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JULIA SETS WITH A WANDERING BRANCHING POINT

XAVIER BUFF, JORDI CANELA, AND PASCALE ROESCH

ABSTRACT. According to the Thurston No Wandering Triangle Theorem, a
branching point in a locally connected quadratic Julia set is either preperiodic
or precritical. Blokh and Oversteegen proved that this theorem does not hold
for higher degree Julia sets: there exist cubic polynomials whose Julia set is a
locally connected dendrite with a branching point which is neither preperiodic
nor precritical. In this article, we reprove this result, constructing such cubic
polynomials as limits of cubic polynomials for which one critical point even-
tually maps to the other critical point which eventually maps to a repelling
fixed point.

NOTATIONS
e C is the complex plane,
e D is the unit disk,
e S! is the unit circle.
e T:=R/Z.
INTRODUCTION

In this article, we consider polynomials f : C — C of degree at least 2 as
dynamical systems: the orbit of a point z € C is the set

O(z2) :=={f""(2)}n>0-
The orbit of a point is finite if and only if the point is preperiodic. More precisely,
a point a € C is preperiodic if foU+%)(a) = f°"(a) for some integers r > 0 and
s> 1. If 7 and s are minimal integers such that f°"+%)(a) = f°"(a), then r is the
preperiod and s is the period. The point « is periodic if the preperiod is 0. In this
case, the point is repelling if ’(fos)’(a)‘ > 1.

The filled-in Julia set Ky is the set of points with bounded orbit and the Julia set
J7y is its topological boundary. The sets K¢ and Jy are compact subsets of C. They
are completely invariant: f~1(K;) = f(K;) = Ky and f~1(Ty) = f(Ty) = T
Preperiodic points are contained in Kf. Repelling periodic points are contained in
Jys. In fact, Jy is the closure of the set of repelling periodic points (see e.g. [1, 5]).

A point w € C is a critical point if the derivative of f vanishes at w. The topology
of Ky and Jy is related to the behavior of critical orbits. For example, Ky and Jy
are connected if and only if the critical points of f belong to K (see e.g. [1, 5]).

A dendritic polynomial is a polynomial f for which J¢ is a dendrite, i.e., Jy is
connected and locally connected and contains no simple closed curve. This is the
case whenever each critical point is preperiodic to a repelling periodic point (see
[3, Th. V.4.2]).
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Example 1. The Julia set of the quadratic polynomial f(z) = 22 +1i is a dendrite
(see Figure 1). The unique critical point is w = 0 and its orbit is

0——=i—>—-1+41i —i

The derivative of f°2 at —1 +1i is 4 + 4i which has modulus 4v/2 > 1.

FIGURE 1. The Julia set Jf for f(z) = 22 +1is a dendrite.

Assume Jy is locally connected. A point £ € Jy is a branching point if Jy \ {£}
has (at least) three connected components. According to Thurston [7], if f is a
quadratic polynomial, the orbit of such a branching point contains a periodic point
or a critical point. A point z € C is precritical if f°(z) = w for some critical point
w and some integer n > 0.

Theorem 2 (Thurston). Let f be a quadratic polynomial with locally connected
Julia set Jy. If € € Jy is a branching point, then § is preperiodic or precritical.

Blokh and Oversteegen [2] proved that such a result does not hold for higher
degree polynomials.

Theorem 3 (Blokh-Oversteegen). There exist dendritic cubic polynomials having
a branching point which is neither preperiodic nor precritical.

Our goal is to give a new proof of this result. The strategy of our proof consists
in exhibiting a sequence {f,} of dendritic polynomials with a sequence {&,} of
branching points in Jy, which are precritical to both critical points of f, and
preperiodic to a repelling fixed point of f,,, such that

e the sequence {f,} converges to a dendritic polynomial f,

o the sequence {¢,} converges to a branching point § in Jy and

e ¢ is neither precritical nor preperiodic for f.

More precisely, we exhibit sequences satisfying:

o foIn(&,) = wy, foF(wyn) = Wl and fo (W) = ay for some increasing
sequences of integers {j,}, {k»} and {{,}, where w, and w], are the two
critical points of f, and «, is a repelling fixed point of f,;

o Jt, \{&n} has (at least) three connected components containing points 3,

8 and 3 such that f(8,) = fu(8,) = Fa(BY) = Ba.
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We shall see that we can choose f, 11 arbitrarily close to f,, for each n; this is
enough to deduce Theorem 3.

The paper is structured as follows. In §1 we introduce the notion of admissible
polynomials and state key results used in the proof of Theorem 3: convergence of
nodal points, convergence of Carathéodory loops and a Key Proposition regarding
the existence of a particular sequence of admissible polynomials. In §2 we prove
Theorem 3 assuming those key results. Finally, in §3 we prove the convergence of
nodal points, in §4 we prove the convergence of Carathéodory loops and in §5 we
prove the Key Proposition.

1. DEFINITIONS AND KEY RESULTS

1.1. Dendrites. A dendrite J C C is a connected and locally connected compact
set containing no simple closed curve. In this article, we assume in addition that J
is not reduced to a point. Properties of dendrites are discussed in [9]. In particular,
a dendrite is uniquely arcwise connected.

Definition 4. Given two points 8 and 8’ in a dendrite 7, we denote [3, '] 7 the
arc joining 3 and 8’ in J.

