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4Department of Earth and Planetary Science, McGill University, Montreal, QC, Canada
5Nippon Foundation-Nereus Program and Changing Ocean Research Unit, Institute for the Oceans and Fisheries, University of British Columbia,
Vancouver, BC V6T1Z4, Canada

*Corresponding author: tel: þ1 310 600 0662; e-mail: jerome.c.guiet@gmail.com.

Guiet, J., Galbraith, E. D, Bianchi, D., and Cheung, W. W. L. Bioenergetic influence on the historical development and decline of indus-
trial fisheries. – ICES Journal of Marine Science, 77: 1854–1863.

Received 11 June 2019; revised 11 February 2020; accepted 13 February 2020; advance access publication 10 May 2020.

The global wild capture fishery expanded rapidly over the 20th century as fishing technology improved, peaking in the 1990s as most fisheries
transitioned to fully- or over-exploited status. Historical records for individual large marine ecosystems (LMEs) tend to echo this same pro-
gression, but with local variations in the timing and abruptness of catch peaks. Here, we provide objective descriptions of these catch peaks,
which generally progressed from high- to low-latitude LMEs, and attribute the temporal progression to a combination of economic and eco-
logical factors. We show that the ecological factors can be remarkably strong by using a spatially resolved, observationally-constrained, cou-
pled macroecological-economic model to which we impose an idealized, globally homogeneous increase in catchability. The globally-uniform
technology creep produces a spatial progression of fishing from high-to-low latitudes that is similar to observations, primarily due to the im-
pact of temperature on ecosystem metabolism. In colder LMEs, low respiration rates allow the build-up of larger pristine standing stocks, so
that high-latitude fisheries are profitable earlier, at lower levels of fishing technology. We suggest that these bioenergetic characteristics con-
tributed significantly to the historical progression of this human-ecological system.
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Introduction
Historical reconstructions of wild fish catches show a steady in-

crease in the global total until the 1990s, followed by a peak and

plateau, or perhaps a slight decline (Pauly and Zeller, 2016;

Watson, 2017). However, the smooth progression of globally

summed catches hides dramatically different histories of fish

stock exploitation at the local scale. For example, while catches in

the Western Central Pacific and Indian oceans are still growing,

catches in the Northern Atlantic, Mediterranean Sea and many

other regions have been shrinking (Food and Agriculture

Organization, 2014).

In general, the historical trajectories of most fisheries have

been characterized by an early developing phase during which

catches increased, followed by a peak when the fishery was fully

exploited or over-exploited, followed by a decline in some dura-

tion (Grainger and Garcia, 1996). The decline could have been

mitigated or eliminated where management efforts were able to

prevent overfishing (Caddy and Cochrane, 2001; Hilborn and

Ovando, 2014). As shown by Grainger and Garcia (1996), it

appears that the sequential increase and decline in catches has

shifted geographically over time, including a migration from

higher- to lower-latitude regions.
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Such regional differences in the historical trajectories of wild

fish catch could have emerged from two types of factors: (i) spa-

tial variation in human factors, including fish capture and proc-

essing technology, market forces, access to capital, or the

imposition of regulations (Caddy and Cochrane, 2001; Watson

et al., 2013) and/or (ii) spatial variation in the environment-

dependent characteristics of fish communities (Stock et al., 2017;

Van Denderen et al., 2018). Unravelling the contributions of these

different factors to the historical increase and decline in catches

could provide an improved understanding of the underlying

human-ecosystem dynamics.

Among other human factors, geographical differences in the

accumulation of productive capital and the development of fish-

ing technology clearly played a major role (Gelchu and Pauly,

2007). The level of capital and technologies for industrial fisheries

to develop was first reached near North America after World War

II, and subsequently near Europe and Japan. From there, they ex-

panded to new ecosystems in other regions as fish demand in-

creased and as stocks were depleted (Anticamara et al., 2011; Bell

et al., 2017). This diffusion of fisheries from high-to-low latitudes

(Swartz et al., 2010) is likely to have contributed to the sequential

progression of catches from high-to-low latitude. As high-latitude

fisheries became depleted and as management measures were im-

posed to reduce effort, there was also a shift of fishing vessels to

developing nations at lower latitudes (Alder and Sumaila, 2004).

