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Ferroelectrics and related materials (e.g., non-traditional ferroelectrics such as relaxors) have 

long been used in a range of applications, but with the advent of new ways of modeling, 

synthesizing, and characterizing these materials, continued access to astonishing 

breakthroughs in our fundamental understanding come each year. While we still rely on these 

materials in a range of applications, we continue to re-write what is possible to be done with 

them. In turn, assumptions that have underpinned the use and design of certain materials are 

progressively being revisited. This perspective aims to provide an overview of the field of 

ferroelectric/relaxor/polar-oxide thin films in recent years, with an emphasis on emergent 

structure and function enabled by advanced synthesis, processing, and computational 

modeling. 

 

 

INTRODUCTION: 

Advances in the prediction/simulation, synthesis, characterization, and fabrication of 

ferroelectrics and related materials – in particular as thin films – have provided access to 

effects and possibilities once considered fantasy. This perspective will briefly review some 

recent highlights in the design, synthesis, and processing of ferroelectric and related 

materials, with an emphasis on thin films how these approaches are ushering the field in 

new and innovative directions. Within this context, the perspective is organized in six 

categories as follows. In Section 1, we review some of the monumental breakthroughs in 

understanding of relaxors, approaches to improve their performance in conventional 

applications, and efforts to create novel functionalities. In Section 2, we cover recent 

efforts on “materials by design” that aim to identify new types of polar order, which can 

potentially coexist with exotic phenomena and function not found in classical 

ferroelectrics. In Section  3, we review theoretical predictions and experimental efforts 

focused on designing/synthesizing novel superlattice structures that permit emergent 

function and properties that are not expected from parent materials alone. In Section 4, we 

highlight new processing approaches to control properties through unconventional 

methods (e.g., ion bombardment/irradiation, free-standing membranes). In Section 5, we 

review current research efforts on low-power, non-volatile memory and logic that are 

increasingly calling upon ferroelectrics. Finally, in Section 6, we end with an outlook 
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which provides a snapshot of the ongoing research focus in the community and challenges 

that remain. 

 

1. Complex-Polar Order – New Life for Relaxors 

 

The ability to simulate and synthesize ferroelectric materials as thin films has enabled a 

number of watershed studies that have illuminated our understanding of these complex 

materials. Aided by further developments across this spectrum, similar approaches to the 

study of complex-ferroelectric relaxors are now being implemented. This section 

summarizes recent milestones and perspectives for advances in this regard. 

 

1.1. New understanding of old materials  

Although relaxors were discovered nearly six decades ago, their true polar structure is still 

a matter of discussion [1]. It is widely believed that nanometer-sized polar nanoregions 

(PNRs) are embedded in a paraelectric matrix and grow in size with decreasing 

temperature. This model was developed to help explain experimental observations of 

butterfly-shaped diffuse-scattering patterns, but recent molecular-dynamics simulations 

have presented an alternative vision of the nanoscale domain structure which can also 

reproduce key features (e.g., butterfly-shaped diffuse scattering) of the prototypical 

relaxor, (1-x)PbMg1/3Nb2/3O3-(x)PbTiO3 (PMN-PT) [2]. In this work, it was proposed that 

relaxor behavior originates from the coexistence of ferroelectric- and paraelectric-like unit 

cells, whose dynamic character is determined by the unit-cell composition. This discovery 

led the authors to propose a new, “slush-like model” of polar structures for relaxors (Fig. 

1a), in which nanoscale domains are separated by low-angle domain walls, rather than by 

a paraelectric matrix. 

Another recent breakthrough in understanding relaxors was made by systematic 

measurements of diffuse scattering in PMN-PT across the morphotropic phase boundary 

[3] which found previously unrecognized modulations in diffuse scattering caused by 

anion displacements. This was made possible by measuring diffuse scattering at high Q 

values using neutrons which revealed that the butterfly-shaped diffuse scattering (Fig. 1b) 

became asymmetric at high Q (Fig. 1c) thus highlighting the critical role of oxygen 

displacements. 

 

1.2. New experimental approaches 

Among the various experimental techniques used to study the structure of relaxors, diffuse 

scattering is arguably the most important since it is highly sensitive to local 

inhomogeneities that abound in relaxors. One of the most common approaches to studying 

relaxors is to induce ferroelectric or paraelectric behavior by controlling experimental 

conditions. Recent advances in the ability to produce high-quality relaxors as thin films 

are now expanding the community’s ability to exact this control [4]. In turn, synchrotron-

based X-ray diffraction and new high-speed detectors now enable the collection of three-

dimensional diffuse-scattering patterns which, in this case, were used to evaluate the strain-

induced evolution of domain structure in PMN-PT films (Fig. 1d). Real-space visualization 

of dipole patterns suggest that the observed change in diffuse-scattering pattern from 

butterfly- to disc-shape is due to disordered domain walls where polarization rotates from 

up-poled domains to down-poled domains in a continuous manner. 