Definition 5. The nodal point of three points 3, 5’ and 8" in a dendrite J is the
unique point which belongs simultaneously to [8, 8] 7, [8’, 8"]7 and [8”, 8] 7.

If ¢ € J, then any connected component C of J\{¢} is open in J and C\C = {¢}.
Definition 6. A point £ in a dendrite J is non-separating if J \ {£} is connected.

Definition 7. A point £ in a dendrite J is a branching point if J \ {£} has (at
least) three connected components. It separates 8, 8’ and 8" in J if 8, 8 and 3"
are in three distinct connected components of J \ {£}.

Note that a nodal point is not necessarily a branching point. For example, when
B" € [B8,8']7, then the nodal point of 3, #’ and 8" in J is the point 8”. In fact,
the nodal point £ of 8, ' and 8" in J separates 3, 3’ and 8" in J if and only if
£¢{8,8,8").

The complement C\ J of a dendrite is connected and simply connected. It
follows that there is a (unique) conformal representation ¢ : C\ D — C\ J such
that ¢(z)/z - R > 0 as z — oo. Since J is locally connected, a theorem by
Torhorst [8], based on the work on prime-ends of Carathédory (see the discussion
in [6]), asserts that ¢ extends to a continuous map ¢ : C\ D — C. Since J has
empty interior, this map is surjective and restricts to a map ¢ : St — 7.

Definition 8. The Carathéodory loop of J is the restriction ¢ : St — 7.

The Carathéodory loop is a continuous and surjective map from S! to J. We
shall use the following result whose proof is given in §3.

Lemma 9 (Convergence of nodal points). Let {J,} be a sequence of dendrites.
Assume the associated sequence {@, : S' — J,} of Carathéodory loops converges
uniformly to some non constant map ¢ : S' — C. Then,
o 7 :=(S) is a dendrite with Carathéodory loop ;
o if {Bn}, {B.} and {B} are sequences of points in J, converging to 3, /5’
and 8" in J, then the corresponding sequence of nodal points of By, B, and
B in J, converges to the nodal point of 8, 8" and B in J.
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1.2. Admissible polynomials. Consider the affine space 2l of monic cubic poly-
nomials fixing 0. We will restrict our study to the open subset U C 2 of polynomials
f such that:
(1) f has three distinct repelling fixed point a = 0, 8 and ~;
(2) f has two distinct critical points we, wg;
(3) the ray of angle 0 does not bifurcate and lands at o
(4) the ray of angle 1/2 does not bifurcate and lands at f;
(5) the rays of angles 1/4 and —1/4 do not bifurcate, land at 7, and separate
the plane in two connected components
e U, containing «, w, and f(wg) and
e Ujs containing 3, wg, f(wa) and f%(ws).
Figure 2 shows the ray configuration and the position of the points involved in
the definition of U.

1
4
— I & S ed —
5 [ ]
i £ (wa)
Us 1 Ua
1

FiGURE 2. The ray configuration and the position of the points
involved in the definition of 2. The angle of each external ray is
indicated.

Definition 10. A cubic polynomial f € U is admissible if it has critical points w
and w’ and a branching point £, such that:

(1) £ is precritical to w, w is precritical to w’ and w’ is prefixed to «a;
(2) ¢ separates 3, 8/ and 8" in Jy, where f~1(8) = {B,8’,8"}.
We set &; := ¢ and denote by j; the integer j > 0 such that f°7(£) = w.

Our key result, proved in §5, is the following.

Proposition 11 (Key proposition). Assume f € U is an admissible polynomial.
Then, there is a sequence {gm} of admissible polynomials which converges to f,
such that {&g,.} converges to & and jg,, > jy¢ for all m.

This result shall be completed with the following observation. An admissible
polynomial is strictly postcritically finite. It follows that its Julia set is a dendrite
(see Figure 3) and thus, has an associated Carathéodory loop. We shall prove in
84 that the convergence of polynomials implies the convergence of the associated
Carathéodory loops.



JULIA SETS WITH A WANDERING BRANCHING POINT 5
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F1GURE 3. The Julia set of an admissible polynomial f with crit-
ical points w and w’. We have f°?(w) = w’ and f(w') = «. In this
example, j; = 0.

Lemma 12 (Convergence of Carathéodory loops). Let {gm} be a sequence of cubic
polynomials, with locally connected Julia sets, which converges to an admissible
polynomial f. Then, the sequence of Carathéodory loops of J,, converges uniformly
to the Carathéodory loop of Jy.

2. EXISTENCE OF NON PREPERIODIC AND NON PRECRITICAL BRANCHING POINTS

We now prove Theorem 3, assuming Lemmas 9 and 12 and Proposition 11.

2.1. An admissible polynomial. We first prove that there exists an admissible
polynomial. The polynomial f : C — C defined by

F(2) = 2z — 3w)?
is monic, fixes 0, has critical points at w and w’ = 3w and satisfies f(w’) = 0. Then,
fw) =4w® and [°%(w) = 4w (4w® — 3w)>

The equation f°?(w) = 3w has a unique real negative solution which is

1/
wi=—7 6+ 21/9 + 8/3.

The graph of f : R — R is shown on Figure 4 and the Julia set J; is shown in
Figure 3.

The fixed points of f are a« := 0, f:= 3w —1and v := 3w+ 1 € (8,a). The
respective multipliers at «, 8 and v are 9w? > 1,3 — 6w > 1 and 34 6w < —1. In
particular, the three fixed points are repelling.