Thus, while management stimulated a stabilization or decline in

catches at higher latitudes, it may indirectly have led to an in-

crease in catches at lower latitudes (Watson et al., 2014).

At the same time, environmental features undoubtedly con-

tributed to variations between ecosystems by influencing the

available fish biomass. For instance, it has been shown that fish

production can be limited by the amount of energy available to

coastal ecosystems from primary production (PP) (Jennings

et al., 2008; Chassot et al., 2010), as well as water temperature

(T), which influences the metabolic rates of ectotherms (Brown

et al., 2004; Clarke and Fraser, 2004). In multiple regions of the

global ocean, temperature and PP differences have been shown to

influence yields, along with factors related to the export of energy

from pelagic food webs (Chassot et al., 2010; Friedland et al.,

2012). In addition, there is growing appreciation for how the in-

fluence of climate change on T and PP will alter fish catches, with

both single-stock and ecosystem-based models predicting signifi-

cant declines under continued ocean warming (Carozza et al.,

2019; Free et al., 2019; Lotze et al., 2019). However, to our knowl-

edge, the impact that spatial variations in these environmental

conditions may have had on the historical progression of fisheries

development has not previously been considered.

In this analysis, we provide objective descriptions of the catch

reconstructions provided by the Sea Around Us Project (SAUP;

Pauly and Zeller, 2015) at the scale of Large Marine Ecosystems

(LMEs), 66 eco-regions of the World Ocean with distinct envi-

ronmental characteristics. We first compare the resulting spatial

progression of catch with an LME-level Human Development

Index (HDI; United Nations Development Programme, 2016),

with the expectation that a higher HDI would serve as a proxy for

a greater degree of industrialization of fisheries. We also compare

the observations with time-resolved numerical simulations using

the global bioeconomic model BOATS (Carozza et al., 2016,

2017). In the model, globally uniform technological progress in

the fishery serves as the primary driver of long-term changes in

fish catches (Galbraith et al., 2017) so that spatial catch variations

emerge exclusively from environmental spatial variability. We

then compare both the observed and modelled progressions with

spatial patterns of temperature and PP and discuss mechanisms

by which environmental drivers could have complemented socio-

economic drivers in shaping the historical development and de-

cline in industrial fisheries.

Material and methods
Observed catch in LMEs
LMEs account for 95% of the total wild fish catches while cover-

ing 22% of the global ocean surface (Stock et al., 2017). These

regions are differentiated based on environmental characteristics

such as bathymetry, hydrography, PP and trophic relationships

(Sherman and Duda, 1999), making them appropriate regional

units to investigate the impact of the environment on the regional

variability of historical time-series of fish catches. For each LME,

the time-series of total catches over the period 1950–2013 has

been reconstructed by SAUP (Pauly and Zeller, 2015) including

industrial, artisanal, subsistence and recreational fishing as well as

discarded catches. The high-seas regions outside LMEs are not in-

cluded in the present study because of their low contribution to

total wild catch.

There are 66 LMEs, all but one of which (the Central Arctic

Ocean) are associated with historical total catch time-series.

Following Friedland et al. (2012), we exclude from our study nine

LMEs where data are incomplete or unreliable. These regions are

the Antarctic, the Beaufort Sea, Chukchi Sea, East China Sea, East

Siberian Sea, Hudson Bay, Kara Sea, Laptev Sea and Yellow Sea.

The remaining 56 LMEs present various shapes of catch time-

series (see Figure 1 and Supplementary Information S1). Most

time-series show a widespread increase in catches explained by in-

creasing effort and an improvement in technologies from 1950

onwards, but the detailed trajectories display diverse characteris-

tics, with some regions passing through multiple large peaks of

catches, like in the California Current (# 3), the Humboldt

Current (# 13), or the Faroe Plateau (# 60). In these ecosystems,

small pelagic fish are an abundant component of landings and

sharp variations in these target species control fisheries yields

(Pauly and Zeller, 2015). Other regions present an increase in

catches up to a plateau, like in the East Bering Sea (# 1). These

examples do not represent an exhaustive list of historic catch

time-series trajectories [see Conti et al. (2012) for more details

about the trends]. The most widespread feature of the time-series

in LMEs is a monotonic increase in catches up to a maximum,

like in the Bay of Bengal (# 34) or the Sulu-Celebes Sea (# 37), of-

ten followed by a monotonic decrease, like in the Sea of Japan (#

50) or the Central Pacific American Coast (# 11). A rebound in

the catches may happen after this monotonic decrease, like in the

South Brazil Shelf (# 15).