The advent of epitaxial thin-film approaches is also opening up new ways to 

perturb relaxor order. For example, finite size effects were previously studied in relaxor 

ceramics by controlling the average grain size [5]; however, it is challenging to control the 

grain structure down to sufficiently small sizes (on the order of a few nanometers) while 

maintaining high crystalline quality. Recent studies have now explored size effects in 



3 

 

epitaxial thin films of the relaxor PbSc0.5Ta0.5O3 [6] in order to address a long-standing 

fundamental question about relaxors: what happens to PNRs when the average length scale 

of the material on the same length scale of the domain size? In turn, it was found that the 

reduction of sample size and the resulting distribution of polar structures drives 

suppression and eventual quenching of the electrical response of relaxors, which may be 

attributed to increasing dipole-dipole and dipole-interface interactions. 

At the same time, advances in atomic-resolution scanning transmission electron 

microscopy (STEM) techniques have proven to be extremely useful in providing 

understanding of the structural details, and by association, the underlying mechanisms of 

giant piezoelectricity in relaxors. Notably, high-angle annular dark field STEM (HAADF-

STEM) images captured significant differences in the degree of structural disorder at the 

atomic scale in Sm-doped PMN-PT single crystals (Fig. 1e), which show nearly twice as 

high piezoelectric performance compared to undoped PMN-PT [7]. Moreover, recent 

developments of integrated differential phase contrast imaging demonstrated the potential 

to direct imaging of oxygen atom columns [8], which may play a significant role in giant 

piezoelectricity in relaxors [3]. 

 

1.3. New applications for relaxors  

Relaxors continue to be best known for their superior electromechanical coupling, and, in 

fact, recent years have shown new routes to further improve their performance [7,9,10]. 

Besides these classic uses, new applications for relaxor thin films have emerged. For 

example, these materials were shown to be potentially important for waste-heat energy 

conversion via a process called pyroelectric energy conversion [11,12]. Using thin-film 

devices, researchers demonstrated large energy density, power density, and conversion 

efficiency of 1.06 J/cm3, 526 W/cm3 and 19% of Carnot, respectively, which is equivalent 

to the performance of a thermoelectric with an effective ZT = 1.16 for a temperature 

change of 10 K [11]. The excellent performance in relaxor thin films was explained in 

terms of field-induced enhancement of the average polarization. This worked pointed out 

a number of advantages to thin-film geometries including the fact that significantly larger 

sweeps of electric field (achieved with much lower voltage in comparison to bulk 

materials) give rise to enhanced polarization changes and work, high-frequency, high-

temperature-amplitude cycling is more readily achieved to increase power and work, 

respectively; and significantly less heat input is required to increase the temperature of the 

lattice while still driving the same changes in the surface charge density with the applied 

voltage (i.e., the advantage of working films is that the effects at work scale with the area 

of the device, not the volume). 

Another area of rapidly growing interest for relaxor thin films is the study of 

energy storage with dielectric capacitors. Although dielectric capacitors possess inherently 

fast charge-discharge rates, they have traditionally exhibited relatively low energy 

densities. In the last few years, researchers have worked to induce relaxor behavior while 

maintaining high polarization in materials as a way to break this trade-off [13]. The 

approach, called polymorphic nanodomain design (Fig. 1f), was used to realize the 

coexistence of rhombohedral and tetragonal nanodomains in a paraelectric matrix and 

large energy density (112 J/cm3) with a high efficiency (80%). More recently, researcher 

have used defect engineering in relaxors to extend their breakdown strength – thus greatly 

increasing their energy storage density (133 J/cm3) while maintaining high efficiency 

(>75%), reliability (>108 cycles), and temperature stability (-100 to 200°C) [14]. Such 

approach could be used to design new relaxor materials from known ferroelectric and 

paraelectric materials or extend the function of already “good” materials, both of which 

are promising for finding ultrahigh performance relaxor materials. 
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2. Exotic-Polar Order and Function – From Dream to Reality 

 

Advances in first-principles approaches have enabled a revolution in the design of 

functional materials – including ferroelectrics [15]. In order to identify novel ferroelectric 

materials, crystallographic group-theory relations are employed in determining energy-

lowering polar distortions in non-polar prototype structures [16–18] while modelling 

Hamiltonians with “artisanal” ab initio calculations. Combined model Hamiltonian and 

first-principles calculations have been especially invaluable in unravelling complex order 

parameter spaces present in well-known ferroelectrics [19,20] [e.g., BaTiO3, PbTiO3 (Fig. 

2a), and BiFeO3 (Fig. 2b) which rely on acentric displacement of A or B site cations with 

respect to the BO6 octahedra in the ABO3 perovskite structure]. Ferroic order, however, has 

also been realized indirectly using non-polar ordering. 

