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Summary Feed efficiency (FE) is one of the most economically and environmentally relevant traits in

the animal production sector. The objective of this study was to gain knowledge about the

genetic control of FE in rabbits. To this end, GWASs were conducted for individual growth

under two feeding regimes (full feeding and restricted) and FE traits collected from cage

groups, using 114 604 autosome SNPs segregating in 438 rabbits. Two different models

were implemented: (1) an animal model with a linear regression on each SNP allele for

growth trait; and (2) a two-trait animal model, jointly fitting the performance trait and each

SNP allele content, for FE traits. This last modeling strategy is a new tool applied to GWAS

and allows information to be considered from non-genotyped individuals whose contribu-

tion is relevant in the group average traits. A total of 189 SNPs in 17 chromosomal regions

were declared to be significantly associated with any of the five analyzed traits at a

chromosome-wide level. In 12 of these regions, 20 candidate genes were proposed to

explain the variation of the analyzed traits, including genes such as FTO, NDUFAF6 and

CEBPA previously associated with growth and FE traits in monogastric species. Candidate

genes associated with behavioral patterns were also identified. Overall, our results can be

considered as the foundation for future functional research to unravel the actual causal

mutations regulating growth and FE in rabbits.

Keywords candidate gene, feed efficiency, genome-wide association study, growth, pooled

records, rabbit, restricted feeding

Introduction

Before the availability of feeding devices for individual

recording of feed intake (FI) of animals raised in groups,

breeding programs to improve the feed efficiency (FE) of

monogastric species achieved important genetic responses

by using traits that could be measured individually in

animals housed in groups and were genetically correlated

with feed efficiency as selection criteria. In this context, FE

should be understood as a general concept that reflects the

degree of efficacy in the use of feed resources for perfor-

mance. In the case of rabbits (Estany et al. 1992) and

poultry (Emmerson 1997), the selection criterion is tradi-

tionally growth rate or body weight at slaughter, whereas

in the case of pigs (Sather & Fredeen 1978) it is an index

based on growth rate and backfat thickness. Genetic

improvement of FE via indirect selection for these criteria

has been possible given that they show high heritabilities

and moderate correlations with direct measures of FE such

as feed conversion ratio (FCR) or residual feed intake. In all

of the aforementioned species, and in particular in rabbits,

FE traits, jointly with prolificacy, are the most economically

relevant ones (Cartuche et al. 2014). In addition, the

improvement of FE is expected to have positive effects for

decreasing the environmental footprint of the rabbit

production industry (Gidenne et al. 2017; Cesari et al.

2018).

Owing to the non-availability of electronic feeders for

individual recording of FI in rabbits housed in groups,

Drouilhet et al. (2016) performed a selection experiment to

improve FE in which animals were housed individually.
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Despite this strategy offering an interesting framework for

understanding FE from a metabolic perspective, it overlooks

social interactions between cage mates, which are crucial

when animals are raised in groups and especially under

restricted feeding (Piles et al. 2017). This is a common

practice in commercial rabbit farms to control digestive

disorders during fattening (Gidenne et al. 2012). Therefore,

it could certainly be argued that studies with individually

housed rabbits do not reflect the reality of commercial farms

where animals are reared in groups. However, this exper-

iment provides compelling evidence of favorable genetic

responses even when evaluated on animals raised in

collective cages (Garreau et al. 2019).

The present study uses data collected from an experiment

designed to estimate genetic parameters of FE in animals

raised in groups. Therefore, the available information

consists of weekly group records of FI and individual

records of body weight (BW). Piles & Sánchez (2019)

studied the data collected in this experiment from a

quantitative genetic perspective, estimating heritabilities

and genetic correlations of growth and FI on animals raised

in groups and under either full or restricted feeding. They

also proposed breeding value predictions for FE measures

derived from cage-recorded FI and individual growth and

metabolic weight.

After the initial rabbit genome assembly (Lindblad-toh

et al. 2011), Carneiro et al. (2014) released an improved

version with the aim of identifying domestication sweeps in

rabbits. From the SNPs detected in this study, 200 000

SNPs were included in one array commercialized by

Affymetrix, opening up possibilities to conduct genomic

studies based on dense panels in this species.

The objective of this study was to identify genomic

regions and potential candidate genes associated with traits

involved in the growth and FE of meat rabbits raised in

collective cages under different feeding regimes using a

high-density SNP array for this species. To achieve this

objective, it was necessary first to create a model for

handling collective cage performance records in the frame-

work of GWAS studies, this being a partial objective in our

study.