We have that

B=3w—-1< flw)=4uw® < fPw)=w =3w<y=3w+1l<w<0=a.

The intersection of the Julia J; with the real axis is the interval [8, a]. Since f is
a real polynomial, the ray of angle 0 is (o, +00) and lands at «. The ray of angle
1/2 is (—o0, B) and lands at 8. Since the multiplier of + is negative, the orbit of a
ray landing at v must alternate in between the upper half-plane and the lower half-
plane. Since f(w') = «, the rays of angles 1/3 and —1/3 land at w’ and separate
B from ~. It follows that the digits of ternary expansion of the rays landing at ~
alternate between 0 and 2: those rays have angle 1/4 and —1/4 and separate the
plane in two connected components. The one containing a contains w and f(w’).
The one containing 3 contains w’ = f°?(w) and f(w). So, the polynomial f belongs
to U.

Set £ := w. Then, £ is precritical to w, w is precritical to w’ and w’ is prefixed
to o := 0. So, Condition (1) in Definition 10 is satisfied with j; = 0. In addition,
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FIGURE 4. The graph of the real polynomial f(z) = z(z — 3w)2.

¢ separates 8, ' and 8” in Jy (see Figure 5), so that Condition (2) in Definition
10 is satisfied.

B = f(ﬁ). f.(w) .f(w') =fla) =«

B//

FIGURE 5. A schematic representation of the preimage of [§, a] by
f illustrating why w separates 3, 5" and 8” in Jf

2.2. A sequence of admissible polynomials. We now build a Cauchy sequence
of admissible polynomials. Given two maps f: X — C and g : X — C defined on
some set X C C, we denote by dx(f, g) the spherical distance between f and g:

|f(x) = g()|
dx(f,g) :=su .
x(f,g) = sup I @RI F @)
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Let f be an admissible polynomial and let £ be the associated branching point.
According to Definition 10, the points

Er fEp)yens fPUTD(gp)

are not critical points of f and are pairwise distinct. For each integer j, the map
P x C— C: (g,2) — ¢g°(z) is continuous at (f,&f) and the critical points of g
depend continuously on g. Thus, there exists €y > 0 such that for [z —§¢| < €7 and
de(f,g) < €f, the points

z,9(2),...,9°0r 7Y (2)
are not critical points of f and are pairwise distinct.

According to Proposition 11, there is a sequence {g,, } of admissible polynomials
which converges to f, such that {£,,,} converges to & and j,,, > js for all m.
According to Lemma 12, the sequence of Carathéodory loops ¢, . of Jg,, converges
uniformly to the Carathéodory loop ¢ of J¢. So, for all € > 0, if m is large enough,
then

€., —&fl <&, de(f,gm) <e and dsi(pf,@4,) <Ee.

Let us now define recursively a sequence {f,} of admissible polynomials and a
sequence {&,} of positive numbers as follows. We let fp be any admissible polyno-
mial and set ¢ := €f,/2. Once f, and ¢, are defined, we let f,11 be an admissible
polynomial such that jy, ., > jy,,

< En, d(C(fn7 fn+1) <Eé&n and dSl (prn:@ﬂwd) < é&n.

|€fn+1 - éfn
We then set

L
Entl = §m1n(5n75fn+1)-

Figures 6 and 7 illustrate the Julia sets of fy, f1, f2, f3 for such a sequence. Ob-
serve that for alln > 0 and all p > 0, e,4p, < €,/2P < efn/2”+1. As a consequence,

1€ tnsp = rul <260 Ze€p,,  de(fn, frip) < 2en <cey,
and

st (@ s P i) < 26n S €,
In particular, the sequences {f,}, {.}, and {¢, } are Cauchy sequences.

2.3. Proof of Theorem 3. The sequences {f,}, {;, }, and {¢y, } converge to f,
& and . We now prove that £ is a wandering non-precritical branching point of f.
Let By, 8., Bl be the landing points of the rays of angles 1/2, 1/6 and —1/6 for

fn, so that

o [ (Bn) ={Bn, B, B} and

o ¢, is the nodal point of 8, 5, and 38 in J¥, .
The sequences {8,}, {8,} and {8/} converge to the landing points 3, 8’ and S”
of the rays of angles 1/2, 1/6 and —1/6 for f. According to Lemma 9, J := ¢(S!)
is a dendrite with Carathéodory loop ¢ and £ is the nodal point of 8, 8’ and 5" in

J.
We claim that J;y = J. Indeed, the critical orbits of f are approximated by the
critical orbits of f,,. So, they are bounded and J; is connected. According to [4],

C = 1 C .
Jp € J = lim Jy, €Ky

Since J is a dendrite and J;y C J is connected, Jy itself is a dendrite. It follows
thathf:szj.
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/3 1 vy 3 |
L f’il ‘,:\" 0«»4%\{&\‘ B
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(b) f1(z) = (8.6656058283165+0.059672002492800i)z+ (5.8731379216063 +0.020430827270432i) 2% 4 22,
=2 k=2 0=3.

B2 ,

Iy .
._‘w,w~~4.._ﬂoi2\ R e eﬁg-.hu\g_ﬂ_\%\»ﬁk%e\
7 ¥

i

B .