 

2.1. Materials by design  

Improper ferroelectrics exhibit non-polar structural distortions (e.g., zone-boundary 

octahedral tilting) or magnetic order which drive a breaking of spatial-inversion symmetry 

and result in a spontaneous polarization. To recognize such unique polarity, research have 

applied ab initio calculations using group theory [21] with invariant analysis [22] and 

energy-lowering structural distortions [23]. Further, trilinear coupling (i.e., a combination 

of two non-polar lattice distortions in a parent centrosymmetric phase which can induce a 

polar degree of freedom) have been identified including effects in YMnO3 [24], LuFeO3 

[25] (Fig. 2c), Ruddlesden-Popper Ca3Mn2O7 [26], Dion-Jacobson CsNdNb2O7 [27], and 

artificial superlattices such as (PbTiO3)n/(SrTiO3)n [28]. In YMnO3, the ferroelectric 

behavior is due to the buckling of the layered MnO5 polyhedra, causing displacement of 

the yttrium ions. Similarly, in LuFeO3, the relative structural shift in the Lu-O2 layer with 

respect to the Fe-O layer is responsible for the long-range polar order. Coupling the long-

range polar order with magnetic order (e.g., in BiFeO3, YMnO3, Ca3Mn2O7, LuFeO3) leads 

to the emergence of magnetoelectric multiferroics (i.e., the presence of spontaneous 

polarization and magnetization which can be reoriented using applied electric field and 

magnetic field, respectively). Besides probing fundamental mechanisms, controls such as 

strain, chemical alloying, and applied fields are now routinely explored in DFT for 

achieving new phases and properties which have been experimentally validated [28–30]. 

The key advantages are exploring large combinatorial regions of phase space more 

efficiently than experiment and identifying metastable states of interest to lead 

experimental approaches.  

 

2.2. Expanding the repertoire of polar materials  

An interesting case where theory and computation have driven materials discovery is in 

predicting new polar metals, which possess supposedly contradictory properties: polarity 

(electric-dipole ordering) and metallic behavior (mobile charge carriers) [31–34]. Though 

conduction electrons are expected to screen the long-range electrostatic interactions in the 

lattice, they were found to not interact strongly with the transverse optical phonons and the 

Lorentz-local fields which, in turn, results in ferroelectricity [35]. Some of the known 

examples include Cd2Re2O7
 [36] and LiOsO3 [31]. In fact, the family of LiXO3 (X = V, Nb, 

Ta, Os) materials have been proposed to form a new class of so-called hyperferroelectrics 

with an unstable phonon mode driving the ferroelectric distortion. Guided by theoretical 

studies, (111)-oriented films of the metal NdNiO3 with a polar (Pc) structure have been 

synthesized by controlling the octahedral tilt patterns [37] (Fig. 2d-f). Such an approach 

can be extended to identify new multifunctional materials for interesting applications like 

anisotropic thermoelectric response, magnetoelectric multiferroics [38], topological 

phases, spin textures, non-centrosymmetric superconductivity, etc. – properties which are 
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possible due to the cooperative interactions between ferroelectric order with several order 

parameters (e.g., charge, spin, orbitals). 

 

2.3. Quantum phenomena in topological ferroelectrics 

Furthermore, polar structures with strong spin-orbit coupling (SOC) could host exotic 

quantum phenomena (e.g., Weyl semimetallicity, Rashba-Dresselhaus spin splitting, 

metal-to-insulator transitions, etc.) [39]. Combining SOC with a crystal structure 

exhibiting nonsymmorphic space-group symmetry (e.g., BiInO3; Pna21) has been 

predicted to give rise to persistent-spin texture near the conduction-band minimum [40] 

(Fig. 2g). Another tantalizing possibility is control and coupling of ferroic-order 

parameters with topological phenomena [41]. Several candidates with coexisting 

topological and ferroelectric properties have been proposed by theory (e.g., a strain-

induced topological insulating phase in ferroelectric CsPbI3 [42], a topological insulating 

phase in electron-doped BaBiO3 [43], and nodal-line semimetals in hexagonal manganites 

[44]), however, to date none have been experimentally demonstrated. As has been pointed 

out, this is a cautionary tale in materials prediction; many of these dream material 

properties arise in material chemistries which are simply not stable or feasible for synthesis 

[45]. New advances, however, in ab initio synthesizability indicators, feedback and 

integration with experiment, and fully automated synthesis workflows, will address many 

of these current drawbacks in ab initio prediction [46].  

 

3. Novel Emergent Function – One Plus One, Does Not Necessarily Equal Two 

 

Pushing the limits of materials functionality means adding more degrees of freedom in 

materials synthesis. Here, we examine the role of superlattice heterostructuring as an 

approach that has garnered renewed interest in recent years due to its ability to elicit novel 

and emergent function in ferroelectric systems. The key is the ability of such approaches 

to drive competition between relevant energy terms that can be manipulated by 

counterpoising dissimilar materials (be that in lattice parameter, order parameter 

magnitude, dielectric constant, etc.) at the unit-cell level. 