In this study, we focus on the catch time-series that present a

clear peak in the total catch rate. We use objective criteria to ex-

tract these peaks from the 64 years of available data, following

smoothing with a 6-year running average to filter out inter-

annual variations. An LME is determined to include a clear peak

when the 21 years of highest catches in the time-series occur al-

most sequentially within a 23-year period. With this criterion, we

discard LMEs where there is not a clear dominant peak, as in the

Faroe Plateau (# 60), the North Brazil Shelf (# 17), and the

Aleutian Islands (# 65), and where the peak is embedded in a

trend of rising catches, as in the California Current (# 3). We
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retain 37 ecosystems out of the initial selection of 56 (Figure 1).

Note that, with this method, a few of the identified peaks may be

described as plateaux, without clear catch declines after the max-

ima. The conclusions of this study have little sensitivity to varia-

tions in the set of peaks selected (see Supplementary Information

S2), or the details of the method for extracting the features of

the peaks (Metrics for catch time-series and Supplementary

Information S3).

Simulated catch with BOATS
The BOATS model simulates global wild capture fisheries on a 1�

grid of the global ocean, as described in detail by Carozza et al.

(2016, 2017). It consists of two modules, an ecological and an

economic module.

The model represents the propagation of biomass B(m) from

lower- to upper-trophic levels assuming a direct link between

individuals’ size m and trophic level. This propagation corre-

sponds to the growth of individuals and is constrained by PP and

water temperature [see Environmental drivers (PP and T)]. Both

variables directly influence the bioenergetics of individuals and

thus indirectly control the biomass distribution. The ecological

module provides the monthly distribution of biomass B(m)

(in tonnes of wet biomass, twB=m2) of potential wild catch

available to fishers between a minimum and maximum size

m 2 ½mmin;mmax�.
The economic module simulates the dynamics of the effort E

(in W=m2) as a function of the profit, increasing in a grid cell

when profit is positive and decreasing when profit is negative.

Profit depends on the harvest that can be achieved from the

biomass Btot /
Ðmmax

mmin
BðmÞdm of wild catch available and is calcu-

lated as the balance between the costs c ¼ CE (C, cost per unit

effort in $=W=second) and revenues r ¼ pH (p, price per bio-

mass unit in $=twB) generated from the harvest H / qBtotE

(in twB=m2=second, where q is the biomass catchability per unit

of effort in m2=W=second) (Gordon, 1954; Schaefer, 1954):

dE

dt
¼ je

r � c

E
; (1)

where je (W2=m2=$) is a relaxation parameter representing fleet

dynamics. The variation in effort per unit of profit (r � c)

decreases with increasing fishing effort (as 1=E). The inverse rela-

tionship between the rate of change and fishing effort reflects the

fact that the portion of the total profit to be gained by individual

fishers shrinks with total effort, weakening the motivation to

move to the fishing grounds and thus slowing the adjustment of

effort (Gordon, 1954).

We assume that, in most LMEs, there was minimal regulation

until some time after peak LME catches, since the motivation to

establish effective management was commonly provided by de-

clining catches following overfishing (Worm et al., 2009; Hilborn

and Ovando, 2014). Thus, the historical development, peak and

initial decline in catches at the LME level can be approximated by

this open-access dynamics (Galbraith et al., 2017). The model

simulates effort independently in each grid cell and, therefore,

does not explicitly account for the spatial redistribution of effort

from depleted regions to developing ones. Instead, spatio-

temporal patterns emerge from differences in local dynamics

(Galbraith et al., 2017).

Each BOATS simulation is a combination of a spin-up simula-

tion that initializes the pristine (unfished) ocean, and a coupled

biological–economic simulation reproducing the sequential de-

velopment and decline in fishing in different regions (Carozza

et al., 2017). An ensemble of five optimized sets of biological pa-

rameter values is used to span parameter uncertainty for the pre-

sent study, as in Galbraith et al. (2017). In the economic module,

Figure 1. Total catch time-series per LME. Catch time-series from 1950 to 2013: blue lines, SAUP data; red lines, 6 years running average for
the identification of the timing of catch peaks; black dots, 21 years of highest catches. Numbers refer to the list of LMEs detailed in
Supplementary Table S1, and numbers in red correspond to the 37 time-series where a peak is recognized. Note that five North Atlantic
LMEs are plotted separately in the top right due to the lack of space on the map.
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the catchability parameter q increases homogeneously at a rate rq

while cost and price (c and p) are held constant, since their histor-

ical role was likely secondary (Galbraith et al., 2017).