(€) fa(z) = (8.6620018002588 + 0.049185458993292i) z + (5.871351730126 + 0.0174661262497761) 2> + 23,
j=4,k=50=5.

i

(d) fa(z) = (8.6620495410606+0.0491563123580581)z + (5.871375113635 + 0.017446586001088i) 22 + 23,
j=09 k=8, £=10.

FIGURE 6. A sequence of 3 perturbations of the polynomial fj in-
troduced in §2.1. We draw the external rays landing at the corre-
sponding branching points £. In all figures f°7(¢) = w, f°*(w) = '’
and f°/(w') = 0.

We claim that £ is neither preperiodic nor precritical for f, so that it cannot
coincide with 3, 8’ or 8”. As a consequence, £ is a branching point which is neither
preperiodic nor precritical, as required.

To prove that £ is neither preperiodic nor precritical, we use that for all n,

|§—ffn| < €, and d([j(f,fn) < €f,-

By definition of €y, , the points
& f6),. .., fo(jf"—1)(§)

are not critical points of f and are pairwise distinct. Since the sequence {jy, } is
increasing, it takes arbitrarily large values. Therefore, all the points in the f-orbit
of £ are not critical points of f and are pairwise distinct.
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FIGURE 7. Zooms in Figure 6.

This completes the proof of Theorem 3 assuming Lemmas 9 and 12 and Propo-
sition 11.

3. CONVERGENCE OF NODAL POINTS

Here, we prove Lemma 9. Let {J,} be a sequence of dendrites. Assume the
associated sequence {p, : St — J,} of Carathéodory loops converges uniformly to
some non constant map ¢ : St — C.

We first prove that J := ¢(S!) is a dendrite. Since ¢ is continuous, J is
connected and locally connected. The Carathéodory loop ¢, : S! — 7, is the
boundary value of a continuous map ¢, : C \ D — C which is univalent in C \ D.
The sequence {¢,, : S' — J,} converges uniformly to some ¢ : S* — C; according
to the Maximum Modulus Principle, the sequence {¢,, : C\ D — C} converges
uniformly to some ¢ : C\ D — C. As a non constant limit of univalent maps,

¢ : C\D — C is univalent and J = U with U := ¢(C \ D). In particular, J has
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empty interior. Since the Julia set 7, has empty interior, the maps ¢, : C\D — C
are surjective, and so, the limit ¢ : C\ D — C is surjective. Indeed, if w € C and
¢n(zn) = w, then ¢(z) = w for any limit value z of the sequence {z,}. It follows
that C = U U J. Therefore, J contains no simple closed loop since, otherwise,
either U = C\ J is not connected, or J has non-empty interior.

We now assume {f,}, {8, } and {5//} are sequences of points in J,, converging
to 8, 8/ and B” in J. We must prove that the sequence of nodal points of 3,, 5,
and B/ in 7, converges to the nodal point of 3, 5" and 8” in J. This is based on
the following lemma.

Given two distinct points # and ¢’ in T, we set

(0,07 :={t €S'; 0, t and ¢’ are in counterclockwise order on T}.

Lemma 13. Let J C C be a dendrite with Carathéodory loop ¢ : S* — J. Let 0
and @' be two distinct points in S'. Then,

[0(8),0(8")] ; = ¢(16,8]r) N ([0, 6]r).

Proof. Let S := [ (6),@(0’)]J be the arc joining ¢(0) and ¢(0') in J. Since ¢ is
continuous, ¢([0,6']7) and ([0, 6]r) are connected. Since they both contain ¢(6)
SC @([9’ GI]T) n 90([9/: 9]T>'

Now, assume & € ¢([0,0']r) Np(¢'.0]7), ie., £ = @(t) = p(t') with t € [#,6']r and
t' € [¢/,0]r. The rays of angles ¢ and ¢’ separate J in two connected components:
one contains () and the other contains ¢(8'). Thus, ¢(#) and ¢(8’) are in distinct
connected components of J \ {{}. Since S is an arc joining () and ¢(¢') in J,

we necessarily have £ € §. Therefore,

(10,0']r) N ([t 0]r) € S. O

Corollary 14. Let J C C be a dendrite with Carathéodory loop ¢ : S* — J. Let
0, 0" and 0" be three distinct points in S'. Then, the nodal point of p(0), p(0') and
e(0") in J is

@([07 0/}'11') N ‘p([elﬂ 9//]'11') n @([9//’ Q]T)'

If the three points 3, B, and B;/ are not distinct for infinitely many n, then the
nodal point in 7, coincides with the corresponding multiple point, and Lemma 9
follows easily. So, without loss of generality, assume the points are distinct and let
0,, 0!, and 0 be three distinct points in St with ,,(0,) = Bn, ¢n(0,) = B, and
on(07)) = BI. Let £ be a limit value of the sequence {¢,,}. We must show that ¢ is
the nodal point of 3, 5’ and 8" in J.

Extracting a subsequence and reordering the points if necessary, we may assume
that 6,,, 0/, and 6 are in counterclockwise order on S!. Let &, be the nodal points
of B, B, and B!/ in J,. According to Lemma 13, there are points

t, € [on,eg]']r, t;z S [9%,9;{}1‘ and t;; S [QZ,Q,L}T
with

€n = onltn) = @n(ty) = on(ty)-
Extracting a further subsequence if necessary, we may assume that {&,}, {0},
{6}, {0}, {tn}, {t},} and {t!'} converge to &, 0, ¢, 0", t, ¢ and t”. Since {p,}
converges uniformly to ¢, we have that

e(0) =8, 0)=p, @0")=p" and ¢(t) =) =et")=¢.
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If 6, 6/ and 6” are not distinct, let us say 6 = ¢, thent =6 =60 and £ = 8 =
is the nodal point of 8, 8’ and 8” in J. Otherwise, if 6, #’ and 6" are distinct,
te 0,0, t' €[0,0"]r and ¢’ € [0”,0]r; the proof follows from Corollary 14.

