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Abstract. In this paper we study unfoldings of planar vector fields in a neighbourhood of a hyperbolic
resonant saddle. We give a structure theorem for the asymptotic expansion of the local Dulac time (as
well as the local Dulac map) with the remainder uniformly flat with respect to the unfolding parameters.
Here local means close enough to the saddle in order that the normalizing coordinates provided by a
suitable normal form can be used. The principal part of the asymptotic expansion is given in a monomial
scale containing a deformation of the logarithm, the so-called Roussarie-Ecalle compensator. Especial
attention is paid to the remainder’s properties concerning the derivation with respect to the unfolding
parameters.
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1 Introduction and statements of the results

In this paper we study unfoldings of planar vector fields in a neighbourhood of a hyperbolic resonant saddle.
It can be viewed as the continuation of a previous paper where we give a CK normal form for the unfolding
with respect to the conjugacy relation, see [10, Theorem A]. By means of this normal form in that paper
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Figure 1: Auxiliary transverse sections in the decomposition of the Dulac map D = P2 ◦D0 ◦P1

and the Dulac time T = T1 + T0 ◦P1 + T2 ◦D0 ◦P1, where P1 (respectively, P2) is the Poincaré
map from Σ1 to Σ′1 (respectively, Σ2 to Σ′2) and T1 (respectively T2) is the time that spends
the flow to do this transition. Here the local Dulac map is D0 and the local Dulac time is T0.

we also determine an asymptotic expansion, uniform with respect to the parameters, for the local Dulac
time of a resonant saddle, see [10, Theorem B]. The Dulac map of a saddle is the transition map from a
transverse section Σ1 in the stable separatrix to a transverse section Σ2 in the unstable separatrix, whereas
the Dulac time is the time that spends the flow to do this transition, see Figure 1. By local we mean that
Σ1 and Σ2 cannot be at arbitrary distance from the saddle but close enough in order that we can use the
normalizing coordinates provided by the normal form. In other words, and more precisely, the local Dulac
map (respectively, local Dulac time) is the Dulac map (respectively, Dulac time) of the normal form.

The asymptotic expansion of the Dulac map (see [15, Chapter 5] and references therein) is a key tool to
study the cyclicity of a polycycle Γ (i.e., the maximum number of limit cycles that bifurcate from Γ) and
to this end the remainder in the asymptotic expansion must be uniformly flat. In this respect recall that
the second part of Hilbert’s 16th problem asks for the maximum number of limit cycles, called H(n), of a
polynomial vector field P (x, y)∂x +Q(x, y)∂y as a function of n = max(deg(P ),deg(Q)). It is still unknown
whether H(n) is finite. In case that the polycycle is monodromic and its return map is the identity then
there is an annulus foliated by periodic orbits where the period function (i.e., the time of the return map)
is defined. In this context the object of study are the so-called critical periodic orbits, which are the critical
points of the period function. Similarly as with Hilbert’s 16th problem, it arises the notion of criticality
of a polycycle Γ, i.e., the maximum number of critical periodic orbits that bifurcate from Γ, see [7, 9]. In
the same way as for the cyclicity, an asymptotic expansion of the Dulac time with remainder uniformly
flat constitutes a key tool to study the criticality of a polycycle. Both asymptotic expansions are of similar
nature, they are given in a monomial scale containing the so-called Roussarie-Ecalle compensator, which is
deformation of the logarithm.

The asymptotic expansion of the local Dulac map (respectively, time) is a basic building block for
establishing an asymptotic expansion of the Dulac map (respectively, time) and, in its turn, the latter is
essential to study the cyclicity (respectively, criticality) of polycycles. In the present paper we focus on
the local setting. Our main result for the local Dulac time is an asymptotic expansion that improves the
one we previously obtained, see [10, Theorem B], in two aspects. Firstly because it gives a more precise
description of the monomials appearing in the principal part. And secondly, more important, it shows that
the remainder can be smoothly extended also with respect to the unfolding parameters. This was in fact
our initial motivation to tackle the problem. In order to state our main theorems some results concerning
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normal forms are needed.
Let V be an open subset of RN and consider a C∞ unfolding {Xµ}µ∈V of a hyperbolic saddle point at

the origin. More precisely,
Xµ = A(x, y;µ)x∂x +B(x, y;µ)y∂y,

where A,B ∈ C∞(U × V ) for some open neighbourhood U of (0, 0) ∈ R2 and A(0, 0;µ)B(0, 0;µ) < 0 for all
µ ∈ V. The hyperbolicity ratio of the saddle is

λ = λ(µ) = −B(0, 0;µ)

A(0, 0;µ)
.

Given m,n ∈ Z we also consider the collinear family

Yµ =
1

xmyn
Xµ.

The reason why we permit this “polar” factor is because, when dealing with polynomial vector fields, a
special attention must be paid to the study of those polycycles with vertices at infinity in the Poincaré disc.
The factor can come from the line at infinity in a saddle at infinity or, more generally, appear in a divisor
after desingularizing more general singular points at infinity of a polycycle. The case of lines of zeros in at
least one of the separatrices is also allowed as it can appear after desingularizing a degenerate singular point
at finite distance. It is important to remark that (by means of a reparametrization of time) this factor can
be neglected to study the Dulac map but, on the contrary, this cannot be done when dealing with the Dulac
time. For the same reason, to study the Dulac time we need normal forms with respect to the conjugacy
relation rather than the equivalence relation.

We recall at this point Theorem A in [10], which generalizes well-known orbital normal forms with
respect to the equivalence relation (see [6, 15] and references therein). To this end let us fix µ0 ∈ V and
denote λ0 = λ(µ0) for shortness. If λ0 ∈ Q, say λ0 = p/q with (p, q) = 1, then that result shows that for
any k ∈ N the family {Yµ}µ∈V is C k conjugated, by means of a diffeomorphism Φ(x, y, µ) = (φ(x, y, µ), µ)
defined in a neighbourhood of (0, 0, µ0) ∈ R2 × V , to the normal form

Y NFµ =
1

η(µ)xmyn + u`Q(u;µ)

(
x∂x +

(
− λ(µ) + P (u;µ)

)
y∂y

)
,

where η is a C∞ function, P and Q are polynomials in the resonant monomial u = xpyq with the coefficients
being also C∞ functions in µ, and

` :=





⌈
max

(
m
p ,

n
q

)⌉
if mp− nq 6= 0,

⌈
max

(
m
p ,

n
q

)⌉
+ 1 if mp− nq = 0.

(1)

Finally, if λ0 /∈ Q then the result shows that we can take P = Q = 0. (In this paper we use the common
notation b · c and d · e for the floor and ceiling functions respectively.)

As we already explained, our aim in this paper is to study the Dulac time (as well as the Dulac map)
associated to Y NFµ . (Note in this respect that the only interesting case is the resonant one, i.e., λ0 ∈ Q,
because otherwise both maps can be computed explicitly.) More generally, we consider the polynomial
normal family

Yα,β :=
1

β0xmyn + u`
∑M
i=1 βiu

i−1
Xα (2)

where

Xα := x∂x + 1
q

(
−p+

∑N−1
i=0 αi+1u

i
)
y∂y. (3)
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In this way, setting α = (α1, . . . , αN ) ∈ RN and β = (β0, . . . , βM ) ∈ RM+1, we thus consider the coefficients
of the polynomials P ( · ;µ) and Q( · ;µ) in the normal form Y NFµ as independent parameters. Naturally we
work with α1 ≈ 0 because

λ = λ(α1) :=
p− α1

q
.

Note also that, with regard to the Dulac map, we can ignore the time and take Xα instead of Yα,β . That
being said, we denote the Dulac map between (0, 1)×{1} and {1}× (0, 1) by D( · ;α). Similarly, the Dulac
time between the same sections is denoted by T ( · ;α, β). More explicitly, let ϕ(t; s, α) be the solution of Xα

passing through (s, 1) ∈ R2 with s > 0 at t = 0. Then, since this solution reaches {y = 1} at time t = − ln s
due to ϕ1(t; s, α) = set, it turns out that D(s;α) = ϕ2(− ln s; s, α). Likewise, if φ(t; s, α, β) is the solution
of Yα,β passing through (s, 1) ∈ R2 with s > 0 then the Dulac time is the function T ( · ;α, β) verifying

φ1(t; s, α, β)|t=T (s;α,β) = 1 for all s > 0 small enough.

The present paper has two main results, namely: Theorem A, devoted to the Dulac map D(s;α), and
Theorem B, addressed to the Dulac time T (s;α, β). The idea behind the proof, and also the aim of the
result, is the same for both theorems. We show firstly that we can write the function as an infinite series
for s > 0 and α1 small enough. Secondly, that we can truncate this series in order that the tail is uniformly
flat at s = 0. And, thirdly, that the finite truncation can be expressed in terms of a polynomial in sp and
spω(s;α1), where ω is a deformation of the logarithm (see Definition 1.3), the so-called Ecalle-Roussarie
compensator.

In this paper we use a more general notion of flatness (see Definition 1.2), which constitutes the key
point in our approach as well as the main motivation to tackle the problem. Let us advance that it has
better properties with respect to parameters and that this enables us to elucidate a delicate point which we
think did not received the required attention in the literature (see Remark 1.4).

Definition 1.1. Consider K ∈ Z≥0 ∪ {+∞} and an open subset U of RN . We say that a function ψ(s;µ)
belongs to the class CK

s>0(U), respectively CK
s=0(U), if there exist an open neighbourhood V of

{(s, µ) ∈ RN+1; s = 0, µ ∈ U} = {0} × U

in RN+1 such that (s, µ) 7→ ψ(s;µ) is CK on V ∩
(
(0,+∞)× U

)
, respectively V. �

More formally, the definition of CK
s>0(U) and CK

s=0(U) must be thought in terms of germs with respect
to relative neighborhoods of {0} × U in (0,+∞)× U . In doing so these sets become rings and we have the
inclusions CK(U) ⊂ CK

s=0(U) ⊂ CK
s>0(U). These facts are implicitly used in Lemma A.3.

We can now introduce the notion of (finitely) flatness that we shall use in the sequel.

Definition 1.2. Consider K ∈ Z≥0 ∪ {+∞} and an open subset U of RN . Given some L ∈ R and µ̂ ∈ U ,
we say that ψ(s;µ) ∈ CK

s>0(U) is (L,K)-flat with respect to s at µ̂, and we write ψ ∈ FKL (µ̂), if for each
ν = (ν0, . . . , νN ) ∈ ZN+1

≥0 with |ν| = ν0 + · · · + νN 6 K there exist a neighbourhood V of µ̂ and C, s0 > 0
such that ∣∣∣∣

∂|ν|ψ(s;µ)

∂sν0∂µν1
1 · · · ∂µνNN

∣∣∣∣ 6 CsL−ν0 for all s ∈ (0, s0) and µ ∈ V . (4)

If W is a (not necessarily open) subset of U then define FKL (W ) :=
⋂
µ̂∈W FKL (µ̂). �

The class FKL (W ) consists in those functions ψ(s;µ) that are (finitely) flat along {0} ×W. The usual
notion of (finitely) flatness is addressed to functions ψ that are smooth at s = 0 and not depending on
parameters. In that context one simply requires the s derivatives of ψ to vanish at s = 0 up to order K− 1.
When dealing with functions that are not smooth at s = 0, the natural and common definition is to require
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the estimates in (4). In this non-smooth context, and when the function depends on parameters, one can
alternatively require (4) to hold for all µ ∈ V but only for derivation with respect to s. This is precisely
the notion of flatness used in [14, 15] for the remainder of the asymptotic expansion of the Dulac map (cf.
Remark 1.4). For instance the function (s, µ) 7→ sµ is obviously L-flat at any µ̂ > L according to this
alternative notion whereas to show that (s, µ) 7→ sµ belongs to F∞L ({µ > L}) requires some computations
(see Lemma A.4). Coming again to Definition 1.2, note that the case L < K is not excluded (and so it may
occur that L− ν0 is negative) and that the case L = K corresponds to the usal notion of (finitely) flatness.

The principal part of D( · ;α) and T ( · ;α, β) will be expressed in terms of the following deformation of
the logarithm.

Definition 1.3. The function defined for s > 0 and κ ∈ R by means of

ω(s;κ) =

{
s−κ−1
κ if κ 6= 0,

− ln s if κ = 0,

is called the Ecalle-Roussarie compensator. �

Lemma A.4 gives several properties of the Ecalle-Roussarie compensator in relation with the class FKL (W )
as introduced in Definition 1.2. It shows in particular that (s, κ) 7→ ω(s;κ) belongs to F∞−ε({κ < ε}) for all
ε > 0. With regard to the parameter space of the family of vector fields in (3), hereafter we denote

U0 := {α ∈ RN ;α1 = 0} = {0} × RN−1.

We can now state our two main results. In both statements we set ω = ω(s;α1) and λ = λ(α1) for the sake
of shortness. The first one is a structure theorem for the asymptotic expansion of the local Dulac map.

Theorem A. Let D( · ;α) be the Dulac map of the vector field Xα in (3) between the sections (0, 1)× {1}
and {1}×(0, 1). Then for each L ∈ R there exists a unique ∆(z, w;α) ∈ Q[z, w, α], with deg(z,w) ∆ 6 L

p − 1
q ,

and DL ∈ F∞L (U0) such that
D(s;α) = sλ∆(sp, spω;α) + DL(s;α).

Moreover, ∆(0, 0;α) = 1 in case that L > p
q and ∆ ≡ 0 otherwise.

This result has strong connections with the seminal works on the structure of the local Dulac map by
A. Mourtada and R. Roussarie. Indeed, we write the principal part along the same lines as Mourtada, see
[13, Proposition 2], in the sense that it is the Dulac map of the linear vector field x∂x − λy∂y, i.e., s 7→ sλ,
multiplied by a unity (that we show is polynomial in sp and spω). Roussarie (see [14, Theorem F] or [15,
Chapter 5]) writes the principal part in a different way and it is difficult to compare since he considers the
case p = q = 1 only, which does not fit very well for q 6= 1. Next we make some further comments about it.

Remark 1.4. The proof of Theorem A (and also the forthcoming Theorem B) relies on some previous
results by R. Roussarie in [14] (see also [15, Chapter 5]) that we gather in Lemma 2.1 and constitute our
starting point. In that paper the author studies the cyclicity of a saddle loop and to this aim he proves
Theorem F, which describes the structure of the local Dulac map D(s;α). That result is very similar to our
Theorem A, but important differences exist. Firstly his result is addressed to the case p = q = 1 because at
that time it was already well-known that the cyclicity of a saddle loop with λ0 6= 1 is at most one. Secondly
his result is more precise in the description of the principal part, i.e., D − DL, since he divides it in the
ideal generated by the coefficients α1, α2, . . . , αN . And, thirdly, his proof concerning the remainder consists
in showing that it verifies ∣∣∂ksDL(s;α)

∣∣ 6 CsL−k.
This kind of estimate, similar to (4) but without derivation with respect to parameters, behaves well through
the so-called derivation-division algorithm that yields to the main result in [14] on the cyclicity of the saddle
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loop (which in our opinion is perfectly right and, what is more, correctly proved). However it does not enable
to assert that DL extends to a C L function in (s, α) at s = 0 (see Example A.2 for a counterexample).
Sadly enough, this is precisely what the author states in Theorem F with regard to the remainder DL (see
also Theorem 14 in [15, page 103]). This inexactness yields to a crucial gap in a subsequent paper by the
same author [16]. Indeed, in that paper he studies the smoothness property of the bifurcation diagram of a
generic saddle loop unfolding of codimension 2, and to prove the main result he appeals to this (unproved)
claim in Theorem F. To be more precise, by taking advantage of the smoothness with respect to parameters
of the remainder, he is able to apply an ad hoc implicit function theorem to prove Proposition 2.1. In
our Theorem A we show that DL ∈ F∞L (U0), i.e., that the above bound holds for derivation with respect
parameters as well, and on the other hand we prove (see Lemma A.1) that any function in FKL (U0) with
L > K extends to a CK function in a neighbourhood of {0}×U0 in RN+1. We can thus fill the gap between
the proof of [14, Theorem F] and its statement. This shows in particular the validity of the proof of [16,
Proposition 2.1], which constitutes a key step to show the main result in that paper. �

Next result provides the structure of the asymptotic expansion of the local Dulac time and in its statement
we assume that

⌈
max

(
m
p ,

n
q

)⌉
> 0. Let us point out however that we do not need this assumption in any of

the previous auxiliary results. In this regard note that this hypothesis is satisfied if m and n are not both
negative. From the point of view of the bifurcation of critical periodic orbits, the most interesting situation
comes from the Dulac time associated to a saddle placed in the line at infinity, and in this case either m > 0
or n > 0.