We analysed the catch time-series by taking the mean of the

five ensemble members and summing at the LME level. In addi-

tion, to explore the sensitivity of our results to different aspects of

the model, we repeated the experiments using two additional

rates of catchability increase rq, and excluding the effects of tem-

perature and PP from specific components of the model (see

Supplementary Information S4).

Metrics for catch time-series
Year of peak catches
The year of peak catches in each LME, yLME

peak , is estimated for both

observations and simulations. Observed catch time-series were

smoothed with a 6-year running average. For each time-series,

the year of peak catch is defined as the first year when 95% of the

maximum catch is reached. This criterion is used to reduce the

uncertainty in identifying the onset of long catch plateaux. We

tested multiple methods of the selection of yLME
peak (see

Supplementary Table S3a) and found relatively small sensitivity

that would not influence our conclusions.

Time-series slopes
The slopes of pre-peak increase, sLME

increase, and post-peak decrease,

sLME
decrease, are also determined on observed time-series smoothed

with a 6-year running average and directly calculated from the

model without applying any smoothing. The time-series are nor-

malized by the maximum yield reached, allowing comparison of

the relative speed of development and decline before and after the

peaks. The increasing and decreasing time segments are identified

by comparison to the maximal rates of change pre- and post-peak

using the thresholds [dH=dt > maxðdH=dtÞ=2:5] and

[dH=dt < minðdH=dtÞ=2:5]. The slopes over the identified seg-

ments are then calculated by linear regression. This method was

empirically devised to provide robust diagnostics (see

Supplementary Table S3b).

Investigated drivers
Environmental drivers (PP and T)
PP and temperature are the environmental drivers of fish produc-

tion in BOATS. Following Carozza et al. (2016), we use monthly cli-

matologies of temperature from the World Ocean Atlas 2005

(Locarnini et al., 2006). In each 1o � 1o grid cell, we use average

temperature over the upper 75 m. For PP, we take the average of

three satellite-based net PP estimates (Behrenfeld and Falkowski,

1997; Carr et al., 2006; Marra et al., 2007) to capture some of the

variability that exists in different models. Similar to temperature, we

use monthly climatologies on a 1o � 1o grid. For comparison to ob-

served peaks, we take the annual mean of these drivers over LMES.

Human Development Index
The HDI attempts to capture the average achievement in terms of

life expectancy, level of knowledge, and standard of living and is

available at the country level (United Nations Development

Programme, 2016). Here, it is used as a proxy for the level of

technological development of the fisheries of distinct nationalities

involved in a given LME. Weighted according to the catches of

each nation operating in the LME, we take it as a proxy of the

technology level of fleets fishing in the LME. We reconstruct the

HDI time-series for each LME, HDILMEðyÞ, from the HDI of each

country HDIcountry, and the historical catches per LME of each

country HLMEðcountry; yÞ between the year y ¼ 1950 and 2013,

as provided by SAUP (Pauly and Zeller, 2015):

HDILMEðyÞ ¼
X

countryHDIcountryHLMEðcountry; yÞ
X

countryHLMEðcountry; yÞ
: (2)

The resulting time-series indicates the average level of develop-

ment for each LME over time, due to changes in the relative con-

tribution of different national fleets to the total catches. We

compare the mean HDI per LME between 1950 and 2013,
�HDI

LME
, as well as variation DHDILME ¼ HDILMEð2013Þ �

HDILME ð1950Þ, with the yLME
peak .

Results
Observed history of peak catches
Among the 56 historical catch time-series analysed (Figure 1 and

Supplementary Information S1), our objective criteria identify 37

catch peaks (see Supplementary Table S2 for results on different

sets of LMEs). The year of peak catches for each, yLME
peak , shows a

discernible spatial progression between different parts of the

global ocean (see Figure 2a). The peaks occurred first in the 1960s

in the Northwest Atlantic. Tropical LMEs are generally the last to

reach their peaks with some still developing in 2013, such as the

Sulu-Celebes Sea (# 37).