4. CONVERGENCE OF CARATHEODORY LOOPS
In this section, we prove Lemma 12. Our proof relies on puzzle techniques.

4.1. The puzzle of an admissible polynomial. In the whole section, f € U
is an admissible polynomial. We denote by ¢; : C\ D — C\ J; the Béttcher
coordinate conjugating z + 23 to f, with ¢¢(2)/z — 1 as z — oco. This Béttcher
coordinate extends as a continuous map ¢; : C\ D — C and the restriction to S*
is the Carathéodory loop ¢y : St — J.

Let F? be the union of the equipotential {¢f(2e2”i9) ; 0 ¢e T}, the external rays
of angles 1/4 and —1/4 and their landing point 5. For m > 0, set

L= f7™(I9).
Definition 15. The puzzle pieces of depth m > 0 are the bounded connected

components of C \ %, If = € Jy is not an iterated preimage of v, we denote by
pm(2) the puzzle piece of depth m which contains z.

There are two puzzle pieces of depth 0: one contains «, w, and f(wg); the other
contains 3, wg, f(wa) and f°*(w,). By construction, the puzzle pieces of depth
m > 1 are the connected components of the preimages of the puzzle pieces of depth
m — 1. Therefore, if p is a puzzle piece of depth m > 1, then f(p) is a puzzle piece
of depth m — 1 and f:p — f(p) is a ramified covering.

The union of the rays of angles 1/4 and —1/4 is invariant by f. It follows that
the puzzle pieces of depth 1 do not intersect those rays; therefore, each puzzle piece
of depth 1 is entirely contained in a puzzle piece of depth 0. By induction on the
depth, each puzzle piece of depth m is entirely contained in a puzzle piece of depth
m— 1.

In particular, a puzzle piece contains at most one critical point. So, if p is a
puzzle piece of depth m > 1, then f : p — f(p) is an isomorphism if p does not
contain a critical point, and a ramified covering of degree 2 otherwise.

Figure 8 shows the puzzle pieces of depth m € {0, 1,2,3} for some admissible
polynomial f € 0. We use one color for the puzzle pieces which are iterated preim-
ages of po(a) and another one for the puzzle pieces which are iterated preimages of

po(B)-

The main result from which we deduce Lemma 12 is the following.

Proposition 16. The mazimum diameter of a puzzle piece of depth m tends to 0
as m tends to +oo.

Proof of Lemma 12 assuming Proposition 16. First, if g € U is sufficiently close
to f, the Bottcher coordinate ¢, tangent to identity at infinity is defined on the
circle of radius 2, and we may still define Fg as the union of the equipotential
{¢>g(262”w) ; 0 € T}, the external rays of angles 1/4 and —1/4 and their landing
point v4. And for m > 0, we may define

Iy = g_m(Fg).
Then, for each fixed m, I'f" depends holomorphically on g in some neighborhood of

1.
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pa= BE S
T

FIGURE 8. The puzzle pieces of depth m € {0,1,2,3}, for some
admissible polynomial f € 0.

Second, according to Proposition 16, given € > 0, we may choose m > 0 suffi-
ciently large so that the puzzle pieces of f of depth m have diameters at most €/2.
Let 4 be a sufficiently small neighborhood of f in U so that the puzzle of depth m
depends holomorphically on g in l: for g € 4, there is a continuous map

P:UxC3(g,2) = Yy(z) € C

such that for each g € &, ¢y : C = C is a homeomorphism sending I'}* to I';".
Shrinking Y if necessary, we may assume that for g € 4, dc(¢g,1d) < €/2.

Third, assume p is a puzzle piece of f of depth m, 8 € T and g € U has a locally
connected Julia set. Let ¢, : S' — J, be the corresponding Carathéodory loop.
Then, ¢ (e2™%) € p if and only if 4 (™) € b, (p). Thus, ds: (5, py) < €. O

Proof of Proposition 16. We will use the fact that f is expanding for a suitable
orbifold metric (see [5, Th. 19.6]). Assume k > 1 and £ > 1 are integers such that
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fo¥(w) = w’ and f°(w') = a. Consider the function v : C — {1,2,4} defined by

ifz¢73f,
if z= f°"(w) with 1 <n <k and
if z=fo"(w') with 1 <mn < ¢.

v(z) =

>~ N

The orbifold (C,v) has Euler characteristic
1 3
Cv)=1--k—-£<0
x(C,v) 5k =74 <0,

so that there is a universal covering of orbifold 7 : D — C which ramifies precisely
with local degree v(z) above z € C. Then, there is a metric of orbifold p which is
smooth outside Py and blows up at points in Py, such that 7*u is the hyperbolic
metric on D. There are constants K7 and K5 such that for all puzzle piece p,

diam(p) < Kjdiam,(p) and diam,(p) < Ko,

where diam, (p) stands for the diameter of p for the metric p.
In addition, there is a holomorphic map F' : D — I such that the following
diagram commutes:
D D

c—L-c

F
-~

The map F' is contracting for the hyperbolic metric on . It follows that there is a
constant k£ < 1 such that

- 1
Vz € po(a) Upo(B), [ID=fllu > P

(this norm may blow up at points in f~1(P;)). In particular, if p is a puzzle piece,
then

rdiam,, (f(p)) ifpNCy =0 and

2rdiam,, (f(p)) ifpNCs#0.