 

3.1 Dielectric/ferroelectric heterostructures: emergent-polar order 

While many ferroelectric-based heterostructures and superlattices have been studied to 

date, by far the most extensively studied system is (PbTiO3)n/(SrTiO3)n (where n is the 

number of unit cells) superlattices wherein the resulting structure varies as a function of 

the superlattice periodicity. Emergent order such as improper ferroelectricity was reported 

in short-period superlattices (n < 10) [28], flux-closure domains in long-period 

superlattices (n > 20) [47], and polar vortices and skyrmions in intermediate-period 

superlattices (10 < n < 20) [48–50, 51]. 

These vortices and skyrmions have attracted considerable attention due to their 

continuously evolving polar order. At the atomic scale, polar skyrmions (as illustrated by 

atomic-scale mapping of the polarization, Fig. 3a-c) are characterized by diverging (top 

surface) and converging (bottom surface) Néel skyrmions (hedgehog-like) with a Bloch-

wall structure at the waist. Taken together, this complex 3D structures was determined to 

have a skyrmion number of +1. 4D-STEM imaging has confirmed the hedgehog-like 

structure (Fig. 3d,e), with signal and polarization maps matching simulations (Fig. 3f,g). 

The complex polarization structures arise from the interaction of the strongly polar PbTiO3 

layer with the insulating and dielectric, but non-polar, SrTiO3 layers that sandwich it as 

well as the elastic boundary conditions imposed by the substrate. This complex 

competition between polarization, elastic, electrostatic, and gradient energies drives the 

material into a state unlike anything seen in ferroelectrics before. These polarization 



6 

 

topologies pose a great opportunity to study the behavior of multi-dimensional polarization 

structures and the potential for how applied electric fields can manipulate and control the 

skyrmion structure. Initial studies are also showing that these heterostructures can exhibit 

novel phase transitions and enhanced susceptibilities. For example, superlattices with polar 

vortices and skyrmions exhibit signatures of non-classical phase transitions (that deviate 

strongly from Curie-Weiss-type behavior) as well as dielectric permittivity that greatly 

exceed what is expected for series-capacitor or more complex equivalent-circuit models 

for such structures (thus leading to reports of negative capacitance) [52]. Increasing 

interest on the concept of negative capacitance has also been driven by studies on 

multidomain ferroelectrics [53] and work on metal/Hf0.5Zr0.5O2/Ta2O5/metal 

heterostructures wherein transient negative capacitance in a monodomain ferroelectric 

with a resistor in series has been shown [54]. The design of this structure exposes the 

downward concavity in the center of the double-well structure of a standard ferroelectric 

system (Fig. 3h), which can be reconstructed from polarization hysteresis loops. Such 

reports pave the way for further investigation into the potential for using superlattice 

heterostructure to manipulate the energy landscape of ferroelectric materials thereby 

producing new phenomena. 

 

3.2. Ferroelectric/ferroelectric heterostructures: engineering unexpected properties 

Even placing a ferroelectric next to another ferroelectric can bring about novel effects. 

Research efforts have leveraged polarization rotation [55], inversion symmetry breaking 

[56], and phase-field simulations [57] as a pathway to design and optimize piezoelectric 

responses. For example, a recent study [58] placed two different ferroelectric phases in the 

PbZr1-xTixO3 system (one from the rhombohedral zirconium- and tetragonal titanium-rich 

sides of the phase diagram) and used superlattice design as a proxy for local composition 

– asking what happens when the overall chemistry is that of the morphotropic phase 

boundary (MPB), but the individual layers are far away from that boundary? The intimate 

interfacing of these dissimilar materials resulted in a unique combination of effects: 

simultaneous large polarization magnitude and large permittivity. The material effectively 

acted like a combination of the robust parent ferroelectrics and an interfacial region that 

looked like the MPB phase within the system. The common theme of novel synthesis 

techniques is unit-cell precise deposition, in this case by RHEED-assisted pulsed-laser 

deposition (Fig. 3i), providing a pathway to design novel heterostructures and thus access 

interfacially driven phenomena. 