Theorem B. Let T ( · ;α, β) be the Dulac time of the vector field Yα,β in (2) between the sections (0, 1)×{1}
and {1} × (0, 1). Suppose that κ :=

⌈
max

(
m
p ,

n
q

)⌉
> 0. Then for each L ∈ R we can write

T (s;α, β = TL(s;α, β) + TL(s;α, β),

where

(1) the principal part is given by

TL(s;α, β) := τ0(β) ln s+ sλnτ1(sp, spω;α, β)− smτ1(sp, 0;α, β) + sκpτ2(sp, spω;α, β),

with τ0(β) ∈ Q[β], τ1(z, w;α, β) ∈ Q(α1)[z, w, α2, . . . , αN , β] and τ2(z, w;α, β) ∈ Q[z, w, α, β],

(2) and the remainder TL(s;α, β) belongs to F∞L (U0 × RM+1).

Moreover the principal part verifies the following:

(a) τ1 is linear in β and without poles along α1 = 0.

(b) τ2 is linear in β and τ2(z, 0;α, β) = 0.

(c) τ1 = 0 if mp− nq = 0.

(d) τ0 = −β0 if (m,n) = (0, 0) and τ0 = −β1 if ` = 0, whereas τ0 = 0 in any other case.

In a previous paper we already give a structure theorem for the asymptotic expansion of the local Dulac
time, see [10, Theorem B]. The main difference between both results is that we can now guarantee that
the remainder TL is flat along s = 0, not only for the derivation with respect to s, but also with respect
to α and β (cf. Definition 1.2). Consequently, as we explain in Remark 1.4, by applying Lemma A.1 we
can assert that if K < L then the remainder TL(s;α, β) extends to a CK function in a neighbourhood of
{0}×U0×RM+1 in R×RN×RM+1. We are convinced that this regularity of the remainder will be crucial
in future applications, for instance to have a better understanding of the bifurcation diagram of the critical
periodic orbits of the Loud’s centers, see [9]. In fact this kind of property has already been used to study the
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period of the limit cycle appearing in one-parameter saddle loop bifurcations (see [4, Theorem 16]). To this
end the authors prove Proposition 23, which corresponds to Theorem B particularized to m = n = 0 and
K = L = 1. (As a matter of fact while trying to extend it we realized that their proof contains a bridgeable
mistake that we correct here, see Remark 2.4.) Coming back to our previous result in [10], let us note that
the principal part TL that we provide here is more precise than the one given there.

The paper is organized as follows. In Section 2, taking Roussarie’s results in [15, Chapter 5] as starting
point, we consider the solution ϕ(t; s, α) of Xα passing through (s, 1) ∈ R2 at t = 0 and we expand ϕ2(t; s, α)
as a power series in s for each fixed t and α. We obtain sharp uniform estimates for the radius of convergence
of this series (see Lemma 2.5) and also for the derivatives of its coefficients (see Lemma 2.7). Next, on account
of D(s;α) = ϕ2(− ln s; s, α), in Section 3 we use these results to prove Theorem A. Section 4 is devoted to
the proof of Theorem B and to this end, see (2), we take advantage of the previous results thanks to the
identity

T (s;α, β) =

∫ − ln s

0

(
β0x

myn +

M+`−1∑

i=`

βi+1−`(x
pyq)i

)∣∣∣∣∣
{(x,y)=ϕ(t;s,α)}

dt.

Some technical but crucial issues about the sets FKL (W ) are treated in Appendix A. Among other properties
we show that any g(s;µ) ∈ FKL (W ) with L > K extends to a CK-function (on s and the parameter µ) along
s = 0. (This applies in particular to the remainder DL in Theorem A, as well as to TL in Theorem B.) Finally,
in Appendix B we recall some specific results from analysis and calculus, in particular the multivariate Faa di
Bruno formula for higher-order derivatives of a composite function (see Theorem B.1) that we use repeatedly
all over the paper.

2 Further results on Roussarie’s series expansion

Observe that performing the singular change of variables {u = xpyq, x = x}, the differential equation given
by the vector field Xα in (3) is brought to the following form:

{
ẋ = x,

u̇ = P (u;α) :=
∑N
i=1 αiu

i.

The first equation gives x(t, x0) = x0e
t and we denote by u(t, u0;α) the solution of the second one with

initial condition u(0, u0;α) = u0. For each fixed t and α, we expand it as a power series in u0,

u(t, u0;α) =
+∞∑

i=1

gi(t;α)ui0. (5)

In what follows, for any given δ > 0 we define

Uδ := {α = (α1, . . . , αN ) ∈ RN ; |α1| < δ}.

Following this notation, Roussarie [15, §5.1.2] shows the next result with regard to the series in (5).

Lemma 2.1. The following assertions hold:

(a) For all i ∈ N, gi(t;α) = eα1tḡi−1(t;α) with ḡi(t;α) ∈ Q[α,Ω] where Ω:= eα1t−1
α1

and degΩ ḡi 6 i.

(b) For each compact set C ⊂ Uδ with δ ∈ (0, 1
2 ] there exist K0, C0 > 0 such that if t > 0, |u0| < C−1

0 e−δt

and α ∈ C then the series (5) is absolutely convergent and |u(t, u0;α)| 6 K0|u0|eδt.

(c) For all i ∈ N, t > 0 and α ∈ C, |gi(t;α)| 6 K0C
−1
0 (C0e

δt)i.
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Proof. Assertion (a) is proved in Proposition 10, whereas (b) follows from the proofs of Lemmas 18 and 19
because, using the author’s notation,

|u(t, u0;α)| 6
+∞∑

i=1

|gi(t;α)||u0|i 6
+∞∑

i=1

Gi(t)|u0|i = U(t, |u0|).

Finally (c) follows from (b) by applying the Cauchy’s estimates (see for instance [18, Theorem 10.26]).

Corollary 2.2. For each compact set C ⊂ Uδ with δ ∈ (0, 1
2 ] there exist C0 > 0 such that the function

u(t, u0;α) is analytic on an open set containing

{(t, u0, α) ∈ RN+2; t > 0, |u0| < C−1
0 e−δt, α ∈ C}.

Proof. Recall that u(t, u0;α) is the solution of u̇ = P (u;α) with initial condition u(0, u0;α) = u0. Let us
denote its maximal interval of existence by (ω−, ω+), where ω± = ω±(u0, α). Since P is analytic on RN+1,

D = {(t, u0, α) ∈ RN+2;ω−(u0, α) < t < ω+(u0, α)}

is an open set in RN+2 and u(t, u0;α) is analytic in D (see [5, Theorem 1.1] and [19, page 34]). Moreover, for
the same reason, if ω+ is finite then |u(t, u0;α)| tends to +∞ as t↗ ω+ (see [1, Theorem 1.263] or [19, page
17] for instance). Note on the other hand that, by Lemma 2.1, if |u0| < C−1

0 e−δt then |u(t, u0;α)| 6 K0C
−1
0

for all t ∈ (0, ω+) and α ∈ C. Arguing by contradiction this implies that ω+ > − 1
δ ln(C0|u0|) and concludes

the proof of the result.

Given ν = (ν0, ν1, . . . , νN ) ∈ ZN+1
≥0 , we write

∂νt,α =
∂|ν|

∂tν0∂αν1
1 · · · ∂ανNN

and, following this notation, we expand ∂νt,αu(t, u0;α) as a power series in u0,

∂νt,αu(t, u0;α) =

+∞∑

i=1

hi(t, α)ui0. (6)

Similarly as in Lemma 2.1, we want to estimate the functions hi and the convergence of the above series in
terms of t and α. This is the aim of the next result, where we also write ν = (ν0, ν̄) with ν̄ = (ν1, . . . , νN )
for the sake of convenience.

Theorem 2.3. For all ν ∈ ZN+1
≥0 there exists a real number ρν̄ , satisfying 1 6 ρν̄ 6 max(|ν̄|, 1) and

independent from ν0, such that for each compact set C ⊂ Uδ with δ ∈ (0, 1
2 ] there exist Cν̄ > 0, independent

from ν0, and Kν > 0 such that if t > 0, α ∈ C and |u0| < C−1
ν̄ e−δt then

(i) |∂νt,αu(t, u0;α)| 6 Kν |u0|eρν̄δt, and
(ii) the series in (6) is absolutely convergent.

Moreover, for all i ∈ N, α ∈ C and t > 0, hi(t, α) = ∂νt,αgi(t;α) and
∣∣∂νt,αgi(t;α)

∣∣ 6 Kνe
ρν̄δt

(
Cν̄e

δt
)i−1

.

Finally there exists M > 0 such that if |u0| < (2C0)−1e−δt then

|∂2
u0
u(t, u0;α)| 6Meα1tΩ(t, α1) where Ω(t, α1) := eα1t−1

α1
.

for all t > 0 and α ∈ C.
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Proof. We begin by proving assertions (i) and (ii) in case that ν0 = 0, i.e., only derivation with respect to
parameters. To this end for the sake of shortness we use the compact notation

∂
(0,ν1,...,νN )
t,α = ∂ν̄α =

∂|ν̄|

∂αν1
1 · · · ∂ανNN

where ν̄ = (ν1, . . . , νN ).

The proof follows by induction on |ν̄|. The base case |ν̄| = 0 is (b) in Lemma 2.1. To show the induction
step we first perform the partial derivation ∂ν̄α on both sides of the equality ∂tu = P (u;α) and then apply
Theorem B.1 to obtain

∂t∂
ν̄
αu(t, u0;α) =∂ν̄αP (u(t, u0;α);α)

=
∑

16|λ|6|ν̄|
∂λP (u;α)

∑

p(ν̄,λ)

ν̄!

q∏

j=1

(∂
`j
α u)kj0

∏N
i=1(∂

`j
α αi)

kji

kj !(`j !)|kj |

∣∣∣∣∣
u=u(t,u0;α)

. (7)

Here, for λ = (λ0, . . . , λN ) ∈ ZN+1
≥0 , we use the notation ∂λP (u;α) = ∂|λ|P (u;α)

∂uλ0∂α
λ1
1 ···∂α

λN
n

and, for kj ∈ ZN+1
≥0 ,

we write kj = (kj0, . . . , kjN ). Note also that both summations are multidimensional and the second one is
subject to the coupling conditions given in (37), namely

∑q
i=1 ki = λ and

∑q
i=1 |ki|`i = ν̄. In this respect

we observe the following:

(a) The only summand in (7) that contains a factor ∂`jα u with |`j | = |ν̄| is ∂uP (u;α)∂ν̄αu. Indeed, this is
so because if `j = ν̄ and kj0 6= 0 then |ki| = 0 for i 6= j and λ = kj = (1, 0, . . . , 0).

(b) If kj0 = 0 for all j then λ0 = 0. Consequently any summand in (7) not containing a factor ∂`u with
|`| > 0 has the factor ∂(0,`)P (u;α) =

∑N
i=1(∂`ααi)u

i, which is a polynomial vanishing at u = 0.

Accordingly we can split the right hand side of the equation (7) so that it writes as

∂t∂
ν̄
αu(t, u0;α) = ∂uP (u(t, u0;α);α)∂ν̄αu(t, u0;α) +R1

ν̄(t, u0, α) +R2
ν̄(t, u0, α),

where we define R1
ν̄ to be the sum of those summands with kj0 = 0 for all j = 1, 2, . . . , q while R2

ν̄ is the
sum of the remaining summands. Note then that

R1
ν̄(t, u0, α) = uS(u;α)|u=u(t,u0;α)

for some polynomial S(u;α) with degu S = N − 2. The above equality is a first order linear differential
equation for ∂ν̄αu(t, u0;α) that, setting Rν̄ = R1

ν̄ +R2
ν̄ and

B(t, u0, α) := exp

(∫ t

0

∂uP (u(s, u0;α);α)ds

)
(8)

for the sake of shortness, yields to

∂ν̄αu(t, u0;α) = B(t, u0, α)

∫ t

0

Rν̄(s, u0, α)

B(s, u0, α)
ds. (9)

Note that we can write ∂uP (u(s, u0;α);α) =
∑∞
i=0 pi(s, α)ui0 with the same radius of convergence as (5)

because ∂uP ( · ;α) is polynomial. In addition we have p0(s;α) ≡ α1. Thus, applying (b) in Lemma 2.1 and
setting K1 := sup{|∂uP (u;α)− α1|; |u| 6 K0C

−1
0 , α ∈ C}, if |u0| < C−1

0 e−δt then
∣∣∣∣
∫ t

0

(∂uP (u(s, u0;α);α)− α1) ds

∣∣∣∣ 6
∞∑

i=1

∫ t

0

|pi(s;α)||u0|ids 6 K1

∞∑

i=1

∫ t

0

(C−1
0 eδs)i|u0|ids

= K1

∞∑

i=1

Ci0|u0|i
eδit − 1

δi
6 K1

δ

∞∑

i=1

(C0|u0|eδt)i < +∞,

9



where in the second inequality we use Cauchy’s estimates (see [18, Theorem 10.26]). Thus, by Lemma B.5,

∫ t

0

∂uP (u(s, u0;α);α)ds =
+∞∑

i=0

(∫ t

0

pi(s;α)ds

)
ui0

and the series converges absolutely for |u0| < C−1
0 e−δt. Furthermore, settingK2 := K1

δ , if |u0| 6 (2C0)−1e−δt

then

α1t−K2 6
∫ t

0

∂uP (u(s, u0;α);α)ds 6 α1t+K2 for all t > 0 and α ∈ C.