Comparison with HDI
Geographical variations in social and economic characteristics of

fishing nations have been widely documented (Gelchu and Pauly,

2007; Anticamara et al., 2011; Bell et al., 2017). We therefore car-

ried out a comparison of our catch peak years and the corre-

sponding catch-weighted HDI in each LME by calculating their

pairwise coefficients of determination.

When we compare the year of peak catch yLME
peak to the historical

level of societal development of LMEs encapsulated in �HDI
LME

,

we found a significant negative correlation (R2 ¼ 0:13 and p <

0.05, see Figure 3 and summary Table 1). This is consistent with

the expectation that LMEs exploited at higher HDI would have

reached peak catches earlier.

In addition, changes in HDILME between 1950 and 2013 can be

constructed from changes in the composition of nations fishing

within the LME. We use the DHDILME ¼ HDILMEð2013Þ �
HDILMEð1950Þ to test for the invasion of long-distance fleets in

low-latitude waters. Relatively few LMEs appear to have had large

invasions of long-distance fleets by this measure (see size of

markers Figure 3 and Supplementary Information S5), among

them the Guinea Current (# 28), the Somalia Current (# 31), and

the Red Sea (# 33). These invasions should have had a slight in-

fluence on the correlation between yLME
peak and �HDI

LME
(Table 1).

Simulated history of peak catches
The BOATS model simulates the temporal evolution of fisheries

as driven by a globally homogeneous increase in catchability,

which represents the net outcome of all aspects of technological

progress on the ability to catch the available fish with a given

effort. Given the global uniformity of catchability change, the

differences in simulated peak years among LMEs depend only on
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environmental differences between grid cells. Perhaps surpris-

ingly, despite globally homogeneous technological and economic

conditions, the simulations show a global spatial progression of

fishing that is broadly similar to the observations, with peaks oc-

curring first at high latitudes, and subsequently at low latitudes

(see Figure 2b). The simulated LME peak years are significantly

correlated with observations where a peak of catches is identified

(R2 ¼ 0:30; p < 10�3, Figure 2c and Table 1), despite the large

number of confounding processes. This result holds for different

sets of LMEs (Supplementary Table S2), as well as when we

include all 56 LMEs, although it is weaker in this case

(R2 ¼ 0:15; p < 0:01, see Supplementary Figure S6a). The

model suggests a slower sequential development of fishing than

observed, as revealed by the larger spread of the years of peak

catch in the simulations (Figure 2c). This feature is related to the

rate of catchability increase, here rq ¼ 5%. A higher rate would

compress the interval between the first and the last occurrences of

LMEs maximum harvests, while a lower rate would have the op-

posite effect (see Supplementary Information S4).

It might be expected that fisheries management has had an in-

fluence on the year of maximum catches in some ecosystems, an

effect that is absent in the model. In an attempt to detect this, we

removed particularly well-managed LMEs such as the Australian

LMEs (# 39 and 41–45; Flood et al., 2014). However, this did not

increase the coefficient of determination between simulations and

observations (R2 ¼ 0:29; p < 0:01, see Supplementary Figure

S6b).

An additional consideration is that some LMEs contain small

regions with very high or low PP as inferred from satellite, a fact

that may challenge the model’s ability to correctly resolve biomass

production. For example, in some LMEs, the PP is concentrated

in the vicinity of the mouth of major rivers, such as in the

Patagonian Shelf (# 14), the Guinea current (# 28), or the

Gulf of Thailand (# 35). Because the model does not resolve

the movement of fish or their prey, it may overestimate fish

density in these localized highly productive regions, leading to

an earlier peak in catches compared with observations. Indeed,

when we remove the most heterogeneous LMEs from the 37

selected, the coefficient of determination increases substantially

Figure 2. Observed and simulated years of maximum catch. Spatial
progression of the year of peak catches yLME

peak in the 37 LMEs selected:
(a) observations, (b) simulations, and (c) simulated vs. observed year
of peak catches (y ¼ 9:32� 10�1x þ 1700; R2 ¼ 0:30;
p < 10�3). The solid line is a linear fit through the observed and
simulated timings of peaks, and the dotted line is the 1:1 slope. The
empty circles indicate LMEs in the Southern Hemisphere, and the
filled circles indicate LMEs in the Northern Hemisphere.