Material and methods

Animals

The animals used in this study belonged to the Caldes line

(Gómez et al., 2002), and the experiment was conducted at

the rabbit farm of the Institute of Agriculture and Food

Research and Technology. They were randomly sampled

from four batches during the first semester of 2014 and

from an additional batch in spring 2016. The animals from

2014 were raised in a semi-open-air facility and the

fattening period was from 30 to 66 days of age. Eight

animals were kept in each cage. The batch in 2016 was

produced on a different farm under controlled environmen-

tal conditions, which produced a better growth rate and a

shorter fattening period (30–60 days of age); on this other

farm six animals were kept in each cage. Beyond the farms’

environmental differences and the number of animals per

cage, the recorded data and management protocols were

the same in both facilities.

After weaning, kits were randomly assigned to one of two

feeding regimen (FR) treatments: ad libitum (F) or restricted

to 75% of the ad libitum intake (R). In order to obtain

homogeneous groups regarding animal size, the kits under

each FR were assigned to one of two groups based on their

BW at weaning: large size (LS, i.e. kits with BW >700 g)

and small size (SS, i.e. kits with BW ≤700 g). Animals from

the same litter were distributed to both FRs. To obtain feed

restriction to 75% of the ad libitum FI, the amount of feed

supplied during week 1 was computed as 0.75 times the

average feed intake of kits on F in a specific group j (j = LS

or SS) during the previous week (i.e. i–1), plus 10%

corresponding to the estimated increase in FI as the animals

grew, i.e. FIR;ji ¼0:75� ð1þ0:1Þ�FIF;j i�1ð Þ
� �

for i = 1–5
and j = LS or SS.

This amount of feed was multiplied by the number of

animals present in the cage to determine group feed

requirements. The amount of feed for week 1 was computed

from data that were recorded in previous experiments on

the same production line with animals raised in the same

season. The actual amounts of feed provided to the

restricted animals were, on average, 75 and 74% the

ad libitum intake in LS and SS kits respectively. A maximum

of two kits per litter were allocated to the same cage in order

to minimize collinearity between maternal and pre-weaning

environmental effects and cage effects.

In both experimental groups (F and R), the recorded raw

data consisted of weekly individual BW, and for the case of

the F weekly cage, FI. In both groups, kits were fed the same

standard pellet diet, supplied once per day in a feeder with

three places, and containing prescribed antibiotics to

control gut disorders. In both experimental facilities, feed

was changed to a standard feed without drugs during the

last week of fattening. Thus, records from the last week

were discarded for the analysis because of the effect that the

lack of antibiotics in the feed might have on growth rate, FI

and the derived FE measures. Therefore, in both farms, the

growing period controlled was from 30 to 56 days of age;

thus, a total of four weekly individual BW records were

retained per animal and three weekly group FI measure-

ments were considered per cage.

From these raw records, individual average daily gain

(ADG) was computed as the regression coefficient of the

within-animal BW records on their ages. This was done for

each FR, obtaining individual ADG on ad libitum (ADGF) or

restricted (ADGR) FR. For the 99 cages on F, individual

average daily feed intake ( �ADFIF) was computed as the total

feed intake of the cage during the whole fattening period
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divided by the number of days and number of rabbits

present in the cage during the whole fattening period. Also,

individual average daily feed conversion ratio ( �ADFCRF)

and individual average daily residual feed intake ( �ADRFIF)

were computed. The first was the ratio between �ADFIF and

ADGF cage average, and the second was the residual of a

batch-nested multiple regression of �ADFIF on the ADGF cage

average and the cage average of the mid fattening period

day metabolic weight.

Two datasets were employed in the analyses, one

containing individual growth (ADGF and ADGR) of geno-

typed animals (438) and another including growth from

genotyped animals as well as from all their non-genotyped

cage mates (438 + 1032). This second dataset also

included cage average traits ( �ADFIF, �ADFCRF and
�ADRFIF). Table 1 shows the number of animals per feeding

regime in cages containing genotyped animals from the five

batches. In Table 2, raw statistics of the traits under study

are shown. They refer to the animals mentioned before (i.e.

genotyped animals and non-genotyped cage mates).

DNA extraction and SNP genotyping

The DNA extraction was carried out using the NucleoSpin

Tissue (250prep; Macherey-Nagel) commercial kit from

liver samples of 438 rabbits collected immediately after

slaughter (66 days of age). DNA extracts were sent to an

Affymetrix platform to conduct genotyping using the Axiom

Rabbit Genotyping Array ‘Axiom_OrCunSNP’ (Thermo

Fisher Scientific), which includes 199 692 variants. Only

161 830 were segregating in our population and, after

retaining the SNPs mapped in autosomes in the OryCun2.0

assembly and applying standard quality control criteria,

114 604 SNPs were kept for further analysis. The applied

quality control criteria comprised retaining animals having

at least 90% of SNPs correctly genotyped, SNPs with less

than 5% missing genotype data and SNPs with a MAF

higher than 5%. The LD (r2) decay pattern from our

population was assessed using PLINK 1.9 (Chang et al. 2015).