Consequently, recall (8), if |u0| 6 (2C0)−1e−δt then

e−K2eα1t 6 B(t, u0, α) 6 eK2eα1t for all t > 0 and α ∈ C. (10)

On the other hand, since x 7→ e±x are entire functions, the Taylor series of B(t, u0, α) and 1/B(t, u0, α) at
u0 = 0 converge absolutely for all t > 0 and α ∈ C provided that |u0| < C−1

0 e−δt. Therefore, from (9) and
taking the previous bounds into account, we get that if |u0| 6 (2C0)−1e−δt then

|∂ν̄αu(t, u0;α)| 6 e2K2eα1t

∫ t

0

|Rν̄(s, u0, α)| e−α1sds for all t > 0 and α ∈ C. (11)

We are now in position to prove the validity of assertions (i) and (ii) for the case ν0 = 0 and to this end
recall that Rν̄ = R1

ν̄ + R2
ν̄ . Let us begin with the study of R2

ν̄ by noting that in each one of its summands
we have that (∂`ju(t, u0;α))kj0 verifies |`j | < |ν̄| for j = 1, 2, . . . , q and that there is at least one exponent
kj0 strictly positive. Accordingly, thanks to the induction hypothesis, for each j = 1, 2, . . . , q we know that
if |u0| < C−1

`j
e−δt then |(∂`ju(t, u0;α))kj0 | 6 (K`j |u0|eρ`j δt)kj0 for all t > 0 and α ∈ C. We define

p?(ν̄) :=
⋃

16|λ|6|ν̄|
{(k1, . . . , kq; `1, . . . , `q) ∈ p(ν̄, λ) ; |`j | < |ν̄|} ,

which is nonempty if and only if |ν̄| > 1. Taking this into account, if |ν̄| > 1 then we set

Cν̄ := max
(

2C0,max
(
C`j ; (k1, . . . , kq; `1, . . . , `q) ∈ p?(ν̄)

))
,

ρν̄ := max
(

1,max
(∑q

j=1 kj0ρ`j ; (k1, . . . , kq; `1, . . . , `q) ∈ p?(ν̄)
))

and

K3 := max
(∏q

j=1(K`j )
kj0 ; (k1, . . . , kq; `1, . . . , `q) ∈ p?(ν̄)

)
,

whereas if |ν̄| = 1 then we define Cν̄ = 2C0, ρν̄ = 1 and K3 = 1. Furthermore we define

K4 := sup
{
|∂λP (u;α)|; |u| 6 K0C

−1
0 , α ∈ C, 1 6 |λ| 6 |ν̄|

}

and

K5 := sup
{∑

16|λ|6|ν̄|
∑
p(ν̄,λ) ν!

∏q
j=1

∏N
i=1(∂`jαi)

kji

kj !(`j !)
|kj | ; α ∈ C

}

Note moreover that |u0|
∑q
j=1 kj0 6 |u0| due to

∑q
j=1 kj0 > 1 and |u0| 6 1. On account of these definitions

and applying (b) in Lemma 2.1, from (7) it follows that if |u0| < C−1
ν̄ e−δt then |R2

ν̄(t, u0, α)| 6 K6|u0|eρν̄δt
for all t > 0 and α ∈ C, where we set K6 := K3K4K5. Let us proceed next with the study of R1

ν̄ . In this
case, due to R1

ν̄(t, u0, α) = uS(u;α)|u=u(t,u0;α) , we define

K7 := sup
{
|S(u;α)|; |u0| 6 K0C

−1
0 , α ∈ C

}
.
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Thus, by applying Lemma 2.1, if |u0| < C−1
0 e−δt then |R1

ν̄(t, u0, α)| 6 K0K7|u0|eδt for all t > 0 and α ∈ C.
Finally, taking Cν̄ > C0 into account, we can assert that if |u0| < C−1

ν̄ e−δt then

|Rν̄(t, u0, α)| 6 |R1
ν̄(t, u0, α)|+ |R2

ν̄(t, u0, α)| 6 K0K7|u0|eδt +K6|u0|eρν̄δt 6 K8|u0|eρν̄δt (12)

for all t > 0 and α ∈ C, where we set K8 := max(K6,K0K7) and we use that ρν̄ > 1. We can now plug this
inequality in (11) to obtain that if |u0| < C−1

ν̄ e−δt then

|∂ν̄αu(t, u0;α)| 6 K8e
2K2 |u0|eα1t

∫ t

0

e(ρν̄δ−α1)sds = K8e
2K2 |u0|eα1t

e(ρν̄δ−α1)t − 1

ρν̄δ − α1
6 Kν |u0|eρν̄δt

for all t > 0 and α ∈ C, where Kν := K8e
2K2

K9
with K9 := inf{ρν̄δ − α1; α ∈ C}, which is strictly positive

because |α1| < δ 6 ρν̄δ. This proves the inductive step with regard to assertion (i). Let us turn now to
assertion (ii). Since Rν̄ is a polynomial of ∂`u with 0 6 |`| < |ν̄| on account of property (a), by the induction
hypothesis we get that the Taylor series of Rν̄(t, u0, α) at u0 = 0 is absolutely convergent for all t > 0 and
α ∈ C provided that |u0| < C−1

ν̄ e−δt. Furthermore, from (12), if |u0| < C−1
ν̄ e−δt then

|Rν̄(t, u0, α)| 6 K8C
−1
ν̄ e(ρν̄−1)δt for all t > 0 and α ∈ C.

Recall on the other hand that the Taylor series of 1
B(t,u0,α) at u0 = 0 is absolutely convergent for all t > 0

and α ∈ C provided that |u0| < C−1
0 e−δt. In addition (10) shows that 1

|B(t,u0,α)| 6 eK2e−α1t for this range

of values. Hence, due to C0 < 2C0 6 Cν̄ , if |u0| < C−1
ν̄ e−δt then the series Rν̄(t,u0,α)

B(t,u0,α) =
∑∞
i=0 ri(t;α)ui0 is

absolutely convergent and the upper bound
∣∣∣∣
Rν̄(t, u0, α)

B(t, u0, α)

∣∣∣∣ 6 K8C
−1
ν̄ eK2e((ρν̄−1)δ−α1)t 6 K8C

−1
ν̄ eK2eρν̄δt

holds for all t > 0 and α ∈ C due to |α1| < δ. Note also that r0(t;α) ≡ 0. As we did before, the Cauchy’s
estimates show that

|ri(t;α)| 6 K8C
−1
ν̄ eK2Ciν̄e

(ρν̄+i)δt for all i ∈ N, t > 0 and α ∈ C.

Consequently, for all i ∈ N, t > 0 and α ∈ C, we get
∫ t

0

|ri(s;α)|ds 6 K8C
−1
ν̄ eK2Ciν̄

e(ρν̄+i)δt − 1

(ρν̄ + i)δ
6 K9C

i
ν̄e

(ρν̄+i)δt,

where K9 = K8C
−1
ν̄ eK2

ρν̄δ
. Thanks to these estimates we can assert that if |u0| < C−1

ν̄ e−δt then

∣∣∣∣
∫ t

0

Rν̄(s, u0, α)

B(s, u0, α)
ds

∣∣∣∣ 6
+∞∑

i=1

|u0|i
∫ t

0

|ri(s;α)|ds 6 K9e
ρν̄δt

+∞∑

i=1

(
Cν̄ |u0|eδt

)i
<∞

for all t > 0 and α ∈ C. Therefore, by Lemma B.5,

∫ t

0

Rν̄(s, u0, α)

B(s, u0, α)
ds =

+∞∑

i=1

(∫ t

0

ri(s;α)ds

)
ui0

and the series converges absolutely for |u0| < C−1
ν̄ e−δt. Since we already prove this fact for the Taylor

series of B(t, u0, α) at u0 = 0, from (9) it follows that the Taylor series of ∂ν̄αu(t, u0;α) at u0 = 0 converges
absolutely for all t > 0 and α ∈ C provided that |u0| < C−1

ν̄ e−δt. This shows the inductive step concerning
assertion (ii) for the case ν0 = 0.
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Let us turn now to the proof of the case ν0 > 0. Since ∂tu = P (u;α) we deduce that ∂nt u = Pn(u;α)
for all n ∈ N, where Pn := P∂uPn−1 with P0(u;α) := u. The application of Faa di Bruno formula given by
Theorem B.1 yields to

∂
(ν0,ν1,...,νN )
t,α u(t, u0;α) = ∂ν̄αPν0

(u(t, u0;α))

=
∑

16|λ|6|ν̄|
∂λPν0

(u;α)
∑

p(ν̄,λ)

ν̄!

q∏

j=1

(∂
`j
α u)kj0

∏N
i=1(∂

`j
α αi)

kji

kj !(`j !)|kj |

∣∣∣∣∣
u=u(t,u0;α)

(13)

= R̂1
ν(t, u0, α) + R̂2

ν(t, u0, α),

where R̂1
ν consists in all the summands with kj0 = 0 for all j. Accordingly, due to Pν0

(0;α) ≡ 0, exactly as
we did to show (b), we can write R̂1

ν(t, u0, α) = uSν(u;α)|u=u(t,u0;α) for some polynomial Sν . Thus, setting

K10 := sup
{
|Sν(u;α)|; |u| 6 K0C

−1
0 , α ∈ C

}

and applying (b) in Lemma 2.1, if |u0| < C−1
0 e−δt then |R1

ν(t, u0, α)| 6 K0K10|u0|eδt for all t > 0 and α ∈ C.
On the other hand, since we have already proved the validity of (i) for the particular case ν0 = 0, it follows
that for each j there exist K`j , C`j > 0 and ρ`j > 1 such that |∂`jα u(t, u0;α)| 6 K`j |u0|etρ`j for all t > 0

and α ∈ C provided that |u0| 6 C−1
`j
e−δt. Thus, taking upper bounds in (13) as we did before with R2

ν̄ ,
it follows that there exists Kν > 0 (which we take satisfying Kν > 2K0K10 for convenience) such that if
|u0| < C−1

ν̄ e−δt then |R̂2
ν(t, u0, α)| 6 1

2Kν |u0|eρν̄δt for all t > 0 and α ∈ C. (Here we remark that ρν̄ > 1 and
Cν̄ > C0 are the ones previously defined when we tackle the case ν0 = 0.) Hence, if |u0| < C−1

ν̄ e−δt then

|∂ν̄t,αu(t, u0;α)| 6 |R̂1
ν(t, u0, α)|+ |R̂2

ν(t, u0, α)| 6 K0K10|u0|eδt + 1
2Kν |u0|eρν̄δt 6 Kν |u0|eρνδt

for all t > 0 and α ∈ C. Finally the fact that the Taylor series of ∂νt,αu(t, u0;α) is absolutely convergent for
all t > 0 and α ∈ C provided that |u0| < C−1

ν̄ e−δt follows from (13) using that this is true for ∂`jα u(t, u0;α)
for all j and that ∂λPν0

(u;α) is polynomial in u.
So far we have proved assertions (i) and (ii) except for the validity of the upper bound ρν̄ 6 max(|ν̄|, 1).

Lemma 2.1 shows that this is true for |ν̄| = 0 because we can take ρ0 = 1. The proof for |ν̄| > 1 follows by
induction taking into account that

ρν̄ := max
(

1,max
(∑q

j=1 kj0ρ`j ; (k1, . . . , kq; `1, . . . , `q) ∈ p?(ν̄)
))

.

The base case is also true by definition because ρν̄ = 1 for |ν̄| = 1 (recall that in this case the set p?(ν̄) is
empty). The inductive step follows by noting that, due to the definition of p(ν̄, λ),

q∑

j=1

kj0ρ`j 6
q∑

j=1

kj0|`j | 6
q∑

j=1

(kj0 + · · ·+ kjN )|`j | =
q∑

j=1

|kj |(`j1 + · · ·+ `jN ) = |ν̄|,

where in the first inequality we use the inductive step and in the last equality take
∑q
j=1 |kj |`j = ν̄ into

account.
Let us prove next the statement concerning the coefficients hi(t, α) in the series (6). To this aim observe

that, by assertion (ii), this series converges absolutely for all t > 0 and α ∈ C provided that |u0| < C−1
ν̄ e−δt.

This implies that, for each fixed t > 0 and α ∈ C,

hi(t, α) =
1

i!
∂iu0

∂νt,αu(t, u0;α)
∣∣
u0=0

for all i ∈ N. (14)

On the other hand, thanks to assertion (i), if |u0| < C−1
ν̄ e−δt then

|∂νt,αu(t, u0;α)| 6 Kν |u0|eρν̄δt < KνC
−1
ν̄ e(ρν̄−1)δt.
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Therefore, by applying the Cauchy’s estimates,

|hi(t;α)| 6 KνC
−1
ν̄ e(ρν̄−1)δt

(
Cν̄e

δt
)i

= Kν̄e
ρν̄δt

(
Cν̄e

δt
)i−1

for all i > 1, α ∈ C and t > 0. Recall in addition that, by (b) in Lemma 2.1, if |u0| < C−1
0 e−δt then

u(t, u0;α) =
∑+∞
i=1 gi(t, α)ui0 converges absolutely for all t > 0 and α ∈ C. In particular, for each fixed t > 0

and α ∈ C, we can assert that gi(t, α) = 1
i! ∂

i
u0
u(t, u0;α)

∣∣
u0=0

holds for all i ∈ N. Consequently

hi(t, α) =
1

i!
∂iu0

∂νt,αu(t, u0;α)
∣∣
u0=0

=
1

i!
∂νt,α∂

i
u0
u(t, u0;α)

∣∣
u0=0

= ∂νt,αgi(t, α),

where in the first equality we use (14) and in the second one Corollary 2.2.
It only remains to be proved the upper bound for |∂2

u0
u(t, u0, α)|. To this end we observe that

∂u0
u(t, u0;α) = exp

(∫ t

0

∂uP
(
u(s, u0;α);α

)
ds

)
= B(t, u0, α),

where we use ∂t∂u0u = ∂uP (u;α)∂u0u in the first equality and (8) in the second one. Therefore

∂2
u0
u(t, u0;α) = B(t, u0, α)

∫ t

0

∂2
uP
(
u(s, u0;α);α

)
B(s, u0, α)ds.

Setting K11 := sup
{
|∂2
uP (u;α)|; |u| 6 K0C

−1
0 , α ∈ C

}
, (b) in Lemma 2.1 and the inequalities in (10) show

that if |u0| < (2C0)−1e−δt then

|∂2
u0
u(t, u0;α)| 6 K11e

2K2eα1t

∫ t

0

eα1sds = Meα1tΩ(t, α1),

where we take M = K11e
2K2 . This completes the proof of the result.

Remark 2.4. Let us mention that Theorem 2.3 corrects a mistake in the proof of [4, Propositon 23]. The
authors of that paper split the proof into two intermediate claims. The second one is a particular case of
assertion (i) in Theorem 2.3 (it corresponds to |ν̄| = 1 and N = 1) but the proof given there is not right.
Indeed, they consider in page 283 the series p(u(ξ, u0)) =

∑+∞
i=1 pi(ξ)u

i
0 but the summation index should

run from i = 0. This may seem a typo but it has important consequences in order to bound the derivative
with respect to parameters because, transferred to our proof, it yields to the factor eα1t in (10). That being
said, except for this bridgeable mistake in the proof of [4, Propositon 23], the main result in that paper
with regard to the period of the limit cycle emerging from a saddle loop bifurcation is perfectly correct. �

At this point let us denote by t 7→ (x(t, p0;α), y(t, p0;α)) the solution of the differential system given
by the vector field Xα in (3) passing through p0 = (x0, y0) ∈ R2. It is clear that x(t, p0;α) = x0e

t. We are
interested in the analytical properties of y(t, p0;α) with the initial condition p0 = (s, 1). This is the reason
why we first studied u = xpyq and in this respect, by Lemma 2.1, we know that

u(t, u0;α) =
+∞∑

i=1

gi(t;α)ui0 = u0e
α1t

+∞∑

i=0

ḡi(t;α)ui0,

where the series converge absolutely and we use that gi(t;α) = eα1tḡi−1(t;α). Thus, since x(t, p0;α) = x0e
t,

(
y(t, p0;α)

)q
= e−ptyq0e

α1t
+∞∑

i=0

ḡi(t;α)ui0 = yq0e
(α1−p)t

(
1 +

+∞∑

i=1

ḡi(t;α)ui0

)
. (15)
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Since (1 + z)η =
∑+∞
k=0

(
η
k

)
zk for |z| < 1, with the aim of computing

(
y(t, x0, y0;α)

)j for any j ∈ Z we set

ψj0 := 1 and, for k ∈ N, ψjk :=
k∑

r=1

(
j/q

r

) ∑

i1+···+ir=k

ḡi1 · · · ḡir . (16)

Our next task is to prove the following result.