Lemma 17. The piece p1(a) maps isomorphically to po(a).

diam, (p) < {

Proof. Recall that the external rays of angles 1/4 and —1/4 separate the plane in
two connected components (see Figure 2): U, containing o and Ug containing /3.
Each ray in U, has angle in (—1/4,1/4). It has two preimages in Ug, one with angle
in (1/4,5/12) and one with angle in (—5/12,—1/4), and one preimage in U, with
angle in (—1/12,1/12). As a consequence, the component of f~1(U,) containing
« is contained in U, and maps isomorphically to U,. The other component is
contained in Ug and maps to U, with degree 2.

Since po(a) C U,, it follows that the component p;(a) of f~1 (po(a)) containing
a maps isomorphically to po(«). O

It follows by induction on m > 1 that p,,(«) is the image of p,,,—1(a) by the
inverse branch f~! : po(a) — pi(a) and that f°™ : p,,(a) — po(a) is an isomor-
phism. As a consequence,

diam,, (pm(a)) < Ky -r™.
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If m is large enough so that p,,(a) NPy = {a}, then f°°: pie(w’) — pm(a) is a
ramified cover of degree 2 and

diam,, (p1e(w)) < 26 diamy, (pm(a)).
It follows that there is a constant K3 such that
diam,, (pm () < K3 - &™.

If m is large enough so that p,,(w') NPy = {w'}, then £ : ppyr(w) — pm(w’) is
a ramified cover of degree 2 and

diamy, (pm4k(w)) < 2k diam,, (pm(w)).
It follows that there is a constant K, > K3 such that
diam,, (p, (w)) < Ky - 6™,

Finally, assume p is a piece of depth m and let n € [0,m] be the least integer such
that g := f°™(p) contains a critical point. Then, q is a piece of depth m — n and
f°" :p — q is an isomorphism, so that

diam, (p) < k"diam, (q) < K" - Kq- 677" = K4 - ™. O
5. THE KEY PROPOSITION
The goal of this section is to prove the Key Proposition (Proposition 11).

5.1. Ray configuration. We shall first describe some general configuration of
external rays for polynomials f € .

Lemma 18. Assume f € U and assume the ray of angle 0 lands on f(w) for some
critical point w. Then, the two preimage rays landing at w separate o and 3. One
has angle in (0,5/12)1 and one has angle in (—5/12,0)1

Proof. Each ray contained in U, (with angle in (—1/4,1/4)t) has a single preimage
in U, with angle in (—1/12,1/12)t, and two preimages in Ug, one with angle in
(1/4,5/12) and one with angle in (—5/12, —1/4)y. So, if aray lands at f(wg) € Uy,
then one preimage ray with angle in (1/4,5/12)1 and one preimage ray with angle
in (=5/12,—1/4)7 land at wg € Ug. Those rays separate o and 3 (see Figure 9).
Similarly, if a ray lands at f(w,) € Ug, then one preimage ray with angle in
(1/12,1/4)r and one preimage ray with angle in (—1/4, —1/12)y land at w, € U,.
Those rays separate o and 8 (see Figure 9). O

Lemma 19. For f € U, the rays of angles 5/12 and —5/12 land at a common point
and bound an open set Wy containing o; the rays of angles 5/36 and —5/36 land
at a common point and bound an open set Vi containing . Moreover, f(Vy) = Wy
and f : Vi — Wy is an isomorphism.

The result is illustrated on Figure 10.

Proof. The rays of angles 1/4 and —1/4 land at a common fixed point . This point
has three distinct preimages, including itself. The rays of angles 5/12 and —5/12
are contained in Ug and have to land at common preimage of v contained in Ug,
while the rays of angles 1/12 and —1/12 are contained in U, and have to land at
the other preimage of v contained in U,,.

As in the proof of Lemma 17, the component U/, of f~(U,) contained in U,
maps isomorphically to U,. Similarly, the component Uj of f ~1(Ug) contained in
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FIGURE 9. Sketch of the configuration of external rays described
in the proof of Lemma 18.

Up maps isomorphically to Ug. The first is bounded by the rays of angles 1/12 and
—1/12 and the second is bounded by the rays of angles 5/12 and —5/12.