Figure 3. Socio-economic influence on the observed and simulated
catch peaks. Year of maximum catches yLME

peak as a function of mean
�HDILME in the 37 selected LMEs (y ¼ �40:8xþ 2020; R2 ¼ 0:13;
p < 0:05). The diameter of the markers is proportional to

DHDILME¼ HDILMEð2013Þ � HDILMEð1950Þ, which expresses changes
in the composition of nations fishing within the LME, red positive,
blue negative.

Table 1. Summary of linear regressions: slope, R2, and p-value.

Variable 1 Variable 2 Slope R2 p-Value

Human Development
Index ( �HDILME)

Obs. yLME
peak �40.8 0.13 <0.05

Obs. yLME
peak Sim. yLME

peak 9:32� 10�1 0.30 < 10�3

Temperature (T) Sim. yLME
peak 1.53 0.44 < 10�5

Obs. yLME
peak 7:73� 10�1 0.33 < 10�3

Sim. sLME
increase �1:62� 10�4 0.12 <0.05

Obs. sLME
increase �6:89� 10�4 0.09 >0.05

Sim. sLME
increase 1:68� 10�4 0.29 < 10�3

Obs. sLME
increase 1:87� 10�3 0.33 <0.01

Primary production (PP) Sim. yLME
peak �9:56� 10�2 0.09 >0.05

Obs. yLME
peak 1:46� 10�2 0.01 >0.05
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(R2 ¼ 0:43; p < 10�4, see Supplementary Figures S6c and S7

summarizing the heterogeneity of T and PP across each LME).

We note that the inclusion of unreported catch estimates in

the SAUP reconstructions influences the results to some degree.

When only reported catches are considered to determine the year

of peak catch, the coefficient of determination between simula-

tions and observations is weaker (R2 ¼ 0:15; p < 0:05, see

Supplementary Figure S6d). However, the removal of unreported

catches does not strongly alter the sequence of yLME
peak for most

LMEs and the low coefficient of determination is largely attribut-

able to the Insular Pacific-Hawaiian LME (# 10). Thus, our

results generally apply to reported catch time-series as well.

Comparison with environmental drivers
Given that the model broadly reproduces the observed trends of

yLME
peak , we next consider how the bioenergetic mechanisms at play

in the model might have contributed to the historical timing of

catch peaks, while bearing in mind that socio-economic factors

are certain to have also contributed in reality.

As with the HDI above, relationships between the catch peaks

and the environmental drivers can be roughly assessed by calcu-

lating their pairwise coefficients of determination. In the model,

yLME
peak is strongly correlated with T in the 37 LMEs with unambig-

uous catch peaks (R2 ¼ 0:44; p < 10�5, see Figure 4a, in black)

but is not significantly correlated with PP (see Table 1 and

Supplementary Figure S8). A very similar pattern emerges in the

observations, where no correlation is found between yLME
peak and

PP, but a stronger coefficient of determination is found with T

(R2 ¼ 0:33; p < 10�3 see Figure 4a, in blue, or Supplementary

Information S9 for the same figure with LME numbers, and

Table 1). The correlation between yLME
peak and T is largely indepen-

dent of the set of LMEs selected, with the correlations remaining

significant when we consider alternate sets of LMEs, or even all

56 LMEs with reliable catch time-series (see Supplementary

Information S2 and S10).

Surprisingly, the correlation between �HDI
LME

and yLME
peak is not as

strong as the correlation between yLME
peak and LME temperature (see

Table 1). In addition, while �HDI
LME

correlates with ecosystem tem-

perature, when we carried out a multiple linear regression of yLME
peak

with both temperature and �HDI
LME

, there was no improvement

over the regression using only temperature (see adjusted R2 in

Supplementary Table S5a) and only temperature was a significant

predictor (Supplementary Table S5b). Thus, HDI does not appear

to be a better predictor of yLME
peak than ecosystem temperature.