Lemma 2.5. For each compact set C ⊂ Uδ with δ ∈ (0, 1
2 ] there exist C0,M > 0 such that the identity

(
y(t, s, 1;α)

)j
= e−λjt

+∞∑

k=0

ψjk(t;α)skp

holds for all j ∈ Z, t > 0, α ∈ C and s > 0 with sp max
(
MΩ(t, α1), 4C0e

δt
)
< 2, Moreover under these

conditions the series is absolutely convergent.

Proof. Since gi(t;α) = eα1tḡi−1(t;α) and ḡ0 = 1, from (5) we get

+∞∑

i=1

ḡi(t;α)ui0 =
u(t, u0;α)− u0e

α1t

u0eα1t
=
∂2
u0
u(t, ξ;α)u2

0

2u0eα1t
for some ξ ∈ [0, u0],

where in the second equality we apply Taylor’s theorem taking u(t, 0;α) = 0 and ∂u0
u(t, 0;α) = eα1t into

account. By applying Theorem 2.3, there exist C0,M > 0 such that if |u0| < (2C0)−1e−δt then

|∂2
u0
u(t, u0;α)| 6Meα1tΩ(t, α1) for all t > 0 and α ∈ C.

Hence if |u0| < (2C0)−1e−δt then
∣∣∣
∑+∞
i=1 ḡi(t;α)ui0

∣∣∣ 6 M
2 Ω(t, α1)|u0| for all t > 0 and α ∈ C. Therefore, if

|u0| < min
(

2
MΩ(t,α1) , (2C0)−1e−δt

)
then

∣∣∣
∑+∞
i=1 ḡi(t;α)ui0

∣∣∣ < 1 for all t > 0 and α ∈ C. Accordingly, since
(1 + z)j/q =

∑+∞
k=0

(
j/q
k

)
zk for |z| < 1, from (15) and (16) it follows that

(
y(t, x0, y0;α)

)j
= yj0e

j(α1−p)t/q
(

1 +
+∞∑

i=1

ḡi(t;α)ui0

)j/q
= yj0e

j(α1−p)t/q
+∞∑

k=0

ψjk(t;α)uk0

for all t > 0 and α ∈ C provided that |u0| < 1/max
(
M
2 Ω(t, α1), 2C0e

δt
)
. Furthermore the second series

converges absolutely because so it does the first one thanks to Lemma 2.1. Finally, since u0 = xp0y
q
0 and

λ = p−α1

q , the result follows taking (x0, y0) = (s, 1).

The following is a technical lemma that will be used in the proof of our last result in this section.

Lemma 2.6. For each m,n ∈ Z≥0 there exist Pmn, Qmn ∈ Z[x, y] with degx Pmn = degxQmn = m and
degy Pmn = degy Qmn = n such that for any a ∈ R,

∂nx∂
m
y e

axy = ameaxyPmn(x, ay) and ∂nx∂
m
y x

y = xy−nQmn(lnx, y).

In particular, there exist M1,M2 > 0 such that
∣∣∂nx∂my eaxy

∣∣ 6M1 max(1, |x|, |ay|)m+n|a|meaxy and
∣∣∂nx∂my xy

∣∣ 6M2 max(1, | lnx|, |y|)m+nxy−n.

Proof. Note that ∂nx∂my eaxy = ∂nx
(
eaxy(ax)m

)
and ∂nx∂my xy = ∂nx

(
xy(lnx)m

)
. From here the proof follows

by induction on n. To this end we set Pm0(x, y) = Qm0(x, y) = xm. Then the inductive step follows by
taking Pm,n+1 = yPmn + ∂xPmn and Qm,n+1 = (y − n)Qmn + ∂xQmn.
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Lemma 2.7. For each compact set C ⊂ Uδ with δ ∈ (0, 1
2 ], j ∈ Z and ν ∈ ZN+1

≥0 there exist Cjν ,Kν > 0
such that

|∂νt,αψjk(t;α)| 6 Kν(k + 1)3|ν|(Cjν)k max(1, t)|ν|e(3k+|ν|)δt

for all k ∈ Z≥0, t > 0 and α ∈ C.

Proof. Note first that, on account of the definition in (16),

∂νψjk =
k∑

r=1

(
j/q

r

) ∑

i1+···+ir=k

∂ν(ḡi1 · · · ḡir ),

where, due to gi(t;α) = eα1tḡi−1(t;α) and applying Theorem B.2,

∂ν(ḡi1 · · · ḡir ) =
∑

`0+...+`r=ν

a`0,...,`r∂
`0(e−α1rt)∂`1gi1+1 · · · ∂`rgir+1.

We remark that this summation is multidimensional with `0, . . . , `r ∈ ZN+1
≥0 and a`0,...,`r =

(
ν

`0,...,`r

)
are

the generalized multinomial coefficients (cf. Remark B.3). Setting `0 = (`00, . . . , `0N ) then, by Lemma 2.6,
∂`0(e−α1rt) = ∂`00

t ∂`01
α1

(e−α1rt) = (−r)`01e−α1rtP`01`00(t,−α1r) if `02 = . . . = `0N = 0 and zero otherwise.
In addition |∂`0(e−α1rt)| 6M`0 max(1, |t|, |rα1|)|`0|r`01e−α1rt. On the other hand, by Theorem 2.3,

|∂`t,αgi+1(t;α)| 6 K`e
ρ`δt(C`e

δt)i for all i ∈ N, α ∈ C and t > 0.

Thus, if we set M̂ν := max(M`; ` 6 ν), Ĉν := max(C`; ` 6 ν) and K̂ν := max(K`; ` 6 ν), then

|∂ν (ḡi1 · · · ḡir ) (t;α)| 6
∑

`0+...+`r=ν

a`0,...,`rM̂ν(K̂ν)r max(1, |t|)|ν|r2|ν|e(r+ρ`1+...+ρ`r )δt(Ĉνe
δt)i1+...+ir .

Here we use |α1| 6 δ < 1, `0 6 ν and r > 1, which implies

max(1, |t|, |rα1|)|`0|r`01 6 max(1, |t|, |r|)|ν|rν1 6 max(1, |t|)|ν|r2|ν|.

Hence, since ρν 6 max(|ν|, 1) 6 1 + |ν| thanks to Theorem 2.3 and, on the other hand, |`0|+ . . .+ |`r| = |ν|
and r 6 k = i1 + · · ·+ ir, we obtain

|∂ν (ḡi1 · · · ḡir ) (t;α)| 6 M̂ν(K̂νĈν)kk2|ν|max(1, t)|ν|e(3k+|ν|)δt ∑

`0+...+`r=ν

a`0,...,`r .

Thus, since
∑
`0+...+`r=ν a`0,...,`r = (r + 1)|ν| 6 (k + 1)|ν| thanks to Remark B.3, we get

|∂ν (ḡi1 · · · ḡir ) (t;α)| 6 M̂ν(K̂νĈν)k(k + 1)3|ν|max(1, t)|ν|e(3k+|ν|)δt.

Accordingly, since |
(
j/q
r

)
| 6 max(|j/q|, 1)r 6 max(|j|, 1)k for all j ∈ Z,

∣∣∣∂νψjk(t;α)
∣∣∣ 6 M̂ν(K̂νĈν)k(k + 1)3|ν|max(1, t)|ν|e(3k+|ν|)δt

k∑

r=1

max(|j|, 1)k
∑

i1+···+ir=k

1

= M̂νp(k)
(

max(|j|, 1)K̂νĈν

)k
(k + 1)3|ν|max(1, t)|ν|e(3k+|ν|)δt,

where p(k) is the number of partitions of k and it is easy to see that p(k) 6
(

2k−1
k

)
6 22k−1 6 4k. Hence,

setting Cjν = 4 max(|j|, 1)K̂νĈν and Kν = M̂ν , the result follows.
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3 Dulac map

This section is entirely devoted to prove Theorem A, that will follow almost immediately from Theorem 3.3.
In the proof of this result, and the forthcoming Proposition 4.2, we will use the following lemma together
with this easy observation:

Remark 3.1. The function φ(s) = sα(− ln s)m is monotonous increasing on the interval (0, 1
e ) provided

that α > m > 0 because ∂sφ(s) = −sα−1(− ln(s))m−1(m+ α ln s). �

Lemma 3.2. For every ρ ∈ (0, 1) and n ∈ Z+ there exists A > 0 such that
∑
k>K k

nrk 6 AKnrK for all
K ∈ N and 0 6 r 6 ρ.

Proof. Setting c` :=
(
n
`

)∑+∞
i=0 i

n−`ρi and A :=
∑n
`=0 c` we obtain

+∞∑

k=K

knrk =
+∞∑

i=0

(i+K)nri+K = rK
n∑

`=0

(
n

`

)
K`

+∞∑

i=0

in−`ri 6 rK
n∑

`=0

c`K
` 6 AKnrK ,

where in the last inequality we take K > 1 into account.

Theorem 3.3. Consider the family of vector fields {Xα}α∈Uδ defined in (3) and let D( · ;α) be the Dulac
map of Xα between the transversal sections {y = 1} and {x = 1}. Then the following holds:

(a) For each compact set C ⊂ Uδ with δ ∈ (0, 1
2 ] there exists s0 > 0 such that

D(s;α) =
+∞∑

k=0

ψ1
k(− ln s;α)skp+λ, for all s ∈ (0, s0) and α ∈ C,

and the series is absolutely convergent. Moreover, for each K ∈ N there exists ∆(z, w;α) ∈ Q[z, w, α]
with degz,w(∆) < K and ∆(0, 0;α) = 1 such that

K−1∑

k=0

ψ1
k(− ln s;α)skp+λ = sλ∆(sp, spω;α), where ω = ω(s;α1).

(b) Finally, for each L ∈ R there exists KL ∈ Z≥0 such that

+∞∑

k=KL

ψ1
k(− ln s;α)skp+λ ∈ F∞L (U0). (17)

Proof. The solution x(t, x0, y0;α) = x0e
t of Xα with initial condition (x0, y0) = (s, 1) intersects the

transversal section {x = 1} at t = − ln s. Hence the Dulac map is given by D(s;α) = y(t, s, 1;α)|t=− ln s.
On account of this, the first assertion in (a) will follow by applying Lemma 2.5 once we show that we can
take s0 > 0 small enough such that

sp max
(
MΩ(t, α1), 4C0e

δt
)∣∣
t=− ln s

< 2 for all s ∈ (0, s0).

In this respect observe that, by applying (b) in Lemma A.4, spΩ(− ln s, α1) = spω(s;α1) tends to 0 as s→ 0+

uniformly in α1 ∈ (−δ, δ), and this is also true for sp−δ because p− δ > p− 1
2 > 0. Consequently it is clear

that there exists s0 > 0 small enough such that the above inequality holds and so the first assertion is true.
With regard to second one, from (a) in Lemma 2.1 and (16) it follows that ψ1

k(− ln s;α) = ηk(ω;α) where
ηk ∈ Q[ω, α] with degω(ηk) 6 k. Then it is clear that, for each k = 0, 1, . . . ,K−1, there exists a homogeneous
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polynomial η̂k ∈ Q[z, w, α] with degw(η̂k) 6 k such that we can write ψ1
k(− ln s;α)skp = η̂k(sp, spω;α). Since

η̂0 ≡ 1, this shows the validity of the second assertion in (a).
In order to prove (b) we claim that for each ν ∈ ZN+1

≥0 there exists s0 > 0 small enough such that the
series

∑
k>0 ∂

ν
s,α(ψ1

k(− ln s;α)spk+λ) converges uniformly on (0, s0) × C, where C is any compact set in Uδ
that we hereafter. By the Weierstrass M -test, to this end it suffices to show that there exists a sequence of
positive numbers {Mk}k∈N with

∑
k>1Mk <∞ such that, for some kν ∈ N large enough,

|∂νs,α(ψ1
k(− ln s;α)skp+λ)| 6Mk, for all k > kν , s ∈ (0, s0) and α ∈ C.

By applying Theorem B.2 we have that

∂ν(ψ1
k(− ln s;α)skp+λ) =

∑

`1+`2=ν

a`1`2∂
`1(ψ1

k(− ln s;α))∂`2(spk+λ) (18)

with a`1`2 =
(

ν
`1,`2

)
. Setting ˆ̀

1 = (0, `11, . . . , `1N ) it turns out that, for each fixed s and α,

|∂`1s,α(ψ1
k(− ln s;α))| = |∂`10

s (∂
ˆ̀
1
α ψ

1
k)(− ln s;α)| 6 C`10

s−`10 max
j∈{0,...,`10}

|(∂(j,`11,...,`1N )ψ1
k)(− ln s, α)|,

where C`10
> 0 depends only on `10. The above inequality is clear in case that `10 = 0, whereas for `10 > 1

it follows easily by applying the one-dimensional Faa di Bruno formula

∂ns (f(g(s))) =
n∑

j=1

(∂jsf)(g(s))
∑

p(n,j)

n!
n∏

i=1

(∂ig(s))ki

(ki!)(i!)ki

taking n = `10, f = ∂
ˆ̀
1
α ψ

1
k and g = − ln s and noting that, in doing so, ∂ig(s) = (−1)i(i − 1)!s−i and∑n

i=1 iki = n. Thus by applying Lemma 2.7 we deduce that, for all s ∈ (0, 1/e) and α inside a compact
subset C of Uδ with δ ∈ (0, 1

2 ],

|∂`1s,α(ψ1
k(− ln s;α))| 6 K̂`1(k + 1)3|`1|(Ĉ`1)k(− ln s)|`1|s−(3k+|`1|)δ−`10 , (19)

where, following the notation in that result,

K̂`1 = C`10
max(K(j,`11,...,`1N ); j = 0, . . . , `10) and Ĉ`1 = max(C1,(j,`11,...,`1N ); j = 0, . . . , `10)

and we use that max(1,− ln s) = − ln s for s ∈ (0, 1/e). In addition, since λ = p−α1

q , Lemma 2.6 shows that

|∂`2(spk+λ)| = |∂`20
s ∂`21

α1
(spk+λ)| 6M2 max(− ln s, pk + λ)|`2|spk+λ−`20q−`21

6 C`2(k + 1)|`2|(− ln s)|`2|spk+λ−`20 ,

because pk + λ 6 p(k + 1) + 1 6 2p(k + 1) due to p, q > 1, |α1| 6 δ < 1 and we set C`2 = (2p)|`2|q−`21M2.
Here we also use that max(x, y) 6 xy when x, y > 1. Using this inequality and the one in (19), from (18)
we obtain

|∂ν(ψ1
k(− ln s;α)skp+λ)| 6 K̄ν(C̄ν)k(k + 1)3|ν|(− ln s)|ν|s(p−3δ)k+λ−|ν|δ−ν0 , (20)

where we set C̄ν := max(Ĉ`1 ; `1 6 ν) and, on account of
∑
`1+`2=ν a`1`2 = 2|ν|,

K̄ν := 2|ν|max(K̂`1C`2 ; `1 + `2 = ν).

Let us remark that the above estimate holds for all s ∈ (0, 1/e) and α ∈ C ⊂ Uδ with δ ∈ (0, 1
2 ]. As a matter

of fact, at this point we shrink it so that δ ∈ (0, 1
4 ), which in particular implies p− 3δ > 1

4 . Consequently,
using also the fact that λ > 0, from (20) we get

|∂ν(ψ1
k(− ln s;α)skp+λ)| 6 K̄ν(C̄ν)k(k + 1)3|ν|(− ln s)|ν|s(k−|ν|)/4−ν0 =: mk(s). (21)
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On account of Remark 3.1 it easily follows that a sufficient condition for s 7→ mk(s) to be monotonous
increasing on (0, 1/e) is that

k > 9|ν| =:kν .