Prior to a pairwise LD computation, in order to reduce the

computational effort, the genotype file was pruned to

retrieve just one SNP every 20 kb; thus, the resolution of

the obtained LD decay pattern was as low as 0.02 Mb.

Statistical analysis

Two different modeling approaches were adopted to conduct

the GWASs:

Regression analysis on the allele content of each SNP

This model was applied to individually recorded traits

(ADGF and ADGR) and was implemented using QXPAK

(Pérez-Enciso & Misztal 2011). The procedure implemented

with this model is frequently called ‘EMMAX’ (Kang et al.

2010).

The general equation of this model fitting the alternative

hypothesis is as follows:

yijklmno ¼ SNPip�αpþBjþPkþLlþSmþ cnþ loþ aiþ eijklmno

(1)

where a particular record of a given trait under study

(yijklmno) – ADGF or ADGR – (one at the time) is explained by

the effect of the allele content (SNPip: 0, 1, 2 depending on

the number of copies of the reference allele) in the pth

genomic position of the ith animal, reflected by the

regression coefficient at that particular position (αpÞ which

represents the allele substitution effect, the effect of the jth

batch level (Bj, five levels), the effect of the kth level of the

order of parity in which the animal was born (Pk, four

levels), the effect of the lth level of size of the litter in which

Table 1 Number of individual and cage records per batch and feeding

regime. Genotyped and non-genotyped animals are distinguished for

the individual records

Batch

Individuals

CagesGenotyped

Non-

genotyped

R F R F R F

1 28 26 68 62 12 11

2 41 35 103 84 18 15

3 58 63 190 209 31 34

4 35 59 93 124 16 23

5 46 47 50 49 16 16

F, Animals fed ad libitum; R, animals fed under restriction.

Table 2 Basic statistics for the studied traits

Trait N Mean SD

First

quartile

Third

quartile

Phenotypic

variance2,2

ADGF (g/
day)

758 53.2 9.4 50.3 58.8 77.6

ADGR (g/
day)

712 35.4 8.0 32.2 40.4 55.0

�ADFIF(g/
day)1,1

99 151.4 17.0 141.8 162.7 289.3

�FCRF[(g/
day)/(g/
day)]1,1

99 2.8 0.2 2.7 3.0 0.2

�ADRFIF(g/
day) 1,1

99 0.0 5.9 −3.3 3.4 143.8

ADGF, Average daily gain in rabbits fed ad libitum; ADGR, average

daily gain in rabbits fed under restriction; �ADFIF average daily feed

intake in rabbits fed ad libitum; �FCRF, cage average daily feed

conversion ratio in rabbits fed ad libitum; �ADRFIF, cage average daily

residual feed intake in rabbits fed ad libitum.
1Refers to cage traits.
2Estimated using model 2. For cage average records, the residual

variance of the model accounts for the number of animals involved in

the mean; thus, these quantities actually represent individual variation.
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the animal was born (Ll, seven levels), the effect of the mth

level of the type of cage [Sm, two levels, cages with animals

of large body weight at weaning (>700 g) or of low body

weight at weaning (≤700 g)], the effect of the nth cage (Cn),

the oth litter (lo) and the ith breeding value (ai), the last

three being random effects. Thus, each random factor had

associated with it a variance component to be estimated.

For cage and litter effects, a diagonal structure was assumed

between the different levels, whereas for the additive genetic

effect the numerator relationship matrix was used to define

the covariance between the individuals. Finally, a diagonal

normal distribution was assumed for the residual term,

eijklmno.

At each genomic position, two models were fitted by

maximum likelihood, including or not (null model) the

regression on the SNP allele content (1). Then, likelihood

values at their maximum were compared using likelihood

ratio tests. This ratio follows, under the null hypothesis, a

chi-squared distribution with 1 degree of freedom; P-values

were computed from this theoretical distribution.

Bivariate analysis considering each recorded trait, individual

growth or cage records, jointly with the allele content of each

SNP

This statistical model was considered as a way to perform

GWASs on group mean records. With regard to individual

traits (ADGF and ADGR), the model was the same as that

fitting the null hypothesis in the case of regression analysis.

For explaining cage records ( �ADFIF, �FCRF and �ADRFIF), a

model similar to that considered by Piles & Sánchez (2019)

was adopted. The bivariate model was defined by jointly

considering, as correlated traits, one performance trait at a

time (either individual or cage average) and the allele

content at each SNP. The equation for explaining this allele

content considered only an overall mean and the additive

genetic effect in addition to a residual term (Legarra &

Vitezica 2015). The effect of the marker on the trait under

study was estimated through the genetic covariance of both

traits. Legarra & Vitezica (2015) proved that this approach

is equivalent, for individual records and complete observa-

tions, to the EMMAX model that is commonly used, the

main advantage being the possibility of including missing

genotypes.

