . . , an) and c = (c1, . . . , cm). We remark that the above expression has no
constant term because the return map is identically zero when b = d = 0 for every a and c. Here
we will use the ideas developed in [21] to work only with these linear developments in order to
increase the number of limit cycles of small amplitude for families of centers. In [22] it is proved
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that these linear developments can also be obtained by computing the Taylor series at ρ = 0 of
the first Melnikov function M1 as introduced in Section 2.

In the next two propositions, since we treat the cases n = 1 and m = 1, we can follow
similarly as with the perturbed problem (3), taking the coefficients of sin θ and cos θ to be 1 and
0, respectively, since we can rescale x and do a translation in θ if necessary. In the proofs we
will see that we are using all the other free parameters. Showing also that the weak focus order
is maximal in the considered families.

Proposition A.2. Let us consider the Abel differential equation ẋ = A(θ)x3 + B(θ)x2 taking
the trigonometric polynomials A and B as introduced in (24) with (n,m) = (1, 3) and (a1, b1) =
(1, 0). Then there exist parameters (b0, c, d) such that the origin is a weak focus of order 9
unfolding 7 nonzero limit cycles of small amplitude. Consequently H3,2(1, 3) ≥ 8.

Proof. In this case it turns out that all the Lyapunov constants that we need in order to prove the
result are linear with respect to (b0, d0, d1, d2, d3), so that Xj = X1

j . The proof follows by finding
a transversal intersection point on the zero level set of X2, . . . , X8 in which X9 is nonvanishing.
Then 7 nonzero limit cycles of small amplitude bifurcate from the origin and ρ = 0 is still an
hyperbolic solution that remains. The complete expressions are quite large and we only show
the first ones:

X2 = d0,

X3 = b0,

X4 = 2−1d1,

X5 = 12−1(−3c1 + c3)d2 − 12−1c2d3,

X6 = 16−1(3c1c2 − 2)d2 + 32−1(4c21 + c22)d3,

X7 = 432−1(−1674c31 − 1620c21c2 − 504c21c3 − 432c1c
2
2 + 162c1c2c3 + 150c1c

2
3 + 225c22c3

+ 234c2c
2
3 + 64c33 − 864c1 − 162c2 + 72c3)d2 + 864−1(648c31 − 828c21c2 + 216c21c3

− 1242c1c
2
2 − 720c1c2c3 − 369c32 − 414c22c3 − 128c2c

2
3 + 144c1 − 360c2)d3.

(27)

Clearly X2, X3, X4, X5 have degree one with respect to b0, d0, d1, d2. Then, when 3c1 − c3 6= 0
we can write Xj = uj for j = 2, . . . , 5 and we get

Xj |u2=···=u5=0 = Cj
fj−5(c1, c2, c3)

3c1 − c3
d3, for j = 6, 7, 8, 9,

with some nonvanishing rational numbers Cj and

f1 = 12c31 − 4c21c3 − 3c1c
2
2 − c22c3 + 4c2,

f2 = 216c41 + 96c31c2 − 54c21c
2
2 − 36c21c2c3 − 24c21c

2
3 − 27c1c

3
2 − 36c1c

2
2c3

+ 4c1c2c
2
3 − 9c32c3 − 6c22c

2
3 + 48c21 + 72c1c2 − 16c1c3 + 36c22 + 24c2c3,

f3 = 18792c51 + 16128c41c2 + 5832c41c3 − 828c31c
2
2 − 672c31c2c3 − 1824c31c

2
3 − 4536c21c

3
2

− 6156c21c
2
2c3 − 1344c21c2c

2
3 − 736c21c

3
3 − 1197c1c

4
2 − 3024c1c

3
2c3 − 1224c1c

2
2c

2
3 + 224c1c2c

3
3

− 399c42c3 − 504c32c
2
3 − 184c22c

3
3 + 13248c31 + 10068c21c2 − 1728c21c3 + 4752c1c

2
2

+ 2688c1c2c3 − 896c1c
2
3 + 1608c32 + 1584c22c3 + 780c2c

2
3 + 432c1 + 1728c2 − 144c3,

f4 = 80352c61 + 99252c51c2 + 48384c51c3 + 26352c41c
2
2 + 26388c41c2c3 + 1440c41c

2
3

− 20034c31c
3
2 − 28800c31c

2
2c3 − 7944c31c2c

2
3 − 5376c31c

3
3 − 14364c21c

4
2 − 30618c21c

3
2c3

− 15120c21c
2
2c

2
3 − 1728c21c2c

3
3 − 1152c21c

4
3 − 2646c1c

5
2 − 9576c1c

4
2c3 − 8235c1c

3
2c

2
3

− 1728c1c
2
2c

3
3 + 480c1c2c

4
3 − 882c52c3 − 1596c42c

2
3 − 1104c32c

3
3 − 288c22c

4
3 + 110538c41

+ 101808c31c2 + 16470c31c3 + 33678c21c
2
2 + 13344c21c2c3 − 11934c21c

2
3 + 11196c1c

3
2

+ 9369c1c
2
2c3 + 4992c1c2c

2
3 − 1946c1c

3
3 + 3600c42 + 3732c32c3 + 2925c22c

2
3
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+ 1328c2c
3
3 + 17280c21 + 22698c1c2 − 4032c1c3 + 10800c22 + 6156c2c3 − 576c23.