Note on the other hand that

mk(s) = K̄ν(C̄νs
1/4)k(k + 1)3|ν|(− ln s)|ν|s−|ν|/4−ν0 .

Thus if we take s0 := min
(

1
e , (2C̄ν)−4

)
then the series with general term Mk := mk(s0) is summable and,

additionally, from (21) and the monotonicity of mk(s) on (0, 1/e),

|∂ν(ψ1
k(− ln s;α)skp+λ)| 6 mk(s) < Mk for all s ∈ (0, s0) and k > kν .

This proves the validity of the claim and consequently, by applying Lemma B.4 recursively, if s ∈ (0, s0)
and α ∈ Uδ then

∂νs,α

(
+∞∑

k=KL

ψ1
k(− ln s;α)spk+λ

)
=

+∞∑

k=KL

∂νs,α
(
ψ1
k(− ln s;α)spk+λ

)
(22)

for all ν ∈ ZN+1
≥0 and KL ∈ N. (We stress that the above identity is valid regardless of KL > kν and this is

crucial in what follows because kν depends on ν.)
We are now in position to finish the proof. We will show that (17) holds taking KL := max(0, d4Le+ 4).

To this end, recall Definition 1.1, we fix any ν ∈ ZN+1
≥0 and α? = (0, α2, . . . , αN ) ∈ U0 = {0} × RN−1, and

we take a relatively compact neighbourhood V of α? contained in Uδ with δ = min( 1
4 ,

1
|ν| ). Then, from (22)

and using the upper bound in (20), for each s ∈ (0, s0) and α ∈ V we have
∣∣∣∣∣∂
ν
s,α

(
+∞∑

k=KL

ψ1
k(− ln s;α)spk+λ

)∣∣∣∣∣ 6
+∞∑

k=KL

∣∣∂νs,α(ψ1
k(− ln s;α)spk+λ)

∣∣

6 K̄ν(− ln s)|ν|sλ−|ν|δ−ν0

+∞∑

k=KL

(k + 1)3|ν|(C̄νs
p−3δ)k

6 K̄νMνs
−|ν|δ−ν0A(KL + 1)3|ν|(C̄ν)KLs(p−3δ)KL

6 K̄νMνA(KL + 1)3|ν|(C̄ν)KLs
1
4KL−1−ν0 6 CsL−ν0 .

In the third inequality above we apply Lemma 3.2 and set Mν := sup{sλ(− ln s)|ν|; s ∈ (0, s0), |α1| 6 δ}.
Next, in the fourth inequality, we take δ = min( 1

4 ,
1
|ν| ) into account. Finally in the last inequality we set

C := K̄νMνA(KL + 1)3|ν|(C̄ν)KL and use that KL > 4(L+ 1). This completes the proof of the result.

Proof of Theorem A. By Theorem 3.3, for each compact set C ⊂ Uδ with δ ∈ (0, 1
2 ] there exists s0 > 0

such that

D(s;α) =
+∞∑

k=0

ψ1
k(− ln s;α)skp+λ for all s ∈ (0, s0) and α ∈ C.

In addition, for each L ∈ R there exists KL ∈ Z≥0 such that

DL(s;α) :=
+∞∑

k=KL

ψ1
k(− ln s;α)skp+λ ∈ F∞L (U0).

If KL = 0 then the result follows taking ∆ ≡ 0. If, on the contrary, KL ∈ N then by Theorem 3.3 we know
that there exists ∆̂(z, w;α) ∈ Q[z, w, α] with ∆̂(0, 0;α) = 1 such that

KL−1∑

k=0

ψ1
k(− ln s;α)skp+λ = sλ∆̂(sp, spω;α),
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where ω = ω(s;α1). By gathering the homogenous part of ∆̂ of i-th degree, for i = 0, 1, . . . , d̂ := deg(z,w) ∆̂,

it turns out that we can write sλ∆̂(sp, spω) =
∑d̂
i=0 s

λ+pipi(ω;α) where pi(w;α) ∈ Q[w,α] with degw pi 6 i.
Then, due to λ = p−α1

q and by (d) in Lemma A.4, note that sλ+pipi(ω;α) ∈ F∞L (U0) provided that i > L
p− 1

q .

Consequently if L > p
q then there exists a unique polynomial ∆(z, w;α) ∈ Q[z, w, α] with ∆(0, 0;α) = 1

and deg(z,w) ∆ 6 bLp − 1
q c =:d, such that

∆(z, w;α) =
d∑

i=0

spipi(ω;α) and
d̂∑

i=d+1

sλ+pipi(ω;α) ∈ F∞L (U0),

where, in case that d̂ 6 d, the second summation is void and we set pi ≡ 0 for i > d̂. Hence the result
follows taking ∆ and

∑+∞
k=d+1 ψ

1
k(− ln s;α)skp+λ instead of ∆̂ and DL respectively. Observe on the other

hand that if L < p
q then sλ∆̂(sp, spω) =

∑d
i=0 s

λ+pipi(ω;α) ∈ F∞L (U0) and so in this case the result follows
taking ∆ ≡ 0 instead of ∆̂. This concludes the proof of the result since the uniqueness of the polynomial ∆
in the statement follows from the fact that sλ+piω` /∈ F∞L (U0) if i 6 d.

4 Dulac time

In this section we will prove Theorem B. To this aim, for the sake of convenience, we begin by introducing

Tijk(s;α) :=

∫ − ln s

0

e(i−λj)tψjk(t;α)dt, for i, j ∈ Z and k ∈ N, (23)

and in its regard we prove the following result.

Lemma 4.1. For each i, j ∈ Z and δ ∈ (0, 1
2 ] there exists k0 ∈ Z≥0 such that for all ν ∈ ZN+1

≥0 and compact
set C ⊂ Uδ there exist Cν ,Kν > 0 so that the upper bound

|∂νTijk(s;α)| 6 Kν(k + 1)3|ν|(Cν)k(− ln s)|ν|sλj−i−ν0−(3k+|ν|)δ

holds for all k > k0, s ∈ (0, 1/e) and α ∈ C.

Proof. The result follows by applying Lemma 2.7 to the given compact set C ⊂ Uδ and ν ∈ ZN+1
≥0 . Denote

ν = (ν0, ν1, . . . , νN ) and suppose first that ν0 = 0. In this case if s ∈ (0, 1/e) and α ∈ C then

|∂ν(Tijk(s;α)| 6
∑

`1+`2=ν

(
ν

`1, `2

)∫ − ln s

0

∣∣∣∂`1α (e(i−λj)t)∂`2α ψ
j
k(t;α)

∣∣∣ dt

6 2|ν|K̂ν(k + 1)3|ν|(Cν)k
∫ − ln s

0

e(i−λj)t(jt/q)`11 max(1, t)|`2|e(3k+|`2|)δtdt

6 Kν(k + 1)3|ν|(Cν)k(− ln s)|ν|
∫ − ln s

0

e(i−λj+(3k+|ν|)δ)tdt

6 Kν(k + 1)3|ν|(Cν)k(− ln s)|ν|sλj−i−(3k+|ν|)δ,

where in the first inequality we apply Theorem B.2, in the second one Lemma 2.7 and Remark B.3, in
the third one we set Kν := 2|ν|(j/q)ν1K̂ν and we use that max(1, t) 6 − ln s for all t ∈ (0,− ln s) due to
s ∈ (0, 1/e), and in the last one we take

k > k0 := max
(

0,
⌈

1
3δ

(
1− i+ p+δ

q |j|
)⌉)

(24)
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in order that i−λj+ (3k+ |ν|)δ) > 1 holds for all α ∈ Uδ and k > k0. Here we use that λ ∈
(
p−δ
q , p+δq

)
due

to |α1| < δ and λ = p−α1

q . We stress, and this is crucial, that k0 is independent from ν and C. This proves
the result for ν0 = 0. Let us consider next the case ν0 > 1 and to this end we denote ν′ := (ν0−1, ν1, . . . , νN ).
Thus, from (23) and Theorem B.2,

∂νTijk(s;α) = −s−1∂ν
′(
sλj−iψjk(− ln s;α)

)
= −s−1

∑

`1+`2=ν′

(
ν′

`1, `2

)
∂`1(sλj−i)∂`2(ψjk(− ln s;α)).

Then the application of Lemma 2.6 and Lemma 2.7 show respectively
∣∣∂`1(sλj−i)

∣∣ 6M`1(− ln s)|`1|max(1, |λj − i|)|`1|sλj−i−`10(|j|/q)`10

and, since max(1,− ln s) = − ln s due to s ∈ (0, 1/e),
∣∣∣∂`2(ψjk(− ln s;α))

∣∣∣ 6 K̂`2(k + 1)3|`2|(Ĉj`2)k(− ln s)|`2|s−(3k+|`2|)δ.

Setting K̄ν := sup
{
M`1K̂`2 max(1, |λj − i|)|`1|(|j|/q)`10 ;α ∈ C, `1 + `2 = ν′

}
and Cν := max(Ĉj`2 ; `2 6 ν′),

we can assert that if s ∈ (0, 1/e) and α ∈ C then

|∂νTijk(s;α)| 6 2|ν|−1K̄ν(k + 1)3|ν|(Cν)k(− ln s)|ν|sλj−i−ν0−(3k+|ν|)δ.

Here we also take `1 +`2 = ν′ = ν−(1, 0, . . . , 0) and Remark B.3 into account. Consequently, setting k0 := 0
and Kν := 2|ν|−1K̄ν , the result follows in case that ν0 > 1.

Recall at this point, see (2), that Theorem B concerns with the Dulac time associated to

Yα,β =
1

β0xmyn + u`
∑M
i=1 βiu

i−1
Xα,

where m,n, ` ∈ Z and u = xpyq with p, q ∈ N. For this reason, as an intermediate step, we next consider the
Dulac time Tij( · ;α) of 1

xiyjXα for any i, j ∈ Z. In its regard the next statement explains the convenience
of introducing Tijk, see (23).

Proposition 4.2. For each compact set C ⊂ Uδ with δ ∈ (0, 1
4 ] there exists s0 > 0 such that the Dulac time

Tij( · ;α) of the vector field 1
xiyjXα, where i, j ∈ Z, writes as

Tij(s;α) =

+∞∑

k=0

si+pkTijk(s;α) for all s ∈ (0, s0) and α ∈ C (25)

and the series is absolutely convergent. Moreover, for each L ∈ R there exists KL ∈ Z≥0 such that

+∞∑

k=KL

si+pkTijk(s;α) ∈ F∞L (U0). (26)

Proof. Let t 7→
(
x(t, p0;α), y(t, p0;α)

)
be the solution of Xα passing through p0 ∈ R2 at t = 0. Note that

if p0 = (s, 1) with s > 0 then x(t, p0;α) = set intersects the transversal section {x = 1} at t = − ln s. Thus
the time Tij(s;α) that spends the solution of 1

xiyjXα starting at (s, 1) with s > 0 to reach the transversal
section {x = 1} is given by

Tij(s;α) =

∫ − ln s

0

(x(t, s, 1;α))i(y(t, s, 1;α))jdt =

∫ − ln s

0

sie(i−λj)t
+∞∑

k=0

ψjk(t;α)skpdt,
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where in the second equality we apply Lemma 2.5. In this respect observe that, due to ∂tΩ(t, α1) = eα1t > 0,
for all t ∈ (0,− ln s) we have

sp max
(
M
2 Ω(t, α1), 2C0e

δt
)
< sp max

(
M
2 Ω(t, α1), 2C0e

δt
)∣∣
t=− ln s

= sp max
(
M
2 ω(s;α1), 2C0s

−δ) < 1,

provided that s > 0 is small enough because lims→0+ sp−δ = 0 and, by (b) in Lemma A.4, spω(s;α1) tends
to zero as s → 0+ uniformly on Uδ. Consequently, recall the definition in (23), the first assertion in the
statement will follow by applying Lemma B.5 once we show that for each compact set C ⊂ Uδ with δ ∈ (0, 1

4 ]
there exists s0 > 0 such that

+∞∑

k=0

∫ − ln s

0

si+kpe(i−λj)t
∣∣∣ψjk(t;α)

∣∣∣ dt < +∞ for all s ∈ (0, s0) and α ∈ C. (27)

With this aim let us note that, by applying Lemma 2.7 with |ν| = 0,

∫ − ln s

0

si+kpe(i−λj)t
∣∣∣ψjk(t;α)

∣∣∣ dt 6 K0(Cj0)ksi+kp
∫ − ln s

0

e(i−λj+3kδ)tdt

= K0(Cj0)ksi+kp
s−(i−λj+3kδ) − 1

i− λj + 3kδ
6 K0(Cj0)ksk(p− 3

4 )+λj ,

where in the last inequality we use that p − 3δ > 1
4 , due to δ ∈ (0, 1

4 ), and we take k large enough so that
i− λj + 3kδ > 1. Thus the above upper bound readily shows the validity of (27) taking s0 = (Cj0)−1/(p− 3

4 )

because it guarantees that Cj0sp−
3
4 < 1 for all s ∈ (0, s0).

With regard to the last assertion in the statement let us first note that, by applying Theorem B.2,

∂ν
(
si+pkTijk(s;α)

)
=

∑

`1+`2=ν

(
ν

`1, `2

)
∂`1(si+pk)∂`2(Tijk(s;α)).

Accordingly, by Lemma 4.1, there exists k0 ∈ Z≥0 such that, for all ν ∈ ZN+1
≥0 and compact set C ⊂ Uδ,

|∂ν(si+pkTijk(s;α))| 6
∑

`1+`2=ν

(
ν

`1, `2

)
K`2 |i+ kp|`10(k + 1)3|`2|(C`2)k(− ln s)|`2|sλj+pk−`10−`20−(3k+|ν|)δ

provided that k > k0, s ∈ (0, 1
e ) and α ∈ C. Since |i+ pk| 6 (k + 1)(|i|+ p), setting Ĉν = max(C`2 ; `2 6 ν)

and K̂ν := 2|ν|max(K`2(|i|+ p)`10 ; `1 + `2 = ν), we can assert that if k > k0, s ∈ (0, 1/e) and α ∈ C then

|∂ν(si+pkTijk(s;α))| 6 K̂ν(k + 1)4|ν|(Ĉν)k(− ln s)|ν|sλj+(p−3δ)k−ν0−|ν|δ (28)

6 K̂ν(k + 1)4|ν|(Ĉν)k(− ln s)|ν|sγ+(k−|ν|)/4−ν0 =: mk(s),

where in the first inequality we also take `1 + `2 = ν and Remark B.3 into account, and in the second one
we use that δ ∈ (0, 1

4 ), p > 1 and λj > −p+δq |j| =:γ. (Let us remark, it will be important later on when we
use the previous inequalities, that k0 is independent from ν and C.) On account of Remark 3.1, a sufficient
condition for s 7→ mk(s) to be monotonous increasing on (0, 1/e) is that k > 9|ν|+ 4(ν0 − γ), and for this
reason we set

k̄ν := max (d5|ν|+ 4(ν0 − γ)e , k0) .

Note on the other hand that, due to

mk(s) = K̂ν(Ĉνs
1/4)k(k + 1)4|ν|(− ln s)|ν|sγ−|ν|/4−ν0 ,
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if we set s0 := min(1/e, (2Ĉν)−4) then the series with general termMk := mk(s0) is summable and, moreover,
thanks to the monotonicity of mk(s) on (0, 1/e),

|∂ν(si+pkTijk(s;α))| 6 mk(s) 6Mk for all s ∈ (0, s0), α ∈ C and k > k̄ν .

