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Abstract 
 

Pathogen recognition by the plant immune system leads to defense responses that are often 

accompanied by a form of regulated cell death known as the hypersensitive response (HR). HR shares 

some features with regulated necrosis observed in animals. Genetically, HR can be uncoupled from local 

defense responses at the site of infection and its role in immunity may be to activate systemic responses 

in distal parts of the organism. Recent advances in the field reveal conserved cell death-specific signaling 

modules that are assembled by immune receptors in response to pathogen-derived effectors. The 

structural elucidation of the plant resistosome – an inflammasome-like structure that may attach to the 

plasma membrane upon activation - opens the possibility that HR cell death is mediated by the formation 

of pores at the plasma membrane. Necrotrophic pathogens that feed on dead tissue have evolved 

strategies to trigger HR cell death pathway as a survival strategy. Ectopic activation of immunomodulators 

during autoimmune reactions can also promote HR cell death. In this perspective, we discuss the role 

and regulation of HR in these different contexts. 

 

Introduction 
 
To detect potential invaders and respond appropriately, plants have evolved a complex and fine-tuned 

immune system. Current models have both extracellular and intracellular plant immune receptors 

initiating signaling cascades in response to invasion (Cook et al. 2015). In turn, potential invaders have 

developed diverse virulence strategies to evade or subvert plant immunity. 

 

A form of regulated cell death known as the hypersensitive response (HR) is a frequent consequence of 

pathogen recognition by the plant immune system. The term hypersensitivity stems from the abnormally 

rapid death of plant cells encountering biotrophic pathogens, which rely on plant living tissue for their 

survival (Stakman 1915). HR can be manipulated genetically and is under tight control to avoid runaway 

cell death beyond the site of infection. HR cell death resembles forms of regulated necrosis in mammals, 

such as necroptosis and pyroptosis, but it also features some apoptosis-like traits (Berghe et al. 2014; 

Galluzzi et al. 2018; Dickman et al. 2017; Salguero-Linares and Coll 2019). Cell contents leaked during 

HR cell death may alert other cells to a potential invasion.  

 

HR cell death has been studied mostly in the context of plant defense against biotrophic pathogens or 

hemibiotrophic pathogens, the latter having an initial biotrophic phase followed by a necrotrophic phase. 

However, necrotrophic pathogens that feed on dead or dying tissue can hijack HR cell death for their own 



3 
 

benefit. Here, we provide a perspective on HR cell death signaling based on recent advances in the 

molecular interactions between plant and pathogens, plus we discuss autoimmunity as a trigger of HR 

cell death in the context of certain mutations or during hybrid necrosis.  

 

Immune HR cell death as a consequence of pathogen recognition  
 
The plant immune system is constantly evolving to detect invasive microbes or their effects on the plant. 

Initially, plasma membrane PRRs (Pattern Recognition Receptors) were thought to recognize conserved 

microbe-associated molecular patterns, whereas cytoplasmic NLRs (Nucleotide-binding domain Leucine-

rich Repeat containing) sensed pathogenic virulence factors or their perturbations to the cell (Jones and 

Dangl 2006). However, as our knowledge of plant immunity has advanced, it has become evident that 

PRRs also respond to virulence effectors. NLRs may also “guard” conserved molecules that act as 

rheostats in plant immune responses (Cook et al. 2015).  

 

In terms of domain architecture, plant NLRs resemble animal NLRs, with a variable N-terminal domain, 

a central nucleotide-binding domain and a highly polymorphic C-terminal leucine-rich domain (Figure 1). 

Plant NLRs are classified according to their N-terminal domains as Toll/interleukin-1 receptor (TIR) 

domain NLRs (also known as TNLs) or coiled-coil (CC) domain NLRs (or CNLs) (Cui et al. 2014a; Zhang 

et al. 2017). NLRs recognize effector molecules deployed by pathogens, either directly or indirectly, and 

then initiate signaling cascades that culminate in the expression of genes mediating host defense (Cui et 

al. 2014b). An emerging model in plant immunity is that NLRs work in functionally specialized pairs or 

even more complex networks, with sensor NLRs perceiving pathogen effectors and helper NLRs initiating 

downstream signaling (Bonardi et al. 2012; Wu et al. 2017).  