The model equations for the bivariate analysis fitting

individually recorded traits were the following,

yijklmno ¼BjþPkþLlþSmþ cnþ loþ a1,iþ e1,ijklmno (2)

SNPip ¼ μþ a2,ipþ e2,ip

Note that this model was applied to a different set of

individual records from that employed with model (1). In

this second case, we considered individual records from both

genotyped animals and their non-genotyped cage mates.

In the case of the analysis of group records, the equations

involved in the bivariate model were the following:

�yjmn ¼BjþSmþ ∑
Nn

k¼1

1

Nn
lnk

� �
n

þ ∑
Nn

k¼1

1

Nn
a1,nk

� �
n

þ e1,jmn (3)

SNPip ¼ μþ a2,ipþ e2,ip

Group means, �yjmn, i.e. traits of interests ( �ADFIF, �FCRF

and �ADRFIF), are explained by the effect of the jth batch

level (Bj, five levels), the effect of the mth level of the type of

cage (Sm, two levels) and the averages of litters (lnk) and

additive genetic effects (a1,nk) associated with the Nn

individuals in the nth cage. Litter, additive genetic and

residual effects are random factors, assumed to follow

normal distributions, indexed by their respective (co)vari-

ances to be estimated using an EM-REML procedure.

Breeding values for the two traits analyzed at a time were

assumed to follow a joint multivariate normal distribution

of the following form:

a≈N 0,
σ2a1 σa1,a2

σa1,a2 σ2a2

" #
�A

 !
:

Similarly, for the residual term, the assumed distribution

was the following:

e≈N 0,
σ2e1 0

0 σ2e2

" #
�I

 !
:

In the case of the residual effects, a null covariance was

considered between SNP allele content and the performance

trait. For the case of the additive genetic effects, this

covariance (σa1;a2 ) under the alternative model was assumed

to be non-null, representing in this case the association, at a

genetic level, between breeding values for the trait of

interest and the SNP genotypes. Under the null model, σa1,a2
was set to zero. The REML likelihood values at their

maximum were used to construct likelihood ratio tests

allowing exploration of the significance of σa1,a2 estimates.

This was done by computing P-values from the theoretical

distribution of the ratio under the null hypothesis, a chi-

squared distribution with one degree of freedom. From this

model, the estimated effect for each SNP position was

calculated as a function of the estimated additive genetic

covariance ( σ
a1,a2

) and the SNP frequency (f p) (Legarra &

Vitezica, 2015):

α
p
¼

σ
a1,a2

2∗f p∗ð1� f pÞ
In the two statistical methods, multiple test correction

was performed following the procedure by Storey (2002) to

adjust raw P-values to a positive false discovery rate of 0.05;

this was done using the R package ‘qvalue’ (Storey et al.

2019). The adjustment was done at two different levels:

first, at genome-wide level considering all of the tests
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conducted; and second, within each chromosome. In the

second case, thresholds for declaring significance varied

across chromosomes, and they were much less strict than

those applied at genomic level. To define the genomic

regions associated with the analyzed traits, those significant

SNPs that were less than 1 Mb apart were grouped in the

same QTL region. This distance threshold was defined based

on a preliminary assessment of LD as a function of the

physical distance between SNPs.

Gene annotation and functional analysis

Associated regions were annotated considering �1 Mb

around the previously defined intervals in the rabbit

genome. Gene annotations were retrieved from the Ensembl

Genes 98 Database with the BIOMART software (Smedley et al.

2015) using the OryCun2.0 reference assembly. Further-

more, functional predictions of the significantly associated

SNPs were performed with VEP software (McLaren et al.

2016).

For functional categorization of the annotated genes, GOs

were determined using ClueGO version 2.5.0 plug-in of

Cytoscape (Bindea et al. 2009). The functions assigned to

the proposed candidate genes include metabolic, beha-

vioural or immunological pathways. Orthologous human

gene names were retrieved from the Ensembl Genes 98

Database for functional categorization when a rabbit gene

name was not assigned to the gene stable id. Furthermore,

information from the Mouse Genome Database (Eppig et al.

2017) and Genecards (Safran et al. 2002) was used to

identify gene functions affecting the analyzed phenotypes.

Results

Two modeling approaches were used to conduct a GWAS

on five phenotypic traits related to individual growth and

group FE using 438 rabbits genotyped with AxiomOr-

CunSNP (114 604 SNPs after quality control).

At genome-wide level, after multiple testing correction,

neither of the methods returned significant associations.