By assumption, f(wa) € Ug and f°*(wa) € Up, so that f(ws) € Up. Tt follows
that the region W bounded by the rays of angle 5/12 and —5/12 and containing
a contains a single critical value f(wg). Note that f(wg) € Uy C Wy. As a
consequence, f _1(Wf) has two connected components. One contains wg and maps
with degree 2 to Wy. The other, V}, contains U/, and maps isomorphically to W7.
This last component V; contains the ray of angle 0 and so, is bounded by the
preimages of the rays of angles 5/12 and —5/12 whose angles are closest to 0, i.e.,
the rays of angles 5/36 and —5/36. d

5.2. Polynomials with (&, {)-configuration. Here, we assume f € U has (k, {)-
configuration, i.e.,

f*w) =w and fwW)=a with k>1and?¢>1.
As g varies in U the two critical points of g depend holomorphically on g and

0 remains the landing point of the ray of angle 0. Denote by w : ¥ — C and
w’ : ¥ — C holomorphic maps following the critical points of ¢ € U with w(f) = w



16 X. BUFF, J. CANELA, AND P. ROESCH

Yo flwg)ee a

FIGURE 10. The open set Vy containing o and bounded by the
rays of angles 5/36 and —5/36 maps isomorphically to the open
set Wy containing o and bounded by the rays of angles 5/12 and
—5/12.

and w'(f) = w’. In addition, for m > 0, let {w_,, : ¥ — C},,>0 be defined
recursively by

woi=w and w_p_1(9) €V, with g(w_m-1(9)) =w_m(9).

The sequence is well defined since g : V; — W, is an isomorphism and V, C Wj,.
As m — +oo, the sequence {w_,,} converges locally uniformly to 0 on 0.
We now exhibit a particular sequence {gm }m>m, of polynomials converging to

fin Q0.

Lemma 20. Assume f € U has (k,{)-configuration. Then, there is a sequence
{gm}m>m, converging to f in U such that gn, has (m+ ¢, k + {)-configuration with
critical points wy, and W), satisfying:

W =W (gm), W i=w(gm) and ¢ (wm) = W_m(gm).

Remark 21. The roles of the two critical points are exchanged: the sequence {w, }
converges to w’ and the sequence {w/,} converges to wy, (see Figure 11).
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o |
é(w’) | w = [ *(w), Lw Wy a=fW)
i T bl
(a) f
g% (wy) = w
—— x-» M.lﬁr.:-*-h‘*u \/& xr_,-.,.ﬁg.{lj‘&g(_‘ 2* \]/ldk* ik M' 3
gl(wl) $ o a = g7°(wy)
g7% (w1)
(b) g1
B T - _ﬁ!]g3 gw2 )%f_ﬁfé K\ 952 (w2) o = g3 (wh)
( / o
92(0)  gg2(wh) | gz(c2)
(c) g2

FIGURE 11. An admissible polynomial f with a (2, 1)-configur-
ation together with two perturbations g; and go.

Proof. For (a,b) € C2, let f, 5 € 2 be the cubic polynomial defined by
3
fan(z) = 2" — i(a +b)2% + 3abz.

The critical points of f,; are a and b, so that f = f, ..
Consider the analytic sets

Y= {(a,b) eC?, O(k+€)(a) —()} and Y — {(a b eC? oé _0}

There are parameters (a, b) which belong neither to ¥ nor to ¥’ (for example, when
a:=1iv/2/2 and b = —i\/2/2, then a is a fixed point of fap). As a consequence, X
and Y’ are 1-dimensional complex curves.

By assumption, (w,w’) € XNY’. The intersection XN’ consists of posteritically
finite polynomials, thus is bounded in C2. Tt follows that (w,w’) is an isolated point
of XNY. Let a: (D,0) = (C,w) and b : (D,0) — (C,w’) be non constant analytic
germs so that (a(t),b(t)) € ENY for t € D. Set Fy := fo),00) € Y and consider
the sequence of functions {o,, : D — C},,>¢ defined by

Om(t) = F2H(0(t)) — w_m(F}).

As m tends to +oo, the sequence {o,,} converges to o : D 3 ¢t — Fp*(b(t)) € C.
Note that o vanishes at 0 but does not identically vanish since otherwise, the curve
t — F; would take its values in ¥ NY’, contradicting the previous observation that
(w,w’) is an isolated point of ¥ N X'. Tt follows from the Rouché Theorem that for
m large enough, o,, vanishes at some point t,, € D with ¢,, — 0 as m — +o0. The
result follows with g, := F}, , W, = b(t,,) and w), := a(t,,). O

5.3. Admissible perturbations. Here, we prove the Key Proposition (Proposi-
tion 11). Its proof follows directly from Lemma 22.
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We assume f € U is admissible, 5 is the landing point of the ray of angle 1/2
for f, ¢ is the nodal point of 3, #’ and 8" in Jy with f~1(8) = {8,4’, 8"}, and

U =w, fFw)=u and [)=a

Let {gm}m>m, be a sequence of cubic polynomials provided by Lemma 20. For
m > mg, let B,, be the landing point of the ray of angle 1/2 for g,,, and let &, be
the nodal point of S, B, and B, in Jy,,, with g, (Bm) = {Bm, B, Bk}

Lemma 22. If m is large enough, then gfrEjJ’k)(gm) = Wy,

The idea of the proof is the following. For any polynomial in 20, the fixed point
a = 0 is the landing point of a unique external ray (of angle 0). If the polynomial
has (k, £)-configuration, then f°¢ sends the critical point w’ to a with local degree
2 and f°F sends the critical point w to w’ with local degree 2. It follows that w’ is
the landing point of exactly two external rays and w is the landing point of exactly
four external rays.

If in addition f is admissible, then f°7 sends ¢ to w with local degree 1, and € is
the landing point of exactly four external rays separating 3, 8’ and 3”. Note that
foU+k) has a critical point at £ with critical value w’.