Hence, thanks to the Weierstrass M-test, for each ν ∈ ZN+1
≥0 the series

∑∞
k=0 ∂

ν(si+pkTijk(s;α)) converges
uniformly for s ∈ (0, s0) and α ∈ C. Consequently, by applying recursively Lemma B.4 starting from (25),
we have that for each compact set C ⊂ Uδ and ν ∈ ZN+1

≥0 there exists s0 > 0 small enough such that if
s ∈ (0, s0) and α ∈ C then

∂νTij(s;α) = ∂ν

(
+∞∑

k=0

si+pkTijk(s;α)

)
=

+∞∑

k=0

∂ν
(
si+pkTijk(s;α)

)
. (29)

We are now in position to finish the proof. Indeed, we claim that (26) holds taking

KL := max
(
k0,
⌈
4L+ 4p+1

q |j|
⌉

+ 8
)
.

(Recall that k0 is the nonnegative integer given by Lemma 4.1, see (24), which is relevant for our purpose
because it guarantees the upper bound (28) for k > k0.) We point out that KL is independent from ν and C.
In order to show (26), recall Definition 1.1, we fix any ν ∈ ZN+1

≥0 and α? = (0, α2, . . . , αN ) ∈ U0 = {0}×RN−1,
and we take a relatively compact neighbourhood V of α? contained in Uδ with δ = min( 1

4 ,
1
|ν| ). Then,

from (29) and using the upper bound in (28), for each s ∈ (0, s0) and α ∈ V we have
∣∣∣∣∣∂
ν
s,α

(
+∞∑

k=KL

(si+pkTijk(s;α)

)∣∣∣∣∣ 6
+∞∑

k=KL

∣∣∂νs,α(si+pkTijk(s;α))
∣∣

6 K̂ν(− ln s)|ν|sλj−|ν|δ−ν0

+∞∑

k=KL

(k + 1)4|ν|(Ĉνs
p−3δ)k

6 K̂νM̂νs
λj−|ν|δ−ν0−1A(KL + 1)4|ν|(Ĉν)KLs(p−3δ)KL

6 K̂νM̂νA(KL + 1)4|ν|(Ĉν)KLsλj+
1
4KL−2−ν0 6 CsL−ν0 .

In the third inequality above we apply Lemma 3.2 and set M̂ν := sup{s(− ln s)|ν|; s ∈ (0, s0)}. Next, in the
fourth inequality, we take δ = min(1

4 ,
1
|ν| ) and p > 1 into account. Finally in the last inequality we use the

definition ofKL, which implies λj+ 1
4KL−2 > L due to λ < p+δ

q , and we set C := K̂νM̂νA(KL+1)4|ν|(Ĉν)KL .
This completes the proof of the result.

Finally, and this will be the last ingredient for the proof of Theorem B, we next study the finite truncation
of the series given in (25). We will show that it can be written in terms of polynomials in sp and spω.

Lemma 4.3. Consider i, j ∈ Z and K ∈ N and define

TKij (s;α) :=

K−1∑

k=0

si+pkTijk(s;α).

Then, setting ω = ω(s;α1), the following holds:

(a) If iq − jp 6= 0 then there exists τKij (z, w;α) ∈ Q(α1)[z, w, α2, . . . , αN ], with degz,w(τKij ) < K and not
having poles along α1 = 0, such that TKij (s) = sλjτKij (sp, spω;α)− siτKij (sp, 0;α).

(b) If (i, j) = ν(p, q) with ν ∈ N then there exists %Kij (z, w;α) ∈ Q[z, w, α], with degz,w(%Kij ) < K + ν and
%Kij (z, 0;α) = 0, such that TKij (s) = %Kij (sp, spω;α).
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Proof. By applying (a) in Lemma 2.1, from the definition in (16) we get the existence of a polynomial
Rjk(z;α) ∈ Q[z, α] with degz(R

j
k) 6 k such that

ψjk(t;α) = Rjk(Ω(t;α1);α), where Ω(t;α) = eα1t−1
α1

.

Accordingly, from the definition in (23) and by performing the coordinate change w = Ω(t;α1), we get

Tijk(s;α) =

∫ − ln s

0

e(i−λj)tRjk (Ω(t;α1);α) dt =

∫ ω(s;α1)

0

(1 + α1w)
i−λj
α1
−1Rjk(w;α)dw, (30)

where we use that Ω(− ln s;α1) = ω(s;α1) by definition. If i− λj|α1=0 6= 0, which is equivalent to pj−qi 6= 0,
after integrating by parts k times we obtain

Tijk(s;α) =
(1 + α1w)

i−λj
α1

i− λj

(
Rjk(w;α)− ∂wR

j
k(w;α)(1 + α1w)

i− λj + α1

+
∂2
wR

j
k(w;α)(1 + α1w)2

(i− λj + α1)(i− λj + 2α1)
+ · · ·+ (−1)k∂kwR

j
k(w;α)(1 + α1w)k

(i− λj + α1) · · · (i− λj + kα1)

)∣∣∣∣∣

ω(s;α1)

0

.

It is clear then that there exists a polynomial τijk(w;α) ∈ Q(α1)[w,α2, . . . , αN ], not having poles along
α1 = 0 and with degw(τijk) 6 k, such that we can write

si+kpTijk(s;α) = si+kp
(

(1 + α1ω)
i−λj
α1 τijk(ω;α)− τijk(0;α)

)
= sλj+kpτijk(ω;α)− τijk(0;α)si+kp,

where we set ω = ω(s;α1) for shortness and in the second equality we use that 1 +α1ω = s−α1 . On account
of this there exists τ̂ijk(z, w;α) ∈ Q(α1)[z, w, α2, . . . , αN ], which is homogenous of degree k in z and w, such
that

si+kpTijk(s;α) = sλj τ̂ijk (sp, spω;α)− siτ̂ijk(sp, 0;α).

In view of this it is clear that the assertion in (a) follows taking τKij :=
∑K−1
k=0 τ̂ijk. With regard to the one

in (b) we note that, since (p, q) = 1, the equality pj − qi = 0 holds if and only if there exists ν ∈ Z such
that (i, j) = ν(p, q). In this case, from (30), we deduce that

Tijk(s;α) =

∫ ω(s;α1)

0

(1 + α1w)ν−1Rjk(w;α)dw.

If ν ∈ N then Tijk(s;α) = %ijk(ω;α)− %ijk(0;α), where %ijk(z;α) ∈ Q[z, α] with degz(%ijk) 6 k + ν. Hence
there exists %̂ijk(z, w;α) ∈ Q[z, w, α], homogeneous of degree k + ν in z and w, such that

si+kpTijk(s;α) = sp(ν+k)Tijk(s;α) = %̂ijk (sp, spω;α)− %̂ijk(sp, 0;α).

Since TKij (s;α) =
∑K−1
k=0 si+pkTijk(s;α), this shows that (b) follows taking

%Kij (z, w;α) :=
K−1∑

k=0

(%ijk(z, w;α)− %ijk(z, 0;α)) ,

which concludes the proof of the result.

We are now in position to prove our second main result.
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Proof of Theorem B. Recall that the family of vector fields under consideration is given by

Yα,β =
1

β0xmyn +
∑M+`−1
i=` βi+1−` ui

Xα,

where ` ∈ Z is defined in (1), u = xpyq, (p, q) = 1 and

Xα = x∂x + 1
q

(
−p+

∑N−1
i=0 αi+1u

i
)
y∂y.

Let us denote the solution of Xα passing through p0 ∈ R2 at t = 0 by t 7→
(
x(t, p0;α), y(t, p0;α)

)
. Then, if

p0 = (s, 1) with s > 0, x(t, p0;α) = set intersects the transversal section {x = 1} at t = − ln s. Consequently
the time T (s;α, β) that spends the solution of Yα,β starting at (s, 1) with s > 0 to reach the transversal
section {x = 1} is given by

T (s;α, β) =

∫ − ln s

0

(
β0x

myn +

M+`−1∑

i=`

βi+1−`(x
pyq)i

)∣∣∣∣∣
{x=x(t,s,1;α),y=y(t,s,1;α)}

dt

= β0Tmn(s;α) +
M+`−1∑

i=`

βi+1−`Tip,iq(s;α),

where Tij( · ;α) is the Dulac time of 1
xiyjXα, which is precisely our concern in Proposition 4.2 and Lemma 4.3.

It is clear then that, by applying Proposition 4.2, for each compact set C ⊂ Uδ with δ ∈ (0, 1
4 ] there exists

s0 > 0 such that

T (s;α, β) =

+∞∑

k=0

skp

(
β0s

mTmnk(s;α) +

M+`−1∑

i=`

βi+1−`s
ipTip,iq,k(s;α)

)

for all s ∈ (0, s0) and α ∈ C and the series is absolutely convergent. Furthermore we can assert that, for the
given L ∈ R, there exists KL ∈ Z≥0 such that

TL(s;α, β) :=
+∞∑

k=KL

skp

(
β0s

mTmnk(s;α) +
M+`−1∑

i=`

βi+1−`s
ipTip,iq,k(s;α)

)
∈ F∞L (U0 × RM+1),

where U0 ×RM+1 stands for the set {(α, β) ∈ RM+N+1;α1 = 0}. This assertion follows by taking (26) into
account and applying, in this order, (c), (b) (g) and (e) in Lemma A.3.

On the other hand, by Lemma 4.3, there exist τ0(z, w;α) ∈ Q(α1)[z, w, α2, . . . , αN ] without poles along
α1 = 0 and %i(z, w;α) ∈ Q[z, w, α] with %i(z, 0;α) = 0, i = 0, 1, . . . ,M , such that such that setting

L0(s;α) :=





sλnτ0(sp, spω;α)− smτ0(sp, 0;α) if mq − np 6= 0,
sκp%0(sp, spω;α) if mq − np = 0 and (m,n) 6= (0, 0),

− ln s if (m,n) = (0, 0),

L1(s;α) :=

{
s`p%1(sp, spω;α) if ` > 0,

− ln s if ` = 0,

and

Li(s;α) :=s(`+i−1)p%i(s
p, spω;α), for i = 2, 3, . . . ,M,
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then

TL(s;α, β) :=

KL−1∑

k=0

skp

(
β0s

mTmnk(s;α) +

M+`−1∑

i=`

βi+1−`s
ipTip,iq,k(s;α)

)

=β0L0(s;α) + β1L1(s;α) +
M∑

i=2

βiLi(s;α). (31)

With regard to the cases considered in the definition of L0, let us note that if mq−np = 0 then, due to
(p, q) = 1, there exists η ∈ Z such that (m,n) = η(p, q). Thus, by assumption, η = κ :=

⌈
max

(
m
p ,

n
q

)⌉
> 0

and hence, on account of Definition 1, ` = η + 1 > 0. (In particular, if mq − np = 0 and (m,n) 6= (0, 0)
then η = κ ∈ N, and so the assertion with respect to L0 follows by (b) in Lemma 4.3.) If, on the contrary,
mq − np 6= 0 then, by Definition 1 again, ` = κ > 0. Note also that if (i, j) = (0, 0) then Tij(s;α) = − ln s,
which yields to the subcases (m,n) = (0, 0) and ` = 0 in L0 and L1, respectively. In this respect,
L0(s;α) = − ln s in case that (m,n) = (0, 0), which implies ` > 1, and then, L1(s;α) 6= − ln s. On the
other hand, L1(s;α) = − ln s in case that ` = 0, which implies mp− nq 6= 0 due to (1) and the assumption
κ > 0. Accordingly, in this case, L0(s;α) 6= − ln s.

Taking the previous considerations into account, the assertions with respect to TL follow from (31).
This concludes the proof of the result.

A Results about the class FK
L (W )

The present section is devoted to show a number of general properties about the class FKL (W ). We first
prove that any g(s;µ) ∈ FKL (W ) extends to a finitely smooth function (on s and the parameter µ) along
s = 0. (This applies in particular to the remainder DL in Theorem A, as well as to TL in Theorem B.) On
the contrary, we will provide an example showing that a function g(s;µ) verifying the estimates in (4) but
only with respect to the s derivative (i.e., with ν1 = . . . = νN = 0) may not have an extension along s = 0
which is C L on s and the parameter µ (see Example A.2).

Lemma A.1. Let U be an open set of RN , K ∈ Z≥0 and g(s;µ) ∈ CK
s>0(U) such that, for some W ⊂ U and

L ∈ R, g(s;µ) ∈ FKL (W ). If L > K then g extends to a CK-function ĝ, defined in some open neighbourhood
of {0} ×W in RN+1, and satisfying ∂ν ĝ(0;µ) = 0 for all µ ∈W and ν ∈ ZN+1

≥0 with |ν| 6 K.

Proof. Due to g(s;µ) ∈ CK
s>0(U), by definition there exists an open neighbourhood V of {0} × U in RN+1

such that (s, µ) 7→ g(s;µ) is CK on V+ := V ∩
(
(0,+∞)× U

)
. Then the function

ĝ(s;µ) :=

{
g(|s|;µ) if s 6= 0 and (|s|, µ) ∈ V+,
0 if s = 0 and µ ∈ U ,

is well defined on
{

(s, µ) ∈ RN+1; (|s|, µ) ∈ V+

}
∪
(
{0}×U

)
, which is an open neighbourhood of {0}×U in

RN+1. Moreover, for ν = (ν0, ν1, . . . , νN ) ∈ ZN+1
≥0 with |ν| 6 K, it is easy to show (by induction on ν0) that

∂ν ĝ(s;µ) = sgn(s)ν0∂νg(|s|;µ) for s 6= 0 with (|s|, µ) ∈ V+. (32)

Next we fix any µ̂ ∈ W . Then, due to g(s;µ) ∈ FKL (µ̂), by definition there exist s0, ε, C > 0 such that, for
each ν ∈ ZN+1

≥0 with |ν| 6 K,

|∂νg(s;µ)| 6 CsL−ν0 for all s ∈ (0, s0) and ‖µ− µ̂‖ < ε. (33)

We claim that ĝ(s;µ) is of class CK at (0, µ̂) and that ∂ν ĝ(0; µ̂) = 0 for all ν ∈ ZN+1
≥0 with |ν| 6 K. Since µ̂

is arbitrary and, on account of (32), ĝ is CK on
{

(s, µ) ∈ RN+1; (|s|, µ) ∈ V+

}
, the result will follow once
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we prove the claim. To prove it we will show by induction on ν0 that if |ν| 6 K then |∂ν ĝ(s;µ)| 6 C|s|L−ν0

for all (s, µ) with s ∈ (−s0, s0) and ‖µ − µ̂‖ < ε. (This will imply that ∂ν ĝ is continuous and vanishes at
any (0, µ) with ‖µ− µ̂‖ < ε.) Denote ν̄ = (ν1, ν2, . . . , νN ) ∈ ZN≥0 for shortness so that ν = (ν0, ν̄). The base
case ν0 = 0 is clear because, taking (32) and ĝ(0;µ) = 0 into account,

∂(0;ν̄)ĝ(s;µ) =

{
∂(0;ν̄)g(|s|;µ) if s 6= 0,
0 if s = 0,

that has absolute value smaller than C|s|L if ‖µ−µ̂‖ < ε and s ∈ (−s0, s0) thanks to (33) and ∂(0;ν̄)ĝ(0;µ) =
0. Let us take next any ν0 > 1 and show the inductive step. Then, by using (32) and that ∂(ν0−1,ν̄)ĝ(0;µ) = 0
due to the induction hypothesis, we get

∂ν ĝ(s;µ) =





sgn(s)ν0∂νg(|s|;µ) if s 6= 0,

lim
z→0

∂(ν0−1,ν̄)ĝ(z,µ)
z if s = 0.