For d3 6= 0, the solutions of the system of equations defined by {f1 = f2 = f3 = 0} write as

c∗ = (c∗1, c
∗
2, c
∗
3) =

(
β,−β

3 p2(β)

126976
,
β p3(β)

31744

)

where β a simple real zero of p(x) = 50625x16 − 207900x12 + 112644x8 − 26880x4 + 4096, that
one can verify it has exactly 4 simple real zeros near ±0.7796202641 and ±1.369217569, and

p2(x) = 1771875x12 − 7456500x8 + 4643340x4 − 842624,

p3(x) = 16875x12 − 177300x8 + 398508x4 − 18304.

The proof will follow once we check that f4, the denominator 3c1 − c3, and the determinant
of the Jacobian matrix of (f1, f2, f3) with respect to c = (c1, c2, c3) are all different from zero
evaluated at c = c∗. Straightforward computations show that

f4(c
∗) = (151875β12 + 3649500β8 − 2148180β4 + 184448)/1984 =: p4(β),

det Jac(f1,f2,f3)(c
∗) = β(172800β12 + 843264β8 − 516096β4 + 65536) =: p5(β),

3c1 − c3|c∗ = −β(16875β12 − 177300β8 + 398508β4 − 113536)/31744 =: p6(β).

For i = 4, 5, 6, one can verify that the resultant between pi(x) and p(x) is different from zero.
Consequently this implies that pi(β) 6= 0 for i = 4, 5, 6, as desired. This concludes the proof of
the result. �
Proposition A.3. Let us consider the Abel differential equation ẋ = A(θ)x3 + B(θ)x2 taking
the trigonometric polynomials A and B as introduced in (24) with (n,m) = (4, 1) and (c1, d1) =
(1, 0). Then there exist parameters (a, b, d0) such that the origin is a weak focus of order 11
unfolding 9 nonzero limit cycles of small amplitude. Consequently H3,2(4, 1) ≥ 10.

Proof. The proof follows similarly as in the previous result, but here we must use the linear
Taylor developments of some Xj as we have previously explained. This is so because in this case
not all Lyapunov constants are of degree 1 in the parameters (b0, b1, b2, b3, b4, d0). For simplicity
we will write a = (a1, a2, a3, a4). Being the expressions of the Lyapunov constants very large,
for the sake of shortness we only show the first ones.

X2 = d0,

X3 = b0,

X4 = −2−1b1,

X5 = 4−1b2,

X6 = 48−1((2a2 − a4 − 6)b3 + a3b4),

X7 = 24−1(−4a1 + 6a2 − 3a4 − 18)b3 + 16−1(−a2 + 2a3 + 1)b4,

X8 = 960−1((−60a21 + 240a1a2 − 120a1a4 + 135a22 + 80a2a3 − 15a2a4 − 40a3a4

− 30a24 − 1840a1 + 575a2 − 240a3 − 643a4 − 2610)b3 + (−45a1a2 + 120a1a3

+ 75a2a3 + 40a23 + 30a3a4 + 145a1 − 420a2 + 463a3 + 420)b4).

The next necessary Xk, for k = 9, 10, 11, have degree 3 in a3, a4 and we linearize them with
respect to a3, a4. As above, we start simplifying with the first that are linear, X2, . . . , X5, and
X6, writing, when a3 6= 0, Xk = uk for k = 2, . . . , 6. Then, naming b3 = u7 we can write

Xj |u2=···=u6=0 = X1
j +O2(b3) =

Cj
a3

fj−6(a)u7 +O2(u7), for j = 7, 8, 9, 10, 11, (28)

with some Cj nonvanishing rational numbers and

f1 = 8a1a3 − 6a22 + 3a2a4 + 24a2 − 3a4 − 18,

f2 = 60a21a3 − 90a1a
2
2 + 45a1a2a4 + 15a22a3 + 560a1a2 + 1120a1a3 − 145a1a4 − 840a22
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− 99a2a3 + 420a2a4 − 870a1 + 3360a2 − 168a3 − 420a4 − 2520,

f3 = 750a21a2 + 4800a21a3 − 375a21a4 − 4680a1a
2
2 + 1653a1a2a3 + 2340a1a2a4 + 1120a1a