However, when multiple test correction was applied within

each chromosome, 189 SNPs (Table S1) located in nine

Oryctolagus cuniculus chromosome (OCC) regions (3, 5, 6, 9,

12, 13, 16, 17 and 21) were declared as significantly

associated with any of the five studied traits, i.e. ADGR,

ADGF, �ADFIF, �FCRF and �ADRFIF.

It is important to describe the LD pattern decay (Fig. 1) to

properly determine that the QTL intervals to be defined

cover regions in relatively high LD. The LD between regions

with a distance of 1 Mb was nearly 0.2. Thus, we assumed

that significantly associated SNPs within a 1 Mb region

pertain to the same QTL.

Table 3 summarizes the significantly associated regions

with the traits of interest at chromosome level. In addition,

graphical representation of the results obtained for the

different traits and methods is presented in Manhattan plots

(Figs 2–4).
Eight chromosomal regions located at OCCs 3, 5 and 21,

were declared to be associated with ADGF (Table 3 and

Fig. 2). Two of the five regions on the distal segment of OCC

3 (102.22–102.37 and 109.07–109.08 Mb) were signifi-

cantly associated with the trait using both modeling

approaches. The estimated effects of the SNPs with the

strongest association within each region ranged from

3.34 g/day (for a SNP on the region 100.90 Mb–101.11-
Mb of OCC 3) when model 2 was used to 6.55 g/day (for an

SNP at 107.99 Mb of OCC 3) detected with model 1. The

effects of the other OCC 3-associated regions were estimated

to be close to 4 g/day. For ADGF, 78 ensembl_gene_ids were

annotated on the declared QTL regions of OCC 3 (Table S2).

One candidate gene, carbonic anhydrase 2 (CA2), was

identified in the region 100.99–101.11 Mb, whereas two

candidate genes, NADH:ubiquinone oxidoreductase com-

plex assembly factor 6 (NDUFAF6) and tumor protein p53

inducible nuclear protein 1 (TP53INP1), were proposed for

ADGF in the region 109.07–110.88 Mb of OCC 3 (Table 4).

In OCC 5, two significantly associated regions were detected

with model 1; one region comprised a single SNP in position

9.07 Mb and the other comprised two SNPs in the region

18.95–18.97 Mb. The magnitude of the strongest estimated

effects for these regions was similar to those estimated on

OCC 3 (between 3.5 and 5.5 g/day). In these regions, 19

ensembl_gene_ids were annotated (Table S2). Furthermore,

one promising candidate gene for ADGF alpha-ketoglutarate

dependent dioxygenase (FTO) was identified at 9.07 Mb in

OCC 5 (Table 4). Finally, one region in OCC 21 compressing

1.29 Mb (7.17–8.46 Mb) was also associated with ADGF. In

this region, 26 SNPs were found to be significantly

associated with the trait. Within this region, AX-

147049623, the SNP with the strongest association had

an effect of 3.51 g/day. Remarkably, this SNP was located

inside an intron of the Ataxin 2 (ATXN2) gene (Table S1) –
one of the four candidate genes (ATXN2, ACAD10, TRAFD1

and PTPN11) identified among the 71 ensembl_gene_ids

annotated in this region (Table 4 and Table S2). These

candidate genes contained another 10 SNPs significantly

associated with ADGF (Table S1).

ADGR showed significant associations with SNPs on OCCs

9, 12, 13 and 17 (Table 3 and Fig. 3). For this trait,

however, the two models declared different chromosomal

regions as significantly associated with the trait. Model 1

declared a QTL region at the proximal region of OCC 13

(0.40–2.09 Mb) containing 50 significant SNPs. The esti-

mated SNP effect having the strongest association (mini-

mum q-value within the region) was 3.41 g/day. Two

candidate genes (RC3H1 and TNFSF18), out of 37 anno-

tated ensembl_gene_ids, were found in this region (Table 4

and Table S2). For the same trait, model 2 declared

significant signals on OCCs 9 (29.66–31.00 Mb), 12

(99.88 Mb) and 17 (73.57 Mb–74.16 Mb). The SNP effects
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of the QTL regions on OCCs 9 and 17 were lower

(approximately between 1 and 1.5 g/day) than that

detected on OCC 12, for which an effect of 3.73 g/day was

estimated, which was a similar magnitude to the effects of

the SNPs associated with ADGF. In these regions, 74

ensembl_gene_ids were annotated (Table S2) and four

candidate genes were proposed (FEZF2 and PTPRG on

OCC 9, and LGALS3 and TMEM260 on OCC 17; Table 4).