We also tested whether or not the slopes associated with

catch peaks are correlated with the environmental drivers. The

modelled sLME
increase is only weakly correlated with T, and the ob-

served slope is not significantly correlated (see Table 1, Figure 4b,

and Supplementary Information S2 for sensitivity tests), suggest-

ing negligible influence on sLME
increase. In contrast, the rate of rela-

tive decrease sLME
decrease is significantly correlated with T, both in

the model (R2 ¼ 0:29; p < 10�3, see Figure 4c, in black) and

in observations (R2 ¼ 0:33; p < 0:01, see Figure 4c, in blue,

Supplementary Information S9 for the figure with LME num-

bers, Table 1, and Supplementary Information S2 for sensitivity

tests). Note that, because of the irregularity of observed catch

time-series, the determination of the slopes remains more uncer-

tain than the determination of the peak years (see Supplementary

Information S3).

Although these correlations do not provide direct evidence of

a causal relationship, they are consistent with metabolism-based

expectations that water temperature should exert a direct bioen-

ergetic control on fish abundance and production rates, thereby

interacting with fishing. A strong role for temperature in the

model is further confirmed by an alternate simulation where

all effects of temperature are removed (see Supplementary

Information S4). In this case, the correlation between modelled

and observed yLME
peak disappears. The lack of a significant role for

PP does not reflect a lack of importance, since it plays a major

role in limiting fish production in the model Carozza et al.

(2016); however, PP does not emerge as a useful predictor of the

timing of harvest peaks.

Water temperature can alter many vital aspects of marine ecto-

thermic animals, including feeding rates (Rall et al., 2012),

(a)

(b)

(c)

Figure 4. Influence of temperature on the features of observed and
simulated catch peaks. Features in selected LMEs as a function of the
mean annual water temperature T: (a) year of peak yLME

peak, simulations
in black (y ¼ 1:53xþ 124; R2 ¼ 0:44; p < 10�5) and observations
in blue (y ¼ 7:73� 10�1 xþ 1974; R2 ¼ 0:33; p < 10�3); (b) slopes
sLME

increase, simulations in black (y ¼ �1:62� 10�4xþ 2:54� 10�2;
R2 ¼ 0:12; p < 0:05) and observations in blue (y ¼ �6:89� 10�4x
þ4:42� 10�2; R2 ¼ 0:09; p > 0:05); (c) slopes sLME

decrease, simulations in
black (y ¼ 1:68� 10�4x� 1:71� 10�2; R2 ¼ 0:29; p < 10�3) and
observations in blue (y ¼ 1:87� 10�3x� 7:08 �10�2; R2 ¼ 0:33;
p < 0:01). In (a), the size of the black markers reflects the standing
biomass at the beginning of exploitation. The solid lines are linear
fits through the observed and simulated features of the peaks.
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growth, mortality and reproduction (Brown et al., 2004; Clarke

and Fraser, 2004), and respiration (Clarke and Johnston, 1999)

with consequent impacts on the dissipation rate of biomass

energy (Guiet et al., 2016). These direct temperature effects are

represented in the model by Arrhenius dependences (Carozza

et al., 2016), which predict averaged rate increases of 60–110%

for every 10�C temperature increase, for different parameter

ensembles, and 87% for the ensemble mean. They affect growth,

reproduction, and mortality. BOATS does not explicitly includes

the temperature-dependent respiration associated with activity

and reproduction, but these processes are included implicitly in

the losses due to temperature-dependent mortality (Carozza

et al., 2019). Water temperatures also influence the modelled tro-

phic transfer of energy because cold waters tend to be character-

ized by larger phytoplankton cells, which are in turn consumed

by larger predators, shortening food webs (Stock and Dunne,

2010). In the model, this size of phytoplankton is computed from

PP and temperature with an empirical formulation (Dunne et al.,

2005). These temperature dependencies alter both the initial

standing biomass and the replacement rate of fished biomass by

recruitment and growth. Each of these two factors impacts the in-

teraction with fishing effort in a different way, by modifying the

year of peak catches and the rate of decline, respectively, as we

discuss next.

Temperature influence on initial biomass
In the pristine state (i.e. prior to fishing), simulated cold LMEs

support a higher biomass density than warm LMEs (see

Figure 5a, Bcold
tot > Bwarm

tot and Figure 4a, size of black markers). In

the model, T influences the pristine biomass through its effects

on mortality, representative size of phytoplankton and growth

rates. Among the effects, the temperature impact on mortality is

the most important. Phytoplankton size and growth rates have a

secondary impact (see sensitivity experiments in the

Supplementary Information S4). The general model prediction

agrees with theoretical (Ursin, 1984) and other modelling studies

(Jennings et al., 2008).

All else being equal, high biomass densities would be expected

to yield a greater catch for a given amount of effort and are there-

fore more likely to be profitable with relatively primitive fishing

technologies. Thus, cold locations with larger pristine biomass

densities would be expected to have been exploited first. This can

be understood by considering a critical level of biomass Bcrit, de-

fined as the minimum biomass at which exploitation is profitable.

Under the simple assumption of economic open access, this

occurs when the revenue r ¼ pH ¼ pqBcritE (where p is the ex-

vessel price, H is the wild fish harvest, q is the catchability, and E

is the effort) is equal to the associated costs of fishing, c ¼ CE (C

¼ cost per unit effort; see model description in Material and

Methods). This implies that Bcrit ¼ C=pq, so that given fixed C

and p, the Bcrit is determined by q alone (Carozza et al., 2017),

and decreases with increasing q. In our increasing-technology

experiments, fishing begins at any given location when q rises to

the point at which Bcrit is equal to the local standing biomass.

These mechanisms bear some resemblance to “basin models”, in

which a geographically resolved habitat suitability controls pro-

duction, and fishing activity is proportional to the local biomass

(MacCall, 1990).

Figure 5a illustrates this mechanism, comparing two regions

with different temperatures, the warmer Caribbean Sea (# 12)

and the colder Benguela Current (# 29). Fisheries develop first in

cold regions with a higher standing biomass, when Bcrit ¼ Bcold

(at q ¼ qcold). Subsequently, when the catchability has increased

sufficiently such that Bcrit ¼ Bwarm (at q ¼ qwarm), fishing begins

in the warm region. Note that the simulated extraction of

biomass illustrated in Figure 5a proceeds slowly enough that the

biomass Bcold remains higher than Bcrit throughout. Because of

this non-equilibrium behaviour, the Bcold at the time that q

reaches qwarm remains higher than the corresponding Bwarm.

Moreover, for a continuous increase in catchability q, Bcrit inexo-

rably decreases, as smaller and smaller biomasses become

(a)

(b)

(c)

Figure 5. Schematic representation of the history of simulated
catch time-series in cold and warm ecosystems. Comparison of
simulated biomass decrease (a), total catch peak (b) and catch peaks
normalized by the maximum catches and centred around the mid-
catch peak (c): in a colder (blue) ecosystem, the Benguela Current
(# 29), �T ¼ 18�C; in a warmer (red) ecosystem, the Caribbean Sea
(# 12), �T ¼ 27� C. In green, the logarithm of the catchability
increases over years. While catchability increases, ecosystems with a
lower standing biomass Bcold=warm

tot begin to be exploited when the
biomass is equal to the critical biomass level allowing the onset of
fishing Bcrit ¼ C=pq, black dashed line. The vertical dashed lines
indicate the beginning of exploitation. In (a), the black vertical arrow
(�) indicates the degree to which the cold water biomass Bcold is
out of equilibrium with the evolving q at the point where fishing
begins on Bwarm.
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profitable to fisheries, driving biomass and ultimately catches to-

wards zero. Thus, by influencing the pristine biomass of ecosys-

tems, the temperature is expected to influence the technology

level under which fishing first becomes profitable.

Temperature influence on biomass replacement rate
In the model, higher water temperatures lead to faster growth

and reproduction rates. As a result, despite large pristine

biomasses, cold LMEs have slower biomass production per unit

of biomass compared with warm LMEs with similar primary pro-

ductivity. Thus, warm ecosystems have faster biomass turnover,

replacing their standing biomass more quickly. In the meantime,

the model predicts smaller phytoplankton in warmer waters, so

that the energy available for recruits and growth at a given fish

size is reduced in warmer ecosystems. The mortality rate also

increases in warmer waters. When fishing begins, these effects

influence the shape of peaks in the catch time-series.

In Figure 5b, the simulated peak of fishing is more gradual at a

warm site than at a cold site. When normalized by the maximum

total catches (see Figure 5c), the increasing slopes at the two sites

are similar, but the peak is longer and the decline is more gradual

at the warm site. This dynamic is consistent with the correlation

between water temperature and sLME
decrease