Therefore |∂ν ĝ(s;µ)| = |sgn(s)ν0∂νg(|s|;µ)| 6 C|s|L−ν0 in case that 0 < |s| < s0, thanks to (33), whereas
∂ν ĝ(0;µ) = 0 because the induction hypothesis implies

∣∣∣∂
(ν0−1,ν̄)ĝ(z,µ)

z

∣∣∣ 6 C|z|L−ν0+1

|z| = C|z|L−ν0 , which

tends to zero as z → 0 due to L > K > |ν| > ν0. Accordingly |∂ν ĝ(s;µ)| 6 C|s|L−ν0 for all (s, µ) with
s ∈ (−s0, s0) and ‖µ− µ̂‖ < ε, and this proves the induction step. Consequently the claim is true and the
result follows.

Example A.2. With regard to the previous result we now exhibit a C∞ function g(s;µ) on (0,+∞) × R
verifying |∂isg(s;µ)| 6 CsL−i for all s > 0, µ ∈ R and i = 0, 1, . . . , L, but such that ∂µg(s;µ) does not have
a continuous extension along s = 0.

Let us begin by taking a C∞ bump function ϕ : R −→ [0,+∞) defined by ϕ(x) = exp(−x2/(x2 − 1)2) if
|x| 6 1 and zero otherwise. Let us fix besides any α ∈ (0, 1) and define β = 1+α

2 . Then, for each k ∈ Z≥0,
define Ek := {(s, µ) ∈ R2; pk(s, µ) 6 1} where

pk(s, µ) :=

(
2(s− βαk)

αk(1− β)

)2

+
( µ

α(L+1)k

)2

.

The sets Ek, k ∈ Z≥0, are pairwise disjoint and, furthermore, every (s, µ) 6= (0, 0) has an open neighbourhood
that intersects at most one Ek. This shows that

g(s;µ) :=
+∞∑

k=0

αLkϕ(pk(s, µ))

is a well defined C∞ function on R2\{(0, 0)}. For the same reason we can commute derivation and summation
and then, by applying Theorem B.1,

∂ns g(s;µ) =

+∞∑

k=0

αLk
n∑

j=1

ϕ(j)
(
pk(s;µ)

) ∑

r1,...,rn

n!

n∏

i=1

(
∂ispk(s, µ)

)ri
ri!(i!)ri

, for all (s, µ) 6= (0, 0),

where the third summation is subject to the coupling conditions
∑n
i=1 ri = j and

∑n
i=1 iri = n. Observe

that ∂ispk(s, µ) = 2
(

2(s−βαk)
αk(1−β)

)2−i (
2

αk(1−β)

)i
for i = 1, 2 and zero for i > 3. Thus, if (s, µ) ∈ Ek then

|∂ispk(s, µ)| 6 2
(

2
αk(1−β)

)i
for all i ∈ N. Consequently, if (s, µ) ∈ Ek0 and n ∈ N then we get

|∂ns g(s, µ)| 6 C ′αLk0

n∏

i=1

(α−k0)iri = C ′αk0(L−n) 6 Cα(k0+1)(L−n) 6 CsL−n,
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where C ′ is a positive constant (depending on n, α and ‖ϕ(j)‖, j = 1, 2, . . . , n), C := C ′αn−L and we use use
that s ∈ [αk0+1, αk0 ]. The same inequality is valid for n = 0 since |g(s;µ)| 6 αLk0 = α−LαL(k0+1) 6 α−LsL.
Accordingly g verifies the desired bounds with respect to the s derivatives.

The sequence of points (si, µi) := (βαi, 2−1/2αLi) ∈ Ei tends to (0, 0) as i→∞ and, on the other hand,
an easy computations gives

|∂µg(si;µi)| = αLi|∂µϕ(pi(si, µi))| = α−i|ϕ′(1/2)|,

which tends to +∞ as i→∞. This shows that ∂µg(s;µ) does not have a continuous extension at (0, 0). �

Next result gathers some general properties with regard to operations between functions in FKL (W ) with
K ∈ Z≥0 ∪ {∞} and L ∈ R.

Lemma A.3. Let U and U ′ be open sets of RN and RN ′ respectively and consider W ⊂ U and W ′ ⊂ U ′.
Then the following holds:

(a) FKL (W ) ⊂ FKL (Ŵ ) for any Ŵ ⊂W and
⋂
n FKL (Wn) = FKL (

⋃
nWn).

(b) FKL (W ) ⊂ FKL (W ×W ′).

(c) CK(U) ⊂ CK
s=0(U) ⊂ FK0 (W ).

(d) If K > K ′ and L > L′ then FKL (W ) ⊂ FK′L′ (W ).

(e) FKL (W ) is closed under addition.

(f) If f ∈ FKL (W ) and ν ∈ ZN+1
≥0 with |ν| 6 K then ∂νf ∈ FK−|ν|L−ν0

(W ).

(g) FKL (W ) · FKL′(W ) ⊂ FKL+L′(W ).

(h) Assume that φ : U ′ −→ U is a CK function with φ(W ′) ⊂ W and let us take g ∈ FKL′(W ′) with L′ > 0
and verifying g(s; η) > 0 for all η ∈W ′ and s > 0 small enough. Consider also any f ∈ FKL (W ). Then
h(s; η) := f(g(s; η);φ(η)) is a well-defined function that belongs to FKLL′(W ′).

Proof. Let us begin by showing (g) since the previous assertions are straightforward. Take f(s;µ) ∈ FKL (W )
and g(s;µ) ∈ FKL′(W ) and fix µ̂ ∈W and ν̂ ∈ ZN+1

≥0 with |ν̂| 6 K. Then, by definition, it follows that there
exist a neighbourhood V of µ̂ and C, s0 > 0 such that |∂νf(s;µ)| 6 CsL−ν0 and |∂νg(s;µ)| 6 CsL

′−ν0 for
all µ ∈ V , s ∈ (0, s0) and ν ∈ ZN+1

≥0 with |ν| 6 |ν̂|. Thus, by applying Leibniz’s rule (see Theorem B.2), if
µ ∈ V and s ∈ (0, s0) then

∣∣∂ν̂
(
f(s;µ)g(s;µ)

)∣∣ 6
∑

ν1+ν2=ν̂

(
ν̂

ν1, ν2

)
|∂ν1f(s;µ)| |∂ν2g(s;µ)| 6 ĈsL+L′−ν̂0 ,

where we use that ν10 + ν20 = ν̂0 and set Ĉ := C2
∑
ν1+ν2=ν̂

(
ν̂

ν1,ν2

)
= C22|ν̂|. Thus fg ∈ FKL+L′(W ).

Let us turn next to show the assertion in (h). To this end fix any ν̂ ∈ ZN
′+1
≥0 and η̂ ∈ U ′ ⊂ RN ′ . Then, by

definition, it follows that there exist a neighbourhood V ′ of η̂ and C ′, s1 > 0 such that |∂νg(s; η)| 6 C ′sL′−ν0

for all η ∈ V ′, s ∈ (0, s1) and ν ∈ ZN
′+1
≥0 with |ν| 6 |ν̂|. On the other hand, there exist a neighbourhood V

of µ̂ := φ(η̂) ∈ U ⊂ RN and C, s2 > 0 such that |∂νf(s;µ)| 6 CsL−ν0 for all µ ∈ V , s ∈ (0, s2) and
ν ∈ ZN+1

≥0 with |ν| 6 |ν̂|. Consider now a relatively compact neighbourhood V ′′ of η̂ with V ′′ ⊂ V ′ and
φ(V ′′) ⊂ V. Then, on account of L′ > 0, there exists s3 ∈ (0, s1) such that g(s; η) ∈ (0, s2) for all s ∈ (0, s3)
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and η ∈ V ′′. The application of Faà di Bruno formula (see Theorem B.1) to compute the derivative of
h(s; η) = f(g(s; η);φ(η)) yields

∂ν̂h(s; η) =
∑

16|λ|6|ν̂|
∂λf(u;µ)

∣∣
{u=g(s;η),µ=φ(η)}

∑

p(ν̂,λ)

(ν̂!)

q∏

i=1

Cki`i(∂
`ig(s, η))ki0

N∏

j=1

(∂`iφi(η))kij .

Here we set Cki`i := 1
ki!(`i!)|ki|

and q := −1 +
∏N ′

i=0(ν̂i + 1) for shortness. Note that the vectors λ, ki ∈ ZN+1
≥0

and `i ∈ ZN
′+1
≥0 are subject to the coupling conditions

∑q
i=1 ki = λ and

∑q
i=1 |ki|`i = ν̂. So if we define

C1
k` :=

∏q
i=1 Cki`i and C

2
k` := sup

{∏q
i=1

∏N
j=1 |∂`iφi(η)|kij ; η ∈ V ′′

}
and we take any s ∈ (0, s3) and η ∈ V ′′,

|∂ν̂h(s; η)| 6
∑

16|λ|6|ν̂|
Cg(s; η)L−λ0

∑

p(ν̂,λ)

(ν̂!)C1
k`C

2
k`

q∏

i=1

(C ′sL
′−`i0)ki0

=
∑

16|λ|6|ν̂|
Cg(s; η)L−λ0

∑

p(ν̂,λ)

C3
k`s

∑q
i=1(L′−`i0)ki0

6
∑

16|λ|6|ν̂|
C(C ′sL

′
)L−λ0

∑

p(ν̂,λ)

C3
k`s

L′λ0−ν̂0

where we set C3
k` := (ν̂!)C1

k`C
2
k`

∏q
i=1(C ′)ki0 = (ν̂!)C1

k`C
2
k`(C

′)λ0 and we use that
∑q
i=1 ki0`i0 6 ν̂0. Con-

sequently, setting Ĉ :=
∑

16|λ|6|ν̂| C(C ′)L−λ0
∑
p(ν̂,λ) C

3
k`, this shows that |∂ν̂h(s; η)| 6 ĈsLL

′−ν̂0 for all
s ∈ (0, s3) and η ∈ V ′′, which proves the validity of (h). This completes the proof of the result.

Next result gathers some interesting properties of the Ecalle-Roussarie compensator that will be used in
this (and a subsequent) paper. In the statement we use the notation x+ := max(x, 0) and x− := max(−x, 0)
for, respectively, the positive and negative part of a given x ∈ R. Note in particular that then x = x+ − x−
and |x| = x+ + x−.

Lemma A.4. The following assertions hold:

(a) For each compact set I ⊂ R and ν ∈ Z2
≥0 there exists a constant C > 0 such that

|∂νω(s;α)| 6 Cs−α+−ν0 | ln s||ν|+1for all α ∈ I and s ∈ (0, 1/e).

Moreover lims→0+
1

ω(s;α) = α− uniformly on α ∈ R so that, in particular, lim(s,α)→(0+,0)
1

ω(s;α) = 0.

(b) For each ε > 0, (s, α) 7→ ω(s;α) belongs to F∞−ε({α < ε}) and (s;α) 7→ 1
ω(s;α) belongs to F∞−ε(R).

(c) For each L ∈ R and ` ∈ Z, (s, α, β) 7→ sβω`(s;α) belongs to F∞L ({(α, β) ∈ R2 ; β > L+ `+α+}).

(d) If p(z;µ) ∈ CK(U)[z, z−1], where U is some open set of RN , then the function (s, α, β, µ) 7→ sβp(ω(s;α);µ)
belongs to FKL ({(α, β, µ) ∈ R2 × U ; α = 0, β > L}).

Proof. For the sake of convenience we prove first the assertion (c) for ` = 0. To this end we apply Lemma 2.6,
which shows that for each i, j ∈ Z≥0 there exists M > 0 so that, for every s ∈ (0, 1/e),

|∂is∂jβsβ | 6Msβ−i max(| ln s|, |β|)i+j = MsL−isβ−L max(| ln s|, |β|)i+j . (34)

Let us fix β̂ ∈ R with β̂ > L and take a compact neighborhood I of β̂ such that β−L > 0 for all β ∈ I. Thus
C := M sup

{
sβ−L max(| ln s|, |β|)i+j ;β ∈ I, s ∈ (0, 1/ε)

}
is finite and so, from (34), |∂is∂jβsβ | 6 CsL−i for all
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s ∈ (0, 1/e) and β ∈ I. Hence sβ belongs to F∞L ({β > L}), which is a subset of F∞L ({(α, β) ∈ R2;β > L})
by (b) in Lemma A.3.

We show next the validity of the inequality in (a). Take ν = (ν0, ν1) ∈ Z2
≥0 and a compact set I of R

and let us consider first the case ν0 > 0. Then, if α ∈ I and s ∈ (0, 1/e),

|∂νω(s;α)| = |∂(ν0−1,ν1)s−α−1| 6Ms−α−ν0 max(| ln s|, |α+ 1|)|ν|−1

6 Cs−α−ν0 | ln s||ν|−1 6 Cs−α+−ν0 | ln s||ν|+1,

where the first inequality follows from (34) taking i = ν0 − 1, j = ν1 and β = −α − 1, and the second one
setting C := M max(1, sup{|α + 1|;α ∈ I})|ν|−1 and using previously that max(a, b) 6 amax(1, b) for any
a > 1 and b > 0. In order to prove the same inequality for ν0 = 0 note that ω(s;α) = F (α ln s) ln s with
F (x) := e−x−1

x and so, in this case, ∂νω(s;α) = ∂ν1
α (F (α ln s) ln s) = (ln s)ν1+1F (ν1)(α ln s). We claim that

|F (n)(x)| 6 ex− for all x ∈ R and n ∈ Z≥0.

In this respect observe that, due to x−|x=α ln s = max(−α ln s, 0) = − ln smax(α, 0) = ln(s−α
+

), the claim
will imply |∂νω(s;α)| 6 s−α+ | ln s|ν1+1 = s−α

+−ν0 | ln s||ν|+1 for all s ∈ (0, 1/e) and α ∈ R and, consequently,
the validity of the inequality in (a) for ν0 = 0 as well. To prove the claim we note that F is an entire function
which, differentiating term by term its Taylor’s series at x = 0, verifies

F (n)(x) = −
+∞∑

r=n

(−1)n(−x)r−n

(r − n)!(r + 1)
= (−1)n+1

+∞∑

k=0

(−x)k

k!(k + n+ 1)
for all x ∈ R.

Hence, on account of 1
k+n+1 6 1, we get |F (n)(x)| 6 e|x| for all x ∈ R. In its turn this implies the claim for

x 6 0 because, in this case, x− = |x|. The proof of the claim for x > 0 is a little more involved. We must
show that

∣∣∣∂nx
(
e−x−1
−x

)∣∣∣ 6 1 for all x > 0, and it is clear that this will follow once we prove that

0 < ∂nx

(
ex − 1

x

)
6 1 for all x 6 0. (35)

To prove these two inequalities we first check by induction on n ∈ Z≥0 that

∂nx

(
ex − 1

x

)
= exn!

+∞∑

k=0

(−x)k

(k + n+ 1)!
,

which is valid for all x ∈ R because x 7→ ex−1
x is an entire function. Hence, for any n ∈ Z≥0, we can assert

that ∂nx
(
ex−1
x

)
> 0 for all x 6 0. In particular this implies ∂n−1

x

(
ex−1
x

)
6 ∂n−1

x

(
ex−1
x

) ∣∣
x=0

= 1
n 6 1 for all

x 6 0 and n ∈ N. Thus both inequalities in (35) are true and so the claim follows for x > 0 as well.
Let us prove now that lims→0+

1
ω(s;α) = α− uniformly on α ∈ R. By distinguishing the cases α < 0,

α = 0 and α > 0, one can check that 1
ω(s;α) − α− = 1

ω(s;|α|) , which is strictly positive in case that s ∈ (0, 1)

due to ω(s;α) =
∫ 1

s
x−α−1dx. Accordingly, for each given ε > 0 we must find s0 ∈ (0, 1) small enough such

that if s ∈ (0, s0) then ∣∣∣∣
1

ω(s;α)
− α−

∣∣∣∣ =
1

ω(s; |α|) < ε for all α ∈ R. (36)

If α 6= 0 then 1
ω(s;|α|) = |α|

s−|α|−1
. So, in this case, the above inequality holds if and only if s < (1 + |α|/ε)−1/|α|

.