The GWAS conducted with model 2 for the cage

performance traits, �ADFIF, �FCRF and �ADRFIF, declared six

significantly associated regions on OCCs 5, 6, 16 and 21

(Table 3 and Fig. 4). Region 3.70–3.85 Mb on OCC 5 was

declared to be associated with �ADFIF and comprised 12

significant SNPs; that with the strongest association had a

MAF of 0.37 and an estimated effect equal to 0.85 g/day. In
this region, 20 ensembl_gene_ids were annotated (Table

S2) and two candidate genes for �ADFIF were identified

(CEBPA and KCTD15) (Table 4). For �FCRF, two significant

signals were detected on OCCs 6 (26.28–26.44 Mb) and 16

(82.86–83.26 Mb). The estimated effects of the SNPs with

the strongest statistical association within these regions

were large – 0.47 and 0.52 feed conversion units ((grams of

feed/day)/(grams of growth/day)) respectively. The most

significant SNP on OCC 6 had a low MAF (0.06), whereas

that of the most significant SNPs on the region of OCC 16

was much higher (0.42). For �FCRF, 63 ensembl_gene_ids

were annotated (Table S2) and two candidate genes – salt

inducible kinase 1B (putative) (SIK1B) on OCC 6 and

phospholipase A2 group IVA (PLA2G4A) on OCC 16

(Table 4) – were retained.

Finally, for the last studied FE trait, �ADRFIF, significant

associations were detected in three regions of OCC 21:

3.89–4.33 and 7.16–7.70 Mb, and one single SNP at

9.21 Mb. The second region was particularly relevant as it

also contained SNPs significantly associated with ADGF. The

MAF of the most significant SNP within this region was

0.37, and its estimated effect was 2.16 g/day. A total of 146

ensembl_gene_ids were annotated on OCC 21 (Table S2),

and the same candidate genes as those previously proposed

for ADGF in this region were retrieved for �ADRFIF (Table 4).

Discussion

To our knowledge, this is the first GWAS for growth and

feed efficiency traits performed in a rabbit population using

a dense SNP chip panel. Our study, in addition, also

introduces a new modeling approach allowing study of the

association of traits recorded as group averages, when not

all of the individuals in the group have been genotyped. This

methodology was originally proposed for gene-assisted

selection when a certain percentage of the candidates have

not been genotyped for the major gene of interest (Legarra &

Vitezica, 2015). Modelling the SNP allele content using

animal models has also been proposed as a tool to detect

low-quality SNPs within the panels (Forneris et al. 2015),

an SNP being declared as erroneously genotyped when its

heritability estimate is significantly different from 1. With

this work, we extend the scope of application of such models

to GWASs, in particular, to GWASs on group average

performance traits. Previous studies (Zhang et al. 2018)

have addressed the problem in the context of experiments

where the limiting factor is the capability to generate

individual phenotypes, but all of the individuals in the

design were genotyped. In this case, it has been shown that

pooling individual records to produce pool phenotypes and

then explaining these pooled data by the mean genotype of

the group produced considerable gains in the power of

statistical tests over simple random sampling, i.e. random

selection of as many individual phenotypes as pools were

defined. This result could be expected as in the analyses of

the pooled phenotypes all of the available genotypes are

included, whereas in the study of a random sample of

individual records only a subset of them are considered, and

this sampling is particularly sensitive to low-frequency

markers. Our study, although related to the aforementioned

problem, has a completely different motivation: on the one

hand, there is no individual alternative to the group

average phenotype recorded, and on the other hand, the

experimental limitations constrain the number of genotyped

animals to only a few of those responsible for the group

average phenotype. In this situation, a much smaller

Figure 1 LD (r2) decay pattern. (a)

Up to 8 Mb; (b) up to 1 Mb.
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Table 3 QTL regions associated with the studied traits according to the two employed methods. Effect estimates and MAF are reported

Method Trait Region1,1 OCC2,2

Initial

position

(Mb)

Final

position

(Mb)

SNPs in

the region

Significant SNPs

in the region3 SNP name4
q-

Value5 Effect6 MAF7

QXPAK ADGR 11 13 0.40 2.09 90 50 AX-

146990063

0.0056

3.41

(g/
day)

0.24

QXPAK ADGF 2 3 102.22 102.37 11 9 AX-

147016699

0.0350

3.68

(g/
day)

0.39

QXPAK ADGF 3 3 107.99 107.99 1 1 AX-

146983203

0.0350

6.55

(g/
day)

0.06

QXPAK ADGF 4 3 109.07 110.88 111 16 AX-

146982129

0.0211

4.05

(g/
day)

0.24

QXPAK ADGF 5 3 113.46 113.46 1 1 AX-

147140896

0.0410

3.65

(g/
day)

0.20

QXPAK ADGF 6 5 9.07 9.07 1 1 AX-

147010974

0.0416

3.57

(g/
day)