2
3

+ 840a1a3a4 − 1212a32 − 480a22a3 − 24a22a4 − 98a2a
2
3 + 420a2a3a4 + 315a2a

2
4 − 49a23a4

− 2250a21 + 23520a1a2 + 13281a1a3 − 4740a1a4 − 6012a22 + 984a2a3 + 7344a2a4

+ 294a23 − 420a3a4 − 315a24 − 28440a1 + 39384a2 − 6552a3 − 7110a4 − 31320,

f4 = 3600a31a2 + 23040a31a3 − 1800a31a4 − 34560a21a
2
2 + 11520a21a2a3 + 17280a21a2a4

+ 7680a21a
2
3 + 5760a21a3a4 − 17280a1a

3
2 − 5760a1a

2
2a3 − 1200a1a2a

2
3 + 5760a1a2a3a4

+ 4320a1a2a
2
4 − 600a1a

2
3a4 + 3780a32a3 + 1920a22a

2
3 + 1440a22a3a4 − 225a2a3a

2
4

− 10800a31 + 323040a21a2 + 579120a21a3 − 109680a21a4 − 426816a1a
2
2 + 235856a1a2a3

+ 293088a1a2a4 + 144720a1a
2
3 + 88064a1a3a4 − 13920a1a

2
4 − 147648a32 − 101144a22a3

− 6144a22a4 − 26784a2a
2
3 + 43416a2a3a4 + 39984a2a

2
4 + 816a33 − 7056a23a4 + 1523a3a

2
4

− 658080a21 + 2311584a1a2 + 446352a1a3 − 521328a1a4 − 5568a22 + 221676a2a3

+ 544128a2a4 + 20832a23 − 69048a3a4 − 39984a24 − 2626848a1 + 1881216a2

− 625176a3 − 507744a4 − 1607040,

f5 = 720000a31a2 + 2386800a31a3 − 360000a31a4 − 2438640a21a
2
2 + 1869360a21a2a3

+ 1354320a21a2a4 + 1147200a21a
2
3 + 772080a21a3a4 − 67500a21a

2
4 − 1621440a1a

3
2

− 526920a1a
2
2a3 − 28800a1a

2
2a4 + 266160a1a2a

2
3 + 855540a1a2a3a4 + 419760a1a2a

2
4

+ 147600a1a
3
3 + 136320a1a

2
3a4 + 92040a1a3a

2
4 − 221400a42 − 121080a32a3 − 107460a32a4

− 60240a22a
2
3 + 58560a22a3a4 + 46890a22a

2
4 − 23520a2a

3
3 + 20340a2a

2
3a4 + 64350a2a3a

2
4

+ 31095a2a
3
4 − 11760a33a4 − 8820a23a

2
4 − 2160000a31 + 16558560a21a2 + 12839120a21a3

− 5026320a21a4 − 4939840a1a
2
2 + 7959200a1a2a3 + 9117760a1a2a4 + 3502960a1a

2
3

− 377600a2a
2
3 + 1230980a1a3a4 − 848560a1a

2
4 − 2428520a32 − 1888240a22a3

+ 489400a22a4 + 1309488a2a3a4 + 1108880a2a
2
4 + 111360a33 − 191740a23a4 + 550a3a

2
4

− 33295a34 − 27727920a21 + 47743680a1a2 − 2597880a1a3 − 14256960a1a4

+ 3526680a22 + 5056920a2a3 + 9864060a2a4 − 199440a23 − 2398224a3a4 − 1126770a24
− 54993600a1 + 24634440a2 − 13051440a3 − 9252000a4 − 22140000.

We remark that the terms O2 are polynomial in u7 and rational in a. We claim that there
exists at least a transversal intersection point a∗ of the zero level sets of f1, . . . , f4 where f5
is nonvanishing. Once we prove the claim the result will follow because near this point a∗,
thanks to the Implicit Function Theorem, we can write (28) as Xj = u7vj−6, being v1, . . . , v4
new independent variables. Hence, the existence of a weak focus of maximal order 11 is clear
and also its unfolding providing only 9 nonzero limit cycles because the displacement map (25)
starts with degree 2 terms. The extra limit cycle for proving the last statement follows from the
fact that ρ = 0 is an isolated solution.