For the perturbed map g,,, the critical point w,, is the landing of exactly four
external rays. The map gf,gj **) has a critical point close to ¢ with critical value
close to wy,, but different from w,,. It follows that there are two points £ close to
& which are mapped to w,, by gf,fj ), Exactly four rays land at each of these two
points. We shall see that those eight rays converge to the four rays landing at £ for

f, and that one of the two points ¢ separates 8, 35, and B/, in J,,..

Proof. Note that f°7 : (C,¢) — (C,w) has local degree 1 at &, f°F : (C,w) — (C,w’)
has local degree 2 at w and f°¢ : (C,w’) — (C,«) has local degree 2 at w’. Let
D € D be sufficiently small disks around o = 0 so that PN D = {0}. Let D'
be the component of f‘z(ﬁ) which contains w’, and let D" be the component of
f=3=k(D') which contains ¢. For m large enough,

e g-X(D) has a component D/, € D' containing w,, and g2¥(w/,),

e g5 77*(D.)) has a component D!, € D" containing a point ¢, and two

points ££ such that

9 (Gm) = wp, and - gl HO(E]) = gl (E) = wnn.
As m tends to 400, the sequence {(,,} and {¢E} converge to €. A summary of the
dynamics within the preimages of D before and after perturbation is provided in
Figure 12.

Given 0 € T, denote by R(f) the ray of angle 0 for f, and by R,,(#) the ray of
angle 6 for g,,. There is a single ray landing at a: R(0). So, there are two rays
landing at w’, four rays landing at w and four rays landing at £. Let 01, 62, 63 and
04 be the angles of the four rays landing at &, cyclically ordered counterclockwise.
Then, modulo 1, we have that 37150, = 37t503 =: 1y and 37150, = 37/1kg, =: 1,
and the rays R(n:) and R(n2) land at w’. In addition, modulo 1, we have that
3t = 3% = 0 and R(0) lands at a = 0.

Since ¢/ (wm) # 0 and R,,(0) lands at o = 0, for m large enough, the rays
R,.(m) and R,,(n2) land at two distinct points in DJ,. Since gf,SkH) (wl,) =0,
one of those rays lands at g°F(w! ). Without loss of generality, relabelling the

m
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1-1 2-1

FIGURE 12. Dynamics within the preimages of the disk D con-
taining o before and after perturbation.

rays if necessary, we may assume that this ray is R, (n1). Then, R,,(6;) and
R, (05) land at (,,,, whereas R, (02) and R,,(64) land at two distinct points in D!/,.
Note that the four rays R(61), R(62), R(f3) and R(6,) land at £ and separate the
plane in four connected components. The points 8, 3’ and 8" are in 3 distinct
connected components. So, 1/2, 1/6 and —1/6 must belong to distinct components
of T\ {61,02,63,0,}. Without loss of generality, relabelling the rays if necessary,
we may assume that one of the angles 1/2, 1/6 and —1/6 belongs to (01, 602)T, one
belongs to (62, 03)r and one belongs to (03, 61)T (see Figure 13).

According to Lemma 18, the two rays landing at w],, separate a = 0 and S,,.
One has angle in (0,5/12)r and the other has angle in (—5/12,0)7 (see Lemma 18).
Let us recall that g2/ (wm) = w_m(gm) is the m-th iterated preimage of w!, by the
univalent branch g, : V,,, — W, . It follows from Lemma 19 that, if a ray in W,
has angle in (0,5/12)1 (respectively (—5/12,0)t), then the preimage ray in Vg, has
angle in (0,5/36)r (respectively (—5/36,0)r). Consequently, the rays landing at
9% (wpm) have angles with representatives

5 5
+ 92 - Q0
€m€(0»12_3m> and eme( 12_3m,0>.
They separate a = 0 and S,,.

Set 6 := et /3% and n := 6 /37*F. Then, for m large enough, each of the four
rays

Ry (m + 5;1% Riy(m +96,,), Rm(n2+ 5;2) and Ry, (n2 +6,,)

land in D!, at a point z satisfying ¢2(z) = g°¢(w,,). This point is necessarily wy,
itself (see Figure 13). Similarly, each of the eight rays

Rm(al"'nvﬂrzl)a Rm(92+773:z)a Rm(93+777jr:z) and Rm(04+771:qtz)

land in D!/ at a point z satisfying gfn(j +k)(z) = wy,. This point in necessarily &}

or . So, four of those rays land at £, and four of them land at &,.

If m is large enough, 61+, 02 +nt and 3 +n;, belong to (01,03)r and O3+,
04 +nE and 6, + ;. belong to (f3,6;)r. The rays of angles §; and 63 separate the
plane in two connected components. So, relabelling the points &£ if necessary, we
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fo(

Y

o= ')

01 + 772; 6':;10

FIGURE 13. External rays of f landing near £, w’ and « and
external rays of g,, landing near (,,, w,, and a. The angles of the
external rays are indicated.

may assume that

Ron(01+n3),  Rm(02+7,,), Rm(02+n5) and R (03 +mn,,)
land at &, and that

R(03+n3), Rm(s+n,), Rm(0a+ny) and Ry (61 +mn,,)

land at &, (see Figure 13).

Finally, if m is large enough, one of the angles 1/2, 1/6 and —1/6 belongs
to (61 + nt, 02 + n, )1, one belongs to (62 + 75,03 + 1, ) and one belongs to
(65 4+ n%, 01 + ;). Then, the branching point separating S3,,, 3, and 8., in J,,.
is & = g?’—; O
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