0.29

QXPAK ADGF 7 5 18.95 18.97 2 2 AX-

147049894

0.0416

5.46

(g/
day)

0.11

QXPAK ADGF 8 21 7.17 8.46 67 26 AX-

147102744

0.0135

3.51

(g/
day)

0.23

BI ADGR 9 9 29.66 31.00 66 29 AX-

147167857

0.0039

1.67

(g/
day)

0.07

BI ADGR 10 12 99.88 99.88 0 1 AX-

146984543

0.0222

3.73

(g/
day)

0.05

BI ADGR 12 17 73.57 74.16 29 7 AX-

147012391

0.0183

0.95

(g/
day)

0.16

BI ADGF 1 3 100.99 101.11 3 4 AX-

147009110

0.0399

3.34

(g/
day)

0.49

BI ADGF 2 3 102.22 102.37 10 11 AX-

147016699

0.0302

3.71

(g/
day)

0.39

BI ADGF 4 3 109.07 109.88 58 11 AX-

147097036

0.0313

3.85

(g/
day)

0.24

BI �FCRF 14 6 26.28 26.44 16 10 AX-
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amount of information is available for the analysis, and

thus, lower power would be expected. We do not formally

assess the efficiency of our proposed model, but its limited

power seems obvious. On this regard, Sánchez et al. (2018)

reported an important reduction in the capability to detect

simulated QTL regions for one trait (out of three) that is

considered as a group average with respect to the situation

in which all traits are studied as individual phenotypes.

They implemented a multitrait Bayesian procedure similar

to the single-step association methods (Wang et al. 2012),

which relies on derivation of SNP effects from genomic

predictions using a multiple regression in which the SNP

effects are treated as random factors.

A possible means of validation of the results from the

proposed bivariate model is to analyze those traits individ-

ually recorded with the two approaches. For the case of

ADGF the results obtained are partially the same, for

example regions in OCC 3 are detected with both methods.

However, other regions detected for this trait and all those

declared for ADGR, which is a trait with lower heritability

(Piles & Sanchez 2019), are not the same across the models.

One reason for this is that the datasets used by each method

are different. In the case of model 1, only records from

genotyped animals are considered, but with the bivariate

model, records from both genotyped and non-genotyped

animals are jointly considered, and the pedigree is used to

predict genotypes of non-genotyped animals with records.

As stated, given the available information on the cage

performance records, the expected statistical power was

low. Thus, in order to allow for a certain degree of signal

detection, the threshold for significance declaration was

deliberately reduced to a chromosome-wide level. In this

situation, we have successfully identified 17 chromosomal

regions associated with the analyzed traits. To allow

comparison between traits, the estimated SNP effects within

the regions can be expressed relative to their estimated

phenotypic variance (Table 2). To this end, we approxi-

mated the additive genetic variance associated with each

Table 3 (Continued)

Method Trait Region1,1 OCC2,2

Initial

position

(Mb)

Final

position

(Mb)

SNPs in

the region

Significant SNPs

in the region3 SNP name4
q-

Value5 Effect6 MAF7

147140966

0.0015

0.47

[(g/
day)/
(g/
day)]

0.06

BI �FCRF 15 16 82.86 83.26 26 7 AX-

147107945

0.0482

0.52

[(g/
day/
(g/
day)]

0.42

BI �ADFIF 13 5 3.70 3.85 13 12 AX-

147126724

0.0278

0.85

(g/
day)

0.37

BI �ADRFIF 16 21 3.89 4.33 26 8 AX-

147145784

0.0175

1.14

(g/
day)

0.25

BI �ADRFIF 8 21 7.16 7.70 34 15 AX-

147081855

0.0030

2.16

(g/
day)

0.37

BI �ADRFIF 17 21 9.21 9.21 0 1 AX-

147132637

0.0321

1.34

(g/
day)

0.35

1Annotated region, match to Table S2.
2Oryctolagus cuniculus chromosome.
3Chromosome-wise q-value <0.05.
4Name of the most significant SNP within the region.
5Within-region minimum chromosome-wide q-value.
6Absolute value of the effect of the most significant SNP.
7MAF of most significant SNP.
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QTL region, defined in Table 3, by considering the SNP

effect with the strongest association (minimum q-value)

within the region and its frequency. The additive variances

of the QTL regions in Table 3 represent 5–8, 0.5–8 and

0.5–2% of the phenotypic variance of ADGF, ADGR, and

both �ADFIF and �ADRFIF respectively. The percentage of

phenotypic variance explained by the additive genetic effect

for one of the QTL regions declared for �FCRF is particularly

high – 65% for the region on OCC 16. It could be difficult to

propose a validation method for these results free from the

assumptions in the model for the analysis, because �FCRF is

recorded as the group average. Nevertheless, a simple

regression of group �FCRF on group average genotype for the

SNP AX-147107945 at bp 82858725 in OCC 16, the SNP

with the strongest association within the region (Table 3),

also showed a strong magnitude – 0.20 (0.05) FCR units

per unit of change on the cage average genotype (P = 3.38

× 10−5). This means that the expected FCR in a cage with

all of the animals heterozygous for this SNP will be 0.20

units larger than that in a cage with all of the animals

homozygous of one type and 0.20 units lower than that in a

cage with all of the animals homozygous of the other type.