Let us prove finally that the claim is true. To this end we note that the system of equations
{f1 = f2 = f3 = f4 = 0} has solutions that write as

a∗ = (a∗1, a
∗
2, a
∗
3, a
∗
4) = (β, α, βp3(α), p4(α)),

where β2 = p2(α), with p2, p3 and p4 some polynomials of degree 13 with rational coefficients,
and α is a simple real solution of the polynomial

p1(x) = 14352187500x14 − 657776700000x13 + 11284736929875x12

− 42406416759825x11 − 1391899076716315x10 + 23023762786511909x9
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− 123393106663586826x8 − 218236503571470586x7 + 5756360884347363494x6

− 27272611466754481126x5 + 55780715677026807263x4 − 48094920597945273157x3

+ 9193962961957763353x2 + 5105496738368043633x− 1609769302079739192

verifying p2(α) > 0. Straightforward computations show that there exist p5 and p6, polynomials
of degree 13 with rational coefficients such that f5(a

∗) = p5(α) and the determinant of the
Jacobian matrix det Jac(f1,f2,f3,f4)(a

∗) = p6(α). Moreover, the polynomials pk, for k = 2, . . . , 6
do not vanish at α, because the respective resultants with p1, with respect to α, are nonzero
rational numbers. Only remains to prove that there exists α such that also p2(α) > 0. This
follows just computing the real zeros of the polynomials p1 and p2, ordering them in the real
line and comparing their plots. From the 8 simple real zeros of p1 only 4 satisfy the condition
p2 > 0. They are located near −12.079846278,−6.6037190290, 1.81965668348, 1.84169431112.
This concludes the proof of the result. �

We remark that working in the last proof with the complete Lyapunov constants instead of
the linear developments we have not obtained more limit cycles and the computations to provide
the weak focus of maximum order are even worse. Moreover, although from the proof it seems
that we are computing only linear developments, from the final writing Xj = u7vj−6 it is clear
that a second order bifurcation mechanism is used, as we have shown in all the present paper.

We finish the appendix by making some considerations about numerical simulations regarding
other values of m and n. Theorem 1.2 improves the general lower bounds of H3,2(n,m) that
appear in the literature, in particular the ones in [6]. The new general lower bound is 2(n+m)−1
and, as we have commented before, it is very close to the total number of parameters 2(n+m)+2
in the system. Since we can rescale x and do a translation in θ, two of these parameters can
be removed and only 2(n + m) remain. Hence it is reasonable to conjecture that H3,2(n,m) =
2(n+m). Nevertheless it can be checked that with the degenerated Hopf bifurcation explained
above we can not get such number of limit cycles when n+m ≤ 4 except for (n,m) = (1, 3), see
Proposition A.2. Some of these computations where done in [6] by studying the maximum weak
focus order. With regard to the segment n + m = 5, Proposition A.3 gets this value of limit
cycles for (n,m) = (4, 1) whereas, numerically, we can get (also using the technique explained
in the last section) that H3,2(2, 3) ≥ 10∗ and H3,2(1, 4) ≥ 10∗. But we have not been able to
improve, not even numerically, the lower bound H3,2(3, 2) ≥ 9. (Here and below the superscript
∗ means that we have not an analytic proof but only numerical evidences.) The main difficulty
is not in finding the system of equations to solve but in solving it. The numerical solutions that
we have found seem to be values to have a center at the origin and not a weak focus of the order
that we look for.

For (n,m) = (1, 4), as we have done in Proposition A.2, we fix a1 = 1 and b1 = 0. The
next step is the computation of the first linearized Lyapunov constants in the form (26) that
are similar as (27). Then, again with the Implicit Function Theorem, we write Xk = uk for
k = 2, . . . , 6 and we obtain for X7, . . . , X11 the functions f1, . . . , f5 similarly as the ones in (28),
depending only on c = (c1, c2, c3, c4). Here the polynomials fk have degree k+ 5 for k = 1, . . . , 5.
Hence, an equivalent Proposition A.3 could be conjectured for this case because, working with
enough precision up to see the stabilization of the digits, we have found numerically a weak focus
of order 11 at c∗ = (0.8339985012, 3.0122982805, 1.9052668985,−5.4437166429), that unfolds 9
nonzero limit cycles of small amplitude and yields to H3,2(1, 4) ≥ 10∗.

For (n,m) = (2, 3) we can get a similar numerical result for H3,2(2, 3) ≥ 10∗. The main
difference with the latter case is that the functions fk depend on (a1, a2, c1, c2) and have de-
gree 3k + 7, for k = 1, . . . , 5. Here the numerical approximation of the weak focus point is
(a∗1, a

∗
2, c
∗
1, c
∗
2) = (−0.05247784623, 0.6187352312,−0.2084251822, 0.3470405002).
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Ministerio de Ciéncia, Innovación y Universidades - Agencia Estatal de Investigación MTM2016-
77278-P (FEDER), MTM2017-86795-C3-2-P grants, the European Community H2020-MSCA-
RISE-2017-777911 grant, NSF of China No. 11771101 grant and China Scholarship Council No.
201606785007 grant.

References

[1] N. Alkoumi and P. J. Torres. On the number of limit cycles of a generalized Abel equation. Czechoslovak
Math. J., 61(136)(1):73–83, 2011.

[2] N. M. H. Alkoumi and P. J. Torres. Estimates on the number of limit cycles of a generalized Abel equation.
Discrete Contin. Dyn. Syst., 31(1):25–34, 2011.
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