 

Recognition of adapted biotrophic or hemibiotrophic pathogens by the plant immune system often leads 

to HR cell death. Thus, HR cell death is frequently described as an immune strategy to block pathogen 

colonization. However, this is not always the case, because there are numerous examples of HR cell 

death and inhibition of pathogen growth being genetically uncoupled (Yu et al. 1998; Greenberg et al. 

2000; Balagué et al. 2003; Jurkowski et al. 2007; Coll et al. 2010; Sheikh et al. 2014; Menna et al. 2015; 

Lapin et al. 2019). As shown in Figure 2, HR cell death at the site of infection is crucial to initiate systemic 

signals that activate immunity in distal parts of the plant and eventually leading to resistance. This 

phenomenon is known as systemic acquired resistance or SAR (Fu and Dong 2013; Shine et al. 2019).  

 

https://www.biorxiv.org/content/10.1101/572826v1
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Although we are far from an integrated view of HR signaling, research in the last 30 years has 

substantially increased our understanding of the molecular mechanisms controlling HR. Downstream of 

NLR activation, HR involves a series of events that include calcium influxes, oxidative bursts originating 

in different cellular compartments, hormone signaling, mitogen-activated protein kinases, and 

transcriptional reprogramming (Adachi and Tsuda 2019). Most of these elements are shared between 

PRR and NLR signaling, and HR cell death has often been regarded as a consequence of surpassing 

certain signaling thresholds, rather than as a highly regulated phenomenon. However, this view is 

challenged by recent findings that shed light on HR-specific signaling. 

 

Cell death signaling hubs and the resistosome 
Recent work indicates the importance of signaling hubs downstream of NLR activation, which may 

partition cell death and immune responses (Wu et al. 2016; Castel et al. 2019; Wu et al. 2017; Qi et al. 

2018; Lapin et al. 2019). The lipase-like protein ENHANCED DISEASE SUSCEPTIBILITY1 (AtEDS1) 

mediates all resistance outputs downstream of activated TNLs (Wiermer et al. 2005). As shown in Figure 

2, AtEDS1 interacts with SENESCENCE-ASSOCIATED GENE101 (AtSAG101) and this heterodimer 

functions together with the helper CNL family member N Requirement Gene 1 (AtNRG1) to form a cell 

death signaling module in Arabidopsis thaliana that can be transferred to unrelated plant species. In 

parallel, transcriptional reprogramming to enhance the basal defense response is mediated by the 

interaction of EDS1 with PHYTOALEXIN DEFICIENT 4 (AtPAD4) and a different helper CNL, 

ACCELERATED DISEASE RESISTANCE 1 (AtADR1) (Lapin et al. 2019). Helper NLRs have a high 

degree of redundancy in plant genomes, which may allow functional diversification and expansion of their 

corresponding sensor NLRs. For example, functionally redundant members of the helper NLR family 

NRC (NLR required for cell death) may contribute to immunity against different types of pathogens via 

their interactions with particular sensor NLRs (Wu et al. 2017). Studying interactions and outputs between 

the components of all these signaling modules is complex because they vary between plant species and 

according to the pathogen under study. In fact, we still do not know how the signals emanating from these 

modules execute cell death. 