In this regard note that, for every ε > 0 and α ∈ R,

e−
1
ε = lim

α→0

(
1 +
|α|
ε

)− 1
|α|
6
(

1 +
|α|
ε

)− 1
|α|
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because the function x 7→
(
1 + x

ε

)−1/x is increasing on (0,+∞) for every ε > 0. Hence this shows that, for
α 6= 0, the inequality in (36) follows taking s0 = e−1/ε. This is also true for α = 0 because in this case the
inequality in (36) simply writes as − 1

ln s < ε. Thus lims→0+
1

ω(s;α) = α− uniformly on α ∈ R, as desired.
We turn next to the proof of the two assertions in (b). To show the first one we consider the given ε > 0

and any α̂ < ε, and we take a compact neighbourhood I of α̂ such that α < ε for all α ∈ I. Then, by
applying (a), for each ν ∈ Z2

≥0 there exists C > 0 such that

|∂νω(s;α)| 6 Cs−ε−ν0sε−α
+ | ln s||ν|+1 for all α ∈ I and s ∈ (0, 1/e).

Thus, since α+ < ε if and only if α < ε, taking Ĉ := C sup{sε−α+ | ln s||ν|+1; s ∈ (0, 1/e), α ∈ I}, from
the previous estimate we get |∂νω(s;α)| 6 Ĉs−ε−ν0 for all s ∈ (0, 1/e) and α ∈ I. This proves that
ω(s;α) ∈ F∞−ε({α < ε}), as desired. Let us prove next that 1

ω(s;α) ∈ F∞−ε(R) for all ε > 0. So consider any
α̂ ∈ R and take a compact neighbourhood I of α̂. Theorem B.1 shows that, for any ν ∈ Z2

≥0 with |ν| > 1,

∂ν
(

1

ω(s;α)

)
=

|ν|∑

n=1

(−1)nn!(ω(s;α))−1−n ∑

p(ν,n)

ν!

q∏

i=1

Cki`i(∂
`iω(s;α))ki ,

with Cki`i = 1
ki!(`i)|ki|

and q = (ν0 +1)(ν1 +1)−1, and where the second summation is multidimensional and
subject to the coupling conditions

∑q
i=1 ki = n and

∑q
i=1 `iki = ν. On account of this and the inequality

in (a) there exists C ′ > 0 such that
∏q
i=1 |∂`iω(s;α)|ki 6 C ′s−nα+−ν0 | ln s|n+|ν| for all α ∈ I and s ∈ (0, 1/ε).

Consequently, taking s−α
+

= max(1, s−α) = max(1, 1+αω(s;α)) also into account, we can assert that there
exist suitable positive constants C ′′ and C such that if s ∈ (0, 1/e) and α ∈ I then

∣∣∣∣∂ν
(

1

ω(s;α)

)∣∣∣∣ 6 C ′′s−ε−ν0

|ν|∑

n=1

max(1, 1 + αω(s;α))n

ω(s;α)n+1
sε| ln s|n+|ν| 6 Cs−ε−ν0 ,

where in the second inequality we also use that, by applying (a), lims→0+
1

ω(s;α) = α− uniformly on α ∈ R.
Observe that, by the same reason, lims→0+

sε

ω(s;α) = 0 uniformly for α ∈ I, which implies that the above
inequality holds for |ν| = 0 as well. This proves that the function 1

ω(s;α) belongs to F∞−ε(R) for any ε > 0.

With regard to the assertion in (c) recall that the case ` = 0 is already proved. Here, for the sake of
shortness in the exposition, we shall use the Heaviside step function H(`), which is defined by H(`) = 0 if
` < 0 and H(`) = 1 if ` > 0. By applying (b) together with Lemma A.3, and distinguishing the cases ` < 0
and ` > 0, it can be easily checked that

ω`(s;α) ∈ F∞−|`|ε
(
{α ∈ R;H(`)α < ε}

)
⊂ F∞−|`|ε

(
{(α, β) ∈ R2;H(`)α < ε, β > L}

)
.

Similarly, but applying (c) with ` = 0, we get

sβ ∈ F∞L
(
{β > L}

)
⊂ F∞L

(
{(α, β) ∈ R2;H(`)α < ε, β > L}

)
.

Consequently, by (g) in Lemma A.3,

sβω`(s;α) ∈ F∞L−|`|ε
(
{(α, β) ∈ R2;H(`)α < ε, β > L}

)
for all L ∈ R and ε > 0.

Hence sβω`(s;α) ∈ F∞L
(
{(α, β) ∈ R2;H(`)α < ε, β > L + |`|ε}

)
for all L ∈ R and ε > 0. Thus, by (a) in

Lemma A.3, the function (s, α, β) 7→ sβω`(s;α) belongs to

⋂

ε>0

F∞L
(
{(α, β) ∈ R2;H(`)α < ε, β > L+ |`|ε}

)
= F∞L

( ⋃

ε>0

{
(α, β) ∈ R2;H(`)α < ε, β > L+ |`|ε

})

= F∞L
(
{(α, β) ∈ R2;β > L+ `+α+}

)
,

30



where once again the second equality follows by distinguishing the cases ` > 0 and ` < 0. This proves
assertion (c) for ` 6= 0. Finally assertion (d) follows by applying (c) in the present result and, in this order,
(c), (b), (g) and (e) in Lemma A.3. This concludes the proof of the result.

Next we introduce the set of functions IK(W ) that we previously used in [8, 9, 11, 12] to describe the
properties of the remainder TL of the Dulac time. In this respect let us quote that Mourtada uses essentially
the same definition in his study of the cyclicity of the hyperbolic polycycles (see for instance [13]). This
set of functions is not used in the present paper and our aim is only to relate it with the set FLK(W ) for
completeness and reader’s convenience.

Definition A.5. Consider K ∈ Z≥0 ∪ {+∞} and an open subset U of RN . Let D := s∂s be the Euler
operator and consider some µ̂ ∈ U . We say that ψ(s;µ) ∈ CK

s>0(U) belongs to the class IK(µ̂) if for each
k = 0, 1, . . . ,K there exists a neighbourhood V of µ̂ such that

lim
s→0+

Dkψ(s;µ) = 0 uniformly on µ ∈ V .

If W is a (not necesarily open) subset of U then we define IK(W ) =
⋂
µ̂∈W IK(µ̂). �

The following result shows that the remainder DL in Theorem A and TL in Theorem B can be written
in terms of the class Ik(W ), which is more suitable in order to perform the derivation-division algorithm.

Lemma A.6. Let U be an open set of RN , W ⊂ U, L ∈ R, K ∈ Z≥0∪{+∞} and ε > 0. Then the inclusion
FKL+ε(W ) ⊂ sLIK(W ) holds.

Proof. Clearly it suffices to show that FKL+ε(µ̂) ⊂ sLIK(µ̂) for any µ̂ ∈W because then, by definition,

FKL+ε(W ) =
⋂

µ̂∈W
FKL+ε(µ̂) ⊂

⋂

µ̂∈W
sLIK(µ̂) ⊂ sL

⋂

µ̂∈W
IK(µ̂) = sLIK(W ).

So fix µ̂ ∈ W and let us show that FKL+ε(µ̂) ⊂ sLIK(µ̂). To this end we note that one can easily verify by
induction that for all k ∈ Z≥0 there exist ηik ∈ Z≥0, i = 0, 1, . . . , k, such that the identity

Dkg(s;µ) =
k∑

i=0

ηiks
i∂isg(s;µ)

holds for any C k-function g. On the other hand, if ψ ∈ FKL+ε(µ̂) then for each i = 0, 1, . . . ,K there exist a
neighbourhood Vi of µ̂ and Ci, si > 0 such that |∂isψ(s;µ)| 6 Cis

L+ε−i for all s ∈ (0, si) and µ ∈ Vi. Thus,
setting V̄k := ∩ki=0Vi, ŝk := min(si; i = 0, . . . , k) and Ĉk :=

∑k
i=0 ηikCi, by applying the above identity we

get that if k = 0, 1, . . . ,K then

|Dkψ(s;µ)| 6
k∑

i=0

ηiks
i|∂isψ(s;µ)| 6

(
k∑

i=0

ηikCi

)
sL+ε = Ĉks

L+ε for all s ∈ (0, ŝk) and µ ∈ V̄k.

Taking this into account, since

D i
(
s−Lψ(s;µ)

)
=

i∑

k=0

(
i

k

)
D i−k(s−L)Dkψ(s;µ) =

i∑

k=0

(
i

k

)
(−L)i−ks−LDkψ(s;µ),

we can assert that

∣∣D i
(
s−Lψ(s;µ)

)∣∣ 6
i∑

k=0

(
i

k

)
|L|i−kĈksε = C̃is

ε for all s ∈ (0, s̃i) and µ ∈ Ṽi,
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where Ṽi := ∩ik=0V̄k, s̃i := min(ŝk; k = 0, . . . , i) and C̃i :=
∑i
k=0

(
i
k

)
|L|i−kĈk. It is clear that the above upper

bound implies that lims→0+ D i
(
s−Lψ(s;µ)

)
= 0 uniformly on µ ∈ Ṽi for i = 0, 1, . . . ,K, which implies

s−Lψ(s;µ) ∈ IK(µ̂), as desired. This proves the validity of the result.

Corollary A.7. For each ` ∈ Z, (s, α, β) 7→ sβω`(s;α) belongs to sLI∞
(
{(α, β) ∈ R2;β > L+ `+α+}

)
for

all L ∈ R.

Proof. The result follows by noting that

sβω`(s;α) ∈
⋂

ε>0

F∞L+ε

(
{(α, β) ∈ R2;β > L+ ε+ `+α+}

)
⊂
⋂

ε>0

sLI∞
(
{(α, β) ∈ R2;β > L+ ε+ `+α+}

)

= sLI∞
( ⋃

ε>0

{
(α, β) ∈ R2;β > L+ ε+ `+α+

})
= sLI∞

(
{(α, β) ∈ R2;β > L+ `+α+}

)
,

where we apply firstly Lemma A.4 and secondly Lemma A.6.

B Differentiation formulas and integration of series

In this section, for reader’s convenience, we state some specific results from analysis and calculus that we
use all along. To begin with, since we use several times the multivariate Faa di Bruno formula to calculate
the derivative of a composition of functions, we provide its explicit expression according to [3, Theorem 2.1].
To this end some notation is needed. If ν = (ν1, . . . , νd) ∈ Zd≥0 and x = (x1, . . . , xd) ∈ Rd then we define

|ν| =
d∑

i=1

νi, ν! =

d∏

i=1

(νi!), ∂νx =
∂|ν|

∂ν1
x1 · · · ∂νdxd

and xν =

d∏

i=1

xνii .

Moreover, if ` = (`1, . . . , `d) ∈ Zd≥0, we write ` 6 ν provided `i 6 νi for i = 1, . . . , d. Let f(y1, . . . , ym) and
g(1)(x1, . . . , xd), . . . , g

(m)(x1, . . . , xd) be real-valued functions and set

h(x1, . . . , xd) = f
(
g(1)(x1, . . . , xd), . . . , g

(m)(x1, . . . , xd)
)
.

Theorem B.1 (Multivariate Faa di Bruno formula). Let ν = (ν1, . . . , νd) ∈ Zd≥0 with |ν| > 0 and x0 ∈ Rd

be given. Suppose that all the partial derivatives ∂`x with ` 6 ν of g1, . . . , gm exist and are continuous
in a neighbourhood of x0. Assume moreover that all the partial derivatives ∂λy f(y), with λ ∈ Zm≥0 and
|λ| 6 |ν|, exist and are continuous in a neighbourhood of

(
g1(x0), . . . , gm(x0)

)
∈ Rm. Then ∂νxh(x) exits in

a neighbourhood of x0 and it is given by

hν(x) =
∑

16|λ|6|ν|
fλ(g(x))

∑

p(ν,λ)

(ν!)

q∏

i=1

(g`i(x))ki

(ki!)(`i!)|ki|
,

where

p(ν,λ) =

{
(k1, . . . ,kq; `1, . . . , `q) :

q∑

i=1

ki = λ and
q∑

i=1

|ki|`i = ν

}
. (37)

In the statement `1, . . . , `q ∈ Zd≥0 is a complete listing of all vectors ` 6 ν with |`| > 0, k1, . . . ,kq ∈ Zm≥0

and q = −1+
∏d
i=1(νi+1). We also set hν(x) = ∂νxh(x), fλ(y) = ∂λy f(y) and g`(x) =

(
g

(1)
` (x), . . . , g

(m)
` (x)

)

where g(i)
` (x) = ∂`xg

(i)(x).
We will also appeal to the following Leibniz formula for the partial derivatives of a product of functions

(see for instance [2, Theorem C, p. 132]).
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Theorem B.2. If f1, . . . , fr ∈ C∞(U) for some open subset U of Rd and ν ∈ Zd≥0 then

∂ν
r∏

i=1

fi =
∑

`1+...+`r=ν

(
ν

`1, . . . , `r

) r∏

i=1

∂`ifi,

where `1, . . . , `r ∈ Zd≥0 and
(

ν
`1,...,`r

)
:= ν!

`1!···`r! =
d∏
i=1

νi!
`1i!···`ri! .

Remark B.3. The generalized multinomial coefficients
(

ν
`1,...,`r

)
satisfy

r|ν| =

d∏

i=1




r∑

j=1

1



νi

=

d∏

i=1

( ∑

`1+...+`r=ν

νi!

`1i! · · · `ri!

)
=

∑

`1+...+`r=ν

d∏

i=1

νi!

`1i! · · · `ri!
=

∑

`1+...+`r=ν

(
ν

`1, . . . , `r

)

thanks to the multinomial identity (see [2, Theorem B, p 28])
(

m∑

i=1

xi

)n
=
∑ n!

a1! · · · am!
xa1

1 · · ·xamm ,

where the summation takes place over all (a1, . . . , am) ∈ Zm≥0 such that a1 + . . .+ am = n. �

The following result is also well-known (see [17, Theorem 7.17] for instance).

Lemma B.4. Suppose that {fn} is a sequence of functions, differentiable on [a, b] and such that {fn(x0)}
converges for some point x0 ∈ [a, b]. If {f ′n} converges uniformly on [a, b], then {fn} converges uniformly
on [a, b] to a function f such that

f ′(x) = lim
n→∞

f ′n(x) for all x ∈ [a, b].

Lemma B.5. Let E be a measurable set of R and consider a sequence of measurable functions {fn}n∈N. If∑
n>1

∫
E
|fn(x)|dx < +∞ then

∫
E

∑
n>1 fn(x)dx =

∑
n>1

∫
E
fn(x)dx.

Proof. The problem is to show that

lim
k→+∞

∫

E

ψk(x)dx =

∫

E

lim
k→+∞

ψk(x)dx, where ψk(x) :=

k∑

n=1

fn(x) for each k ∈ N,

and this follows by the Lebesgue’s dominated convergence theorem (see [17, Theorem 11.32]) because

|ψk(x)| 6
k∑

n=1

|fn(x)| 6
+∞∑

n=1

|fn(x)| =:Ψ(x) for all k ∈ N

and, on the other hand,
∫
E

Ψ(x)dx < +∞ by hypothesis. In this regard let us remark that, due to |fn| > 0
for all n ∈ N, the equality

∑
n>1

∫
E
|fn(x)|dx =

∫
E

∑
n>1 |fn(x)|dx holds (see [17, Theorem 11.30]).
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