 

3.3. Superlattice-induced-ferroelectricity: beyond conventional ferroelectrics 

Approaches to emergent ferroelectric order have been previously explored in the context 

of octahedral rotations in perovskite materials, which has led to the aforementioned 

improper ferroelectricity in short-period (PbTiO3)n/(SrTiO3)n superlattices. Recent DFT 

predictions have also reported that it might be possible to induce ferroelectricity by 

leveraging charge-order in mixed-valence solid solutions like La1/3Sr2/3FeO3 [59]. This is 

accomplished by heterostructure design that combines A-site superlattice layering with a 

mixed valence (and continuous) B-site. These electrostatic interfacial distortions lead to 

the breaking of centrosymmetry and a corresponding ferroelectric ground state. This proof 

of concept paves the way for future research in the realization of novel approaches to 

ferroelectricity stemming from interfacial interactions, which will continue to be more 

relevant as devices get smaller. Such predictions also push experimentalists to ever more 

exacting control, posing the question of whether we can really achieve control at a single 

unit-cell level and lock in the chemical ordering and structure that is desired? Such 

questions will motivate the community’s further pursuit of these matters. 
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4. Processing for Unprecedented Control – Ferroelectrics Like You’ve Never Seen 

Them 

 

Advances in the synthesis of ferroelectric oxides are enabling researchers to obtain 

materials with ever improving crystalline quality and low concentrations of grown-in 

defects while offering advanced users fine-level control over structure, stoichiometry, and 

interfaces. But even under optimally controlled conditions, the resultant properties of these 

high-quality materials and the platforms on which they are fabricated are often not ideal 

for the desired applications. New post-synthesis processing approaches offer strategies to 

“fix one’s mistakes” by optimizing properties and integrating their functionalities into 

heterogenous devices combining materials that are incompatible via direct synthesis. In 

parallel, the progress in the design of ferroelectric-based nanodevices has enabled the 

development of new electromechanical and electrothermal platforms that enable the 

pursuit of improved energy-conversion capabilities. Here we highlight a few of these novel 

processing approaches for the deterministic control of properties and the design of 

multifunctional devices. 

 

4.1. Defect engineering via ion bombardment 

The use of ion bombardment to generate point defects is a common processing technique 

applied in semiconductors to controllably create intergap states [60,61]. While defects in 

oxides can be purposely introduced in situ during synthesis by tuning from optimal growth 

conditions, post-synthesis bombardment and implantation methods provide for precise 

control over the amount and type of defects induced, as well as their spatial distribution.  

In recent years, point-defect engineering via ion bombardment has been used to 

tailor properties and structures in ferroelectric films. Uniform irradiation of high-energy 

helium ions has been used to correct deficiencies in the “pristine” material, including high 

leakage currents, by trapping free carriers that contribute to conduction [62]. On the other 

hand, low-energy helium implantation was shown to introduce strain doping that can be 

exploited to modulate the competition between different crystal phases (Fig. 4a) and is 

expected to significantly enhance piezoelectric response [63]. Lastly, focused-ion beams 

were used to locally induce defects with nanometer precision, which allowed for the 

introduction of domain-nucleation centers [64] and for the creation of regions of increased 

domain-wall pinning [65], thus providing for local control of the switching process and the 

stabilization of multiple polarization states that could be used to design high-density 

multilevel memory devices (Fig. 4b). In general, ion-beam methods have been 

incorporated to the extensive toolbox of methods to fine-tune properties of ferroelectric 

oxides and there is considerable room for further work in this regard. 

 

4.2. Device integration via epitaxial lift-off  

Another processing technique inherited from the semiconductor community is epitaxial 

lift-off [66]. This process involves the epitaxial growth of a film onto a sacrificial layer 

that can be selectively dissolved to produce a free-standing layer. Only recently have 

adequate sacrificial layers with high etching selectivity and crystalline quality been 

developed for perovskite oxides [67,68]. This, in combination with polymer-support 

transfer processes that preserves the film integrity after its release from the substrate, is 

now opening new doors for materials control (Fig. 4c). For example, it can enable highly 

sought after heterointegration of single-crystal oxide films on semiconducting substrates 

by circumventing the complications of direct epitaxial growth caused by the lattice, 

thermal, and chemical mismatch between materials. Using this approach, successful 

integration of transistors with ferroelectric gates on silicon [67] as well as ferroelectric 

tunnel junctions on both silicon [69] and flexible polymers [70] were demonstrated.   
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Alternative processes for heterointegration have also been demonstrated via 

remote epitaxy through graphene layers [71] which allows for the release of epitaxial films 

using mechanical exfoliation and via epitaxial growth on muscovite substrates (termed as 

“van der Waals epitaxy” [72]) which enables the fabrication of flexible-ferroelectric 

devices [73]. All these synthesis processes avoid strong bonding of the films with the 

substrate, thus expanding the combinatorial approaches to fabricate multifunctional 

devices. Beyond this, the film-transfer methods also provide opportunities to explore new 

phases/properties when approaching the two-dimensional limit [74,75], target 

enhancement of properties typically clamped by the substrate in epitaxial systems [71], 

and provide mechanical control of properties and domain structures beyond the current 

limitations of heteroepitaxy (Fig. 4d). These processing techniques are a “hot” field of 

work and new exciting studies are expected to appear in the next few years. 