Figure 2 Manhattan plots for average daily gain recorded in animals fed ad libitum (ADGF) for models (a) QXPAK and (b) BI

Figure 3 Manhattan plots for average daily gain recorded in animals fed under restriction (ADGR) obtained for models (a) QXPAK and (b) BI.
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Twenty candidate genes, located in 12 QTL regions, have

been proposed to explain the phenotypic variation of the

traits under study; this proposition was done based on their

biological functions. It is worth mentioning the FTO gene,

annotated on OCC 5 for ADGF, which has been previously

associated with growth traits in rabbits (Zhang et al. 2013;

Zhang et al. 2014). Furthermore, NDUFAF6, which was

also annotated for ADGF in a region of OCC 3, has recently

been described as a candidate gene for growth-related traits

in pigs (Ji et al. 2019).

It is also relevant to highlight ATXN2, acyl-CoA dehy-

drogenase family member 10 (ACAD10), TRAF-type zinc

finger domain containing 1 (TRAFD1) and protein tyrosine

phosphatase non-receptor type 11 (PTPN11) genes as they

map in a region of OCC 21 with a pleiotropic effect for both

ADGF and �ADRFIF and have 11 significant SNPs located in

their introns. Identifying pleiotropic regions for both ADGF

and �ADRFIF could be considered an unexpected result as
�ADRFIF is a trait obtained after the phenotypic correction of

FI by growth and metabolic weight. However, this pheno-

typic correction does not grant a null genetic correlation,

and in fact, in the population under study it has been

reported that the genetic correlation between ADGF and
�ADRFIF was 0.58 (Piles & Sanchez 2019).

Piles & Sanchez (2019) showed that growth recorded in

animals fed under restriction (ADGR) is a trait genetically

different from growth recorded in animals fed ad libitum.

Our results could be said to support this as for ADGR we

have declared chromosomal regions different from those

declared for ADGF. Nonetheless, this could be also a simple

consequence of our reduced statistical power. In these

regions, candidate genes associated with behavioral pat-

terns (FEZF2, PTPRG and LGALS3) or involved in immunity

and/or lipid metabolism (RC3H1, TNFSF18 and TMEM260)

were identified. Finally, it is worth highlighting the CCAAT

enhancer-binding protein alpha (CEBPA) gene, annotated

on OCC 5 for �ADFIF, which has recently been identified as

an upstream regulator of several differentially expressed

genes down-regulated in adipose tissue of high-feed-effi-

ciency pigs (Horodyska et al. 2019).

In spite of our loose significance threshold setting, we feel

relatively confident of having adequately controlled the rate

of false-positive signals that we have declared. In support of

our results, we have identified some candidate genes that

Figure 4 Manhattan plots using model BI for (a) average daily feed intake in rabbits fed ad libitum ( �ADFIF), (b) average daily residual feed intake in

rabbits fed ad libitum ( �ADRFIF) and (c) average daily feed conversion ratio in rabbits fed ad libitum ( �FCRF).
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have already been associated with similar traits in other

rabbit and pigs populations.

Conclusions

We have proposed a number of QTL regions linked to the

observed variation of the studied traits using a complex

statistical model for fitting cage FE and feed intake, jointly

with individual genotypes. To our knowledge, this is the

first time this type of statistical model has been used within

the framework of GWAS studies. The information content

on cage average performances is quite limited, thus we have

reduced the threshold for significance declaration to a

chromosome-wide level. In spite of this loose significance

threshold definition, the declared QTL seem to harbor genes

that can clearly be regarded as functional candidates for the

traits of interest. Our results seem to support the idea that

the growth of animals fed on restriction is under a different

genetic control that that of animals fed ad libitum as we

have identified different QTL regions for both traits. It is

remarkable that genes related to behavioral patterns have

been proposed as candidates for ADGR. Regarding FE, some

of the QTL regions that we declared to harbor candidate

genes which are involved in lipid and energy metabolism

have a pleiotropic effect for both ADGF and �ADRFIF: In spite

of these promising results, further functional research is

warranted to validate these genes. Overall, our results lay

an important foundation for future studies to unravel the

underlying genetic bases driving growth and FE regulation

in rabbits.
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