 

Clues were provided earlier this year by the reconstitution of a NLR supramolecular structure termed the 

resistosome (Wang et al. 2019a and Wang et al. 2019b). The resistosome has been hypothesized to 

directly induce HR by forming pores in the plasma membrane, an exciting idea that awaits testing. This 

immune complex, with stunning structural and mechanistic similarities to mammalian inflammasomes, is 

composed of the NLR HOPZ-ACTIVATED RESISTANCE1 (ZAR1) and two receptor-like cytoplasmic 

kinases (RLCKs) (Figure 3). In its resting state, ZAR1 is bound to ADP and the RLCK RESISTANCE 

https://www.biorxiv.org/content/10.1101/572826v1
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RELATED KINASE 1 (RKS1). RKS1 (RLCK XII) is a pseudokinase that interacts with the LRR (Leucine 

Rich Repeat) domain of ZAR1 (Roux et al. 2014). The bacterial pathogen Xanthomonas campestris uses 

a Type III secretion system to deliver the bacterial effector AvrAC into the plant cytoplasm, where it 

uridylates a decoy RLCK, PBS1-LIKE PROTEIN 2 (PBL2) (Wang et al. 2015). Unlike RKS1, PBL2 is an 

active kinase, but its catalytic activity appears dispenable for immune defense. Instead, modified PBL2 

(RLCK VII) binds to RKS1 in the ZAR1-RKS1 dimer, causing conformational changes that release ADP 

and prime the complex for activation. Subsequent ATP binding drives formation of the resistosome via 

pentamerization of the ZAR1-RKS1-PBL2 complex. Intriguingly, formation of the resistosome exposes a 

funnel-like structure that is essential both for resistance to bacteria and for accumulation of the complex 

in the plasma membrane (Figure 3). This “death fold-switch” may act in an analogous manner to the 

membrane pores and ion channels formed by MLKL or gasdermins in mammals, or during NLR activation 

in fungi, potentially suggesting a common evolutionary origin of NLRs from plants and animals (Adachi 

et al. 2019).  

  

Rather than being the direct cause of cell death, these potential pores could mediate specific ion influxes 

that activate HR-specific downstream signaling, such as activation of cell death executioner proteases 

(Feng and Tang 2019; Dangl and Jones 2019). For example, the metacaspase AtMC4 is rapidly activated 

by calcium that enters the cell upon loss of membrane integrity (Huang et al. 2018; Hander et al. 2019). 

Activation of AtMC4 results in cleavage of the precursor protein PROPEP1, which releases the danger 

peptide Pep1 to trigger wound-induced defense signaling. This program shares many components with 

pathogen-induced defense responses. Whether AtMC4 or other proteases are activated by resistosome 

pores will certainly be worth analyzing in the coming years. 

 

PRR perturbation as an HR trigger 
Plasma membrane signaling may have a very important role in HR signaling. When pattern recognition 

receptors (PRRs) in the plasma membrane sense certain microbial molecular patterns, they team up with 

co-receptors in specific nanodomains that initiate signaling cascades (Bücherl et al. 2017). For example, 

knocking out or overexpressing AtBAK1 (BRASSINOSTEROID INSENSITIVE1-ASSOCIATED 

RECEPTOR KINASE1), a co-receptor of several different PRRs, leads to a potent HR cell death response 

and enhanced resistance to hemibiotrophic pathogens (Kemmerling et al. 2007; Domínguez-Ferreras et 

al. 2015). The fact that overexpression or elimination of a required element for PRR signaling leads to 

the same HR phenotype may indicate that perturbation or damage to components of PRR signaling is 

also monitored (Tang and Zhou 2015). This strategy would allow plant cells to defend against pathogen-

https://www.ncbi.nlm.nih.gov/pubmed/?term=Dom%C3%ADnguez-Ferreras%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25944825
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mediated inhibition of PRR pathways. Accordingly, inactivation of another PRR regulator, the plasma 

membrane receptor-like kinase AtBIR1, also results in HR cell death (Liu et al. 2016a). 

 

Proteolytic pathways associated to HR 
Signaling downstream of NLRs may impact finely tuned proteolytic pathways, including (selective?) 

autophagy and the concerted action of several proteases (Hofius et al. 2017; Salguero-Linares and Coll 

2019). Various proteases in the cytoplasm (metacaspases, phytaspase, or the proteasome subunit 

PBA1), in the vacuole (vacuolar processing enzyme VPE), and those secreted to the extracellular space 

(cathepsin B, saspase, Rcr3, Pip1) have been shown to be essential for HR cell death (Salguero-Linares 

and Coll 2019). In fact, they need to be tightly controlled to limit cell death beyond the HR site. Hence the 

multiple levels of negative regulation exerted on, for example, the HR cell death protease 

METACASPASE1 (AtMC1) by the protease inhibitor SERPIN1, the scaffold protein LESION 

SIMULATING DISEASE 1 (AtLSD1), and the metacaspase AtMC2 (Coll et al. 2010; Lema Asqui et al. 

2018). Moreover, AtMC1 has been shown to act additively to autophagy in controlling HR cell death (Coll 

et al. 2014). Although it is clear that autophagy promotes HR cell death, the mechanism and precise 

function (trigger or executioner?) remain unknown (Hofius et al. 2009; Munch et al. 2014; Coll et al. 2014). 

Intriguingly, to date no canonical proteolytic cascade has ever been characterized in plants. The coming 

years will hopefully provide a deeper insight into this HR-related proteolysis as the study of plant 

autophagy in plant-pathogen interactions has witnessed a tremendous expansion in the last few years 

(Avin-Wittenberg et al. 2018) and plant proteostasis is becoming a fully-fledged field of study.  

 

Local vs peripheral regulation of HR  
It will be important to pay closer attention to the spatio-temporal magnitude of HR in the coming years. 

This aspect has often been disregarded, with many studies of infected tissue not discriminating between 

HR versus non-HR cells. There are several examples of differential or antagonistic signaling between the 

cells undergoing HR and the surrounding area. This is true of the metacaspases AtMC1 and AtMC2, 

which antagonistically regulate HR cell death, and are expressed at the site of HR (AtMC1) or in the cells 

surrounding the HR zone (AtMC2) (Coll et al. 2010). The transcription factor AtMYB30, which mediates 

HR cell death and immune responses, has also been shown to be differentially regulated within HR and 

non-HR zones (Raffaele and Rivas 2013). Finally, signaling pathways downstream of the defense 

hormones salicylic acid and jasmonic acid are activated in spatially different domains during HR, with 

salicylic acid in the cell death zone and jasmonic acid in the surrounding area (Betsuyaku et al. 2018). 

Thus, it will be extremely important to define spatiotemporal markers of HR cell death, so that in the 

future, we can time and characterize the events leading to HR cell death. These markers will help 
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discriminate cells undergoing HR cell death from the surrounding tissue, which needs to activate 

protective mechanisms to survive, while integrating and transmitting danger/immune signals from dying 

cells to protect the organism against invasion. 

 

Manipulation of immune HR cell death by necrotrophs as a virulence strategy 
 

Necrotrophic pathogens have been regarded as generalists, but it is now evident that their interaction 

with the plant host is complex and highly regulated. Necrotrophs secrete toxins that kill plant cells and 

leave remnants from which the pathogen can feed. These pathogens have evolved very sophisticated 

strategies to trigger cell death. The most common strategy seems to be hijacking HR cell death pathways 

by subverting components of the plant immune system.  

 

Secreted toxins, also known as necrotroph effectors (NE), are recognized by the so-called NE sensitive 

genes and trigger HR cell death (Figure 2). Several NE sensitive genes possess classical NB (Nucleotide 

Binding) and LRR domains, and they often have roles in defense against biotrophic or hemibiotrophic 

pathogens (Lorang et al. 2007, 2012; Faris et al. 2010). Thus, NE genes appear to be a double edged 

sword, being effective at eliciting an HR response to contain biotrophic pathogens, but able to be hijacked 

by necrotrophic effectors to confer plant susceptibility. A classic example is LOV1 (LONG VEGETATIVE 

PHASE1), an NLR from A. thaliana that confers susceptibility to Cochliobolus victoriae (Lorang et al. 

2007). This necrotrophic fungus secretes the effector victorin, which activates LOV1 and triggers a 

resistance-like response that culminates in HR cell death and proliferation of the pathogen (Lorang et al. 

2012). 

 

The intricate mechanisms regulating necrotroph-host interactions have also been showcased by the 

study of Sclerotinia sclerotiorum. This necrotrophic fungus triggers HR by secreting oxalic acid into plant 

cells (Kim et al. 2008). During the initial phases of the infection, oxalic acid reduces levels of reactive 

oxygen species and creates a reducing environment that favors pathogen proliferation.  At the same time, 

host defenses are dampened and the infection progresses unnoticed. At later stages, and once the 

infection is well established, oxalic acid triggers an increase in reactive oxygen species that causes cell 

death (Williams et al. 2011). Oxalic acid has also been shown to inhibit autophagy-mediated cell death, 

which could provide an additional mechanism to camouflage infection and prevent activation of defense 

responses (Kabbage et al. 2013). 
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New necrotroph effectors and their plant susceptibility targets are emerging from the interaction between 

wheat and the necrotrophic fungus Parastagonospora nodorum. For example, the effector ToxA is 

recognized indirectly by the NLR Tsn1 from wheat, which results in HR cell death and disease (Faris et 

al. 2010). Another P. nodorum effector, Tox1, remains in the extracellular space and is proposed to have 

a dual role in infection. It binds to chitin in the fungal cell wall to protect it from degradation by host 

chitinases, while also inducing an HR-like response via its recognition by Snn1, a wall-associated 

receptor kinase (Liu et al. 2016b; Shi et al. 2016). Adding to the complexity, the susceptibility triggered 

by a necrotrophic effector can vary depending on the genetic backgrounds of the host and pathogen 

(Peters Haugrud et al. 2019). The identification of new susceptibility gene candidates in the host holds 

great potential for the generation of plants that are more resistant to necrotrophic fungi, which are a 

serious threat to agriculture. Understanding precisely how necrotroph effector genes interact with their 

corresponding plant susceptibility genes may allow engineering of new plant protein targets that evade 

the effectors without compromising plant fitness and yield. 

 

HR cell death as a consequence of autoimmunity 
 

HR cell death can also be observed in plants in the absence of pathogens. This autoimmunity leads to 

ectopic defense activation and spontaneous cell death in the form of macroscopic disease-like lesions 

(Chakraborty et al. 2018). Plant autoimmunity can be triggered by gain or loss-of-function of plant immune 

modulators (NLRs and non-NLRs), autophagy, and impaired metabolic processes. In the 90’s, lesion 

mimic mutants (LMMs), which are plants with spontaneous or mutagenesis-induced mutations showing 

HR-like cell death in the absence of pathogen, emerged as a promising tool to characterize HR cell death. 

Characterization of these genes, mostly in A. thaliana and rice, has highlighted the importance of several 

cellular compartments and pathways in HR signaling, including chloroplasts and light energy, 

sphingolipids and fatty acids, ROS and ion fluxes, autophagy, and plasma membrane signal perception 

(Bruggeman et al. 2015). Forward genetic screens targeting LMM revertants have identified additional 

components of defense signaling pathways, which has led to the idea that LMM phenotypes can be 

caused by loss of a pathogen effector target that is guarded by a NLR. Subsequent activation of the NLR 

promotes HR cell death (Lolle et al. 2017; Rodriguez et al. 2016).  

 

The study of autoactive NLR alleles has also been informative. For example, the snc1-1 (Suppressor of 

NPR1, Constitutive 1) mutant is a constitutively active variant of the SNC1 TLR that causes autoimmunity 

and HR cell death (Li et al. 2007). Autoactive SNC1 has been shown to activate immune responses in 

the nucleus, where it represses small RNAs involved in NLR silencing (Cai et al. 2018) and it associates 
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with a transcriptional corepressor that blocks expression of negative regulators of immunity (Zhu et al. 

2010). To ensure appropriate activation of SNC1-dependent immunity, multiple repression mechanisms 

directed towards this protein have been shown at the transcriptional level as well as post-transcriptionally 

(Cheng et al. 2011; Huang et al. 2014; Niu et al. 2019; Dong et al. 2015; Gou et al. 2017; Zhu et al. 2010; 

Wang et al. 2017a; Zhang et al. 2018; Wang et al. 2019c, 2017b; Johnson et al. 2015, 2017; Cai et al. 

2018). The Rp1-D21 gene in maize, which derives from an intergenic recombination event between two 

NLR genes, Rp1-D and Rp1-dp2, provides another example of NLR autoactivation resulting in HR cell 

death (Chintamanani et al. 2010). Intramolecular interactions drive activation of Rp1-D21, although HR 

cell death requires light and temperatures below a certain threshold (Wang et al. 2015; Negeri et al. 

2013). Recently, it was shown that two key enzymes of the lignin biosynthetic pathway form complexes 

with this hybrid NLR and modulate its activity (Wang and Balint-Kurti 2016).  

 

Autoimmunity leading to ectopic HR cell death can also be a consequence of hybrid necrosis, which is a 

common type of incompatibility found in the progeny of many crosses within and between species (Figure 

2). In contrast to hybrid vigor, hybrid incompatibility challenges plant fitness and can result from 

mismatched NLRs (Chen et al. 2016; Vaid and Laitinen 2019). Indeed, genes causing hybrid necrosis 

are often associated with plant defense responses (Alcazar et al. 2008). Allelic interactions at the ACD6 

(ACCELERATED CELL DEATH 6) locus in A. thaliana lead to hybrid necrosis and the enhanced 

expression of defense genes (Świadek et al. 2017). In fact, ACD6 acts as a quantitative resistance gene 

that balances growth and pathogen resistance in natural populations of A. thaliana, and it has been 

shown that deleterious autoimmune ACD6 alleles are modulated by natural variants of SNC1 (Zhu et al. 

2018). 

 

The hybrid necrosis hot spots in the A. thaliana genome are often densely populated with NLRs. These 

immune receptor loci act as hyper-modulated complexes that recombine between natural genetic variants 

and cause imbalanced NLR activity (Chae et al. 2014). The Bateson-Dobzhansky-Muller model explains 

pairwise heteromeric interactions between distinct unlinked NLR loci that lead to hybrid necrosis and 

enhanced defense (Phadnis and Malik 2014). On the one hand, the polymorphic nature (high levels of 

sequence divergence) of these immune loci gives an advantage during the host response to pathogen 

challenges, while on the other hand it positively correlates to hybrid necrosis impacting plant fitness. 

Different NLR pairs have been involved in hybrid necrosis phenomena (Bomblies and Weigel 2007; Tran 

et al. 2017; Atanasov et al. 2018). Many questions regarding hybrid necrosis remain unanswered: How 

is the NLR-mediated defense response propagated without pathogen challenge? What is the role of 

environmental factors and genetic distance in hybrid necrosis induction? How can the deleterious fitness 
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effects be mitigated during interspecific crossing while preserving the resistance trait? Our understanding 

of the mechanisms regulating HR cell death triggered by autoimmunity is still very limited. A deeper 

understanding of NLR activation and signal transduction will help us integrate and advance the current 

knowledge. 

 

Concluding remarks 
 

In plant immunity, HR cell death is often used to score resistance to pathogens. However, the 

mechanisms regulating this complex phenomenon are far from understood. The intricate interplay 

between sensor and helper immune receptors is starting to emerge, and will help shed light on how cell 

death is triggered and executed upon pathogen perception. Cell death-specific modules are being 

unveiled as integrators of signals emanating from activation of diverse sensor NLRs. HR cell death is an 

important part of the immune response to protect distal parts of the plant against future invasions.  

 

The plant resistosome has been described as an inflammasome-like supramolecular structure that 

assembles upon recognition of pathogenic effectors to initiate defense responses. The activated 

resistosome features a funnel-like structure that is required for insertion of the complex into the plasma 

membrane and HR cell death. It has been speculated that this structure creates pores in the membrane, 

which could mediate ion fluxes that activate cell death enzymes. Perturbation of the plasma membrane 

or its signaling components – including PRRs – may also be monitored by NLRs that can trigger HR cell 

death.  

 

Besides immunity against biotrophic and hemi-biotrophic pathogens, HR cell death can also mediate 

susceptibility to necrotrophic pathogens. There are several examples of necrotrophic fungi secreting 

toxins (also known as necrotroph effectors) that directly or indirectly activate specific NLRs and cause 

HR cell death. These NLRs were probably selected in the course of interactions between a plant and 

biotrophic pathogen, and then hijacked by a necrotrophic fungus for its own benefit. This is an emerging 

area of research with great potential, because susceptibility genes can serve as targets for genome 

editing technologies aimed at increasing resistance against fungi in commercial cultivars. 

 

The analysis of autoimmune phenotypes in plants is also providing a better understanding of the 

mechanisms regulating HR cell death. Autoactive or miss-matched NLR alleles confer constitutive 

immunity and ectopic HR-like cell death phenotypes, highlighting the importance of a multi-layered and 

finely tuned regulation of immune modulators to avoid deleterious fitness costs for the plant. The booming 
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field of plant immunity will surely deepen our insight into the mechanisms regulating pathogen-triggered 

HR cell death, helping us understand to what extent it is programmed. 
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Figure legends 
 

Figure 1. Plant NLRs. A) Schematic representation a plant NLR protein domains. The N-terminal region 

usually contains a TIR (Toll/Interleukin-1 Receptor homology) or a CC (Coiled-coil) domain. The central 

region is composed of a NB-ARC domain (Nucleotide Binding - APAF-1, R proteins, and CED-4). The C-

terminal region contains a LRR (Leucine-Rich Repeat) domain. B) NLR activation. In the inactive, closed 

state, ADP is bound to the NB-ARC domain. Direct or indirect effector recognition, results in ADP release 

and ATP binding. This results in a conformational change that renders an open, active NLR. CC - Coiled-

Coil domain  
 
Figure 2. Pathways leading to hypersensitive response (HR) cell death in plant immunity. 1) HR 

can be triggered upon recognition of a biotrophic or hemibiotrophic pathogen via direct or indirect effector 

recognition by NLR immune receptors, often operating in pairs (sensor NLR + helper NLR). 2) Cell death-

specific modules have been identified, which translate the signal generated by effector perception via 

TNL (TIR-NLR) activation, into HR cell death. 3) PRR signaling at the plasma membrane may be 

monitored by NLRs, with PRR signaling disturbance leading to HR cell death. 4) HR cell death can be 

genetically uncoupled from local defense responses, but may have a role in activating systemic 

resistance responses. 5) HR can occur as a result of autoimmune reactions, due to ectopic activation of 

NLRs or other defense signaling modulators or an NLR mismatch. 6) Necrotrophic fungi can cause 

disease by hijacking the host HR cell death. A common strategy is activation of NLR receptors by toxins 

secreted by the fungi into the plant cytoplasm. 

 

Figure 3. Mechanism of resistosome activation. 1) In its resting state, the NLR HOPZ-ACTIVATED 

RESISTANCE1 (ZAR1) is bound to ADP and the RLCK RESISTANCE RELATED KINASE 1 (RKS1). 2) 
Xanthomonas campestris secretes the effector AvrAC into the host plant cells, which uridylates the RLCK 

PBS1-LIKE PROTEIN 2 (PBL2). 3) Uridylated PBL2 binds to RKS1, causing conformational changes to 

the ZAR1-RKS1 dimer that release ADP and prime the complex for activation. 4) Subsequent ATP 

binding results in formation of the resistosome via pentamerization of the ZAR1-RKS1-PBL2 complex. 5) 
Conformational changes expose a funnel-like structure essential for accumulation of the complex in the 
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plasma membrane, bacterial resistance and 6) cell death, which has been hypothesized to be mediated 

by pore formation at the plasma membrane upon insertion of the resistosome. 
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