 

4.3. New opportunities for energy-conversion devices  

The advances in processing of ferroelectric thin films are expected to directly impact the 

development of new, more efficient energy harvesters. In particular, devices with large 

electromechanical coupling are of high interest to power devices within the guise of the 

internet-of-things by converting mechanical vibrations into electrical energy. Among 

these, microelectromechanical systems (MEMS) consisting of piezoelectric/silicon 

bimorph cantilevers have shown the largest coupling coefficients under low-voltage 

operation [76]. Alternatively, the use of the ubiquitous flexoelectric effect in non-

piezoelectric materials to actuate MEMS provides a means to avoid non-linear and 

temperature-dependent effects albeit with lower response [77]. Pioneering studies on the 

piezoresponse of freestanding-ferroelectric membranes fabricated via epitaxial lift-off 

have recently shown giant domain-driven electromechanical effects (Fig. 4e) [78], which, 

upon proper device processing, could pave the way for ultra-efficient MEMS. The 

exceptional mechanical flexibility demonstrated in these membranes [79] is concomitant 

to continuous dipole rotations coupled to large strain gradients, which could lay the 

groundwork for enhanced flexoelectric effects in ferroelectric (and dielectric) oxides. 

There has also been renewed interest in the development of pyroelectric materials 

to harvest waste heat, with the main focus on the design and fabrication of AC phase-

sensitive thin-film electrothermal test platforms capable of direction measurements of 

electrothermal effects (Fig. 4f, inset) [80]. Such approaches are shedding new light on this 

relatively understudied realm of physics in ferroelectric oxides. Free from convoluting 

effects of spurious, thermally stimulated currents which have long plagued previous 

characterization approach for thin films, the “true” pyroelectricity can now be measured 

accurately in capacitor structures that are compatible with thin films and are providing 

robust insights into previously neglected effects such as dielectric and extrinsic domain-

wall contributions to pyroelectricity [81,82]. Furthermore, with today’s thin-film 

processing strategies like the aforementioned defect engineering, greater electric fields and 

temperatures may be applied at increasing frequencies – going well beyond what can be 

physically obtained in bulk materials [65] and thus improving the pyroelectric 

performance. Additionally, with the ongoing developments in thin-film MEMS and lift-

off techniques, devices may be fabricated on free-standing beams allowing for the direct 

investigation of secondary effects (i.e., arising from the thermal-expansion mismatch of 

films and substrates) to pyroelectricity which have not been directly studied. On top of 

that, with relaxed mechanical restraints, these freestanding structures stand poised to 

enable the investigation of adapted thermodynamic Ericsson cycles for next-generation 

waste-heat converters. Namely, in addition to cycling applied electric field and 

temperature (Fig. 4f), small probe stresses via atomic force microscopy tips may be applied 

in-phase with temperature oscillations to provide insights into novel energy conversion 
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mechanisms via multiple coupled functionalities,  as well as produce enhanced energy and 

power densities not achievable in pure pyroelectric or (flexo-)piezoelectric energy 

generators. 

 
5. Next-Generation Devices and Applications – Ferroelectrics Strike Back  

 

With the rapid development of computing applications, researchers are motivated to 

develop novel low-energy devices for information processing. The impetus for this is 

grounded in the requirements of Dennard scaling for MOSFETs which roughly states that 

as transistors get smaller, for their power density to stay constant requires that the 

voltage be reduced by 30% with every generation [83]. Due to issues like current leakage 

at small sizes, however, Dennard scaling was abandoned around 2005-2007, even though 

the transistor sizes and counts in integrated circuits are still shrinking and growing, 

respectively, following Moore’s law [84]. The breakdown of Dennard scaling has caused 

urgent demand for novel high-performance computational materials that can enable low-

voltage operation. 

 

5.1. Low-voltage and multi-state memory 

Among candidate systems in this regard, ferroelectrics have shown great potential for low-

voltage, non-volatile, and (even) multi-state memory and logic devices. There is a growing 

call for research to study ferroelectrics at the length, time, and energy scales required to 

provide for a paradigm shift in information technologies – namely understanding effects 

at the length scale of 1-10 nm, time scales less than 1 ns, and energy scales approaching 1-

100 aJ per operation. This is an area ripe for impact and the application of new modeling, 

synthesis, fabrication, and characterization methods. Recent years have shown intriguing 

effects, for instance, in ultra-thin materials. For example, depending on the orientation of 

films of the canonical ferroelectric PbZr0.2Ti0.8O3 it was shown that as the film thickness is 

reduced, it is possible to avoid empirically observed rules of coercive-field scaling (the so-

called Janovec-Kay-Dunn (JKD) law, wherein Ec∝d−2/3 where d is the film thickness) 

where slight modifications of the crystal structure can enable lower-energy (non-180°) 

switching pathways [85]. More interestingly, by engineering domain structures, stable 

multi-state polarization values can be achieved, which provide a pathway for beyond 

binary function and potential neuromorphic operation [86–88].  

 

5.2. New logic concepts: majority gate logic, MESO, and related 

Building on the advances of the last decades in this regard, industry has taken a renewed 

interest in such ferroic materials to develop new concepts for next-generation memory and 

logic function. For example, the magnetoelectric spin-orbit (MESO) device (Fig. 5a,b) has 

been introduced as a potential choice for replacing or enhancing the traditional 

complementary metal-oxide-semiconductor (CMOS) transistors [89]. This device has set 

challenging metrics for the field: a switching energy of 1–10 aJ per operation, switching 

voltages of <100 mV, and enhanced logic densities (by a factor of 5) compared with CMOS 

transistors. Further benefiting from the nonvolatility, MESO is useful for both logic and 

memory devices, also known as a logic-in-memory device, enabling simplified computing 

structures and energy savings by avoiding the transfer of information from the logic to the 

memory and back. In turn, ever more elaborate logic architectures are being proposed 

based on these ideas, including majority-gate concepts (Fig. 5c) [90]. 

 

5.3. The rise of HfO2 and related materials 

In parallel, considerable research and development effort has focused on understanding 

and utilizing the ferroelectric order reported in binary oxides such as doped HfO2, which 
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is compatible with existing CMOS processes [91,92]. Hafnia-based ferroelectrics (and 

other similar binary systems) exhibit robust polarization stability (albeit with large 

coercive fields at this time) and the potential for multi-state function [93]. The observations 

in this regard have opened the door to a range of new ferroelectric materials – including 

new 2D systems, nitrides, and more. What is clear, is that researchers will continue to call 

upon ferroelectrics for a range of applications in the years to come and these materials are 

strong candidates to play an important role in next-generation logic and memory 

applications. 

 

6. What Does the Future Hold?  

 

The future of thin-film ferroelectric materials is bright. From continued work on the 

discovery of novel materials to ways to push the limits of material function to the 

realization of a new generation of devices based on these materials the near-term future 

will explore the limits of functionality, integration, and beyond.  

 

6.1. New materials, faster and faster 

Despite arriving at the 100-year anniversary of ferroelectrics, most research and nearly all 

applications are focused on just a handful of materials. This begs the question of what else 

is out there? The community is increasingly embracing resources like the Materials Project 

and others and leveraging innovative high-throughput discovery and design approaches to 

push new candidate materials. While it might be possible to identify thousands and 

thousands of new candidate materials, it remains unlikely that experimentalists can (or 

even should) make all of them. Combined efforts to streamline this process and identify 

new and better ways to computationally evaluate synthesizability are key. Armed with this, 

one can expect continue contributions in the form of new polymer, small-molecule 

ferroelectric crystals, hybrid perovskites, 2D transition-metal dichalcogenides (and other 

2D materials) with the potential for ferroelectric order. Looking another 100 years in the 

future, hopefully there will be new materials we didn’t even know about today. 

 

6.2. Beyond Moore’s Law – a place at the table 

As noted above, ferroelectrics are likely to find a place in next-generation application in 

memory and logic operation. The question remains, however, what materials and in what 

form. Continued work on creating ideal versions of these materials will help push down 

switching energies and voltages and attention to synthesis will enable deterministic control 

of structure and interfaces and computational approaches will provide insights on how to 

tune switching phenomena and open the doors to achieve the desired functions in these 

materials. In just the last few years, a marked increase in the interest and demonstration of 

ferroelectrics in many forms in realistic devices and being considered in benchmarking 

exercises suggests this is going to be a reality. 

 

6.3. Dissimilar materials integration 

One of the hanging questions for the future of ferroelectrics is whether they can be made 

compatible with the devices of tomorrow. Continued work on the integration of oxide 

ferroelectrics on semiconductors is thus important, but new advances like the lift-off 

process and pick-and-place approaches stand poised to enable the integration of 

ferroelectrics and a range of dissimilar materials. Whether it be placing ferroelectrics on-

demand in CMOS stacks or creating new interfaces and heterostructures with other 2D 

materials (such as chalcogenides) or even mixing non-classical nitride-based ferroelectrics 

with the above, there is a nearly limitless potential for impact and development in this 

regard. That work could, in turn, lay the foundation for greatly expanding the types of 
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materials used in commercial electronics and open up new possibilities for device 

designers.  

 

6.4. The limits for ferroelectric function  

Still another open question for these ideas is how we can extend our already deep 

understanding of ferroelectrics to the length, time, and energy scales that are important for 

real applications. In this regard, the community needs to address question of how we can 

produce, process, and study materials at length (both thickness and lateral), time, and 

energy scales that approach 1-10 nm, < 1 ns, and 1-100 aJ, respectively? This calls for 

advances and concerted efforts in modeling, synthesis, fabrication, and characterization 

using a diverse range of techniques. Be it operation in a logic device or in 5G (and beyond) 

communications technologies, there is often a gap between traditional academic research 

and understanding and the needs of advanced technology. Finding ways to address this gap 

– melding understanding and questions from both directions – in the research of any class 

of materials is key for impact. 

 

6.5. New horizons  

Finally, as it always has been, there likely to be new horizons for what ferroelectrics can 

contribute to. The growth and attention to, for example, quantum computing, beyond von 

Neumann computation, etc. should motivate the field to explore what roles this diverse set 

of materials could play. From core to auxiliary function of novel systems, the functionality 

that this versatile class of materials exhibits has great potential for impact. 
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Figure 1. (a) Schematic of slush-like model for the phase transitions in relaxors. (b) 

Diffuse scattering patterns in the 400 Brillouin zone are shown for (h, k, 0) plane measured 

at 100 K with X-rays, (c) measured at 6 K with neutrons. (d) 3D reciprocal space mapping 

about the PMN‐PT 002‐diffraction condition for heterostructures grown on NdScO3, 

SmScO3, and GdScO3 (110) substrates, corresponding to -0.5%, -1.0%, -1.5% compressive 

epitaxial strains, respectively. (e) Lattice parameter of A sublattice in Sm-PMN-PT and 

PMN-30PT crystals, respectively. (f) Comparative display of Landau energy profiles and 

P-E loops of a ferroelectric (FE) with micrometer-size domains, a relaxor ferroelectric 

(RFE) with nanodomains, and an RFE with polymorphic nanodomains. The shadowed area 

in the P-E loops represents the energy density. 
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Figure 2. (a) Crystal structure of bulk (a) BaTiO3 (P4mm) and PbTiO3 (P4mm) (b) bulk 

BiFeO3 (R3c) with schematic illustration of the direction of anti-ferromagnetic spins (M) 

order within the (111) plane with respect to direction of spontaneous polarization. (c) 

Crystal structure of bulk LuFeO3 (P63cm) illustrating the structural distortion of Lu ion 

relative to FeO5 polyhedra resulting in the breaking of spatial inversion symmetry (d) 

Crystal structure of bulk non-polar NdNiO3 (e) Calculated zone-center phonon mode for 

centrosymmetric NdNiO3 on LaAlO3 (111) substrate as a function of change in NiO6 tilt 

angle. Imaginary frequencies indicate dynamical lattice instabilities, which harden as the 

tilt angle Θ increases to obtain the non-equilibrium polar structure. (f) Crystal structure of 

polar NdNiO3 as a thin-film on LaAlO3 (111) substrate. (g) Schematic illustration of 

persistent spin texture near the conduction band minimum in BiInO3 (Pna21) crystal 

structure. 
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Figure 3. (a), (b), (c) Displacement maps of Ti atoms extracted from HAADF-STEM 

images of a (PbTiO3)n/(SrTiO3)n superlattice. (d), (e) 4D-STEM image showing a polar 

skyrmion-bubble, as recreated by (f), (g) multislice simulations. (h) Free energy of 

Hf0.5Zr0.5O2–Ta2O5 highlighting the downward concavity between the double well shape. 

(i) Growth of ferroelectric superlattice (PbZr0.4Ti0.6O3)n/(PbZr0.8Ti0.2O3)n with in situ 

RHEED-monitoring. (j) Arrangement of atoms in the La1/3Sr2/3FeO3 system showing 

charge order in multi-valent Fe ions. (k) Oxygen octahedral rotations and (l) 

antiferromagnetic order from different viewpoints.  
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Figure 4. (a) Low-energy (4 keV) helium implantation can tune the competition between 

morphotropic phases in BiFeO3 (adapted from Ref. 63). (b) Higher energy (25 keV) focused 

helium bombardment can stabilize multiple switching steps in PbZr0.2Ti0.8O3 capacitors 

(Ref. 65). (c) Schematic of the epitaxial lift-off transfer process (adapted from Ref. 75). (d) 

(Ba,Sr)TiO3 single-crystal capacitors integrated on flexible substrates via epitaxial-lift off 

show large dielectric tunability upon substrate bending, resultant from strain-induced 

changes of domain structure. (e) A giant electromechanical coupling is demonstrated in 

freestanding single-crystal BaTiO3 membranes by observing the membranes folding 

induced by an electron beam with variable flux (adapted from Ref. [78]). (f) Direct, phase-

sensitive electrothermal test platform devices (inset) provide a means for exploring energy 

conversion efficiencies, e.g. by performing pyroelectric Ericsson cycles (Ref. [11]). 
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Figure 5. (a) Transduction of state variables for a cascadable charge-input and charge-output logic 

device. The magnetoelectric effect transduces the input information to magnetism, and the spin–orbit 

effect in a topological material transduces the magnetic state variable back to charge. (b) MESO 

device formed with a magnetoelectric capacitor and a topological material. (c) Majority gate based 

on MESO devices. 

 

 

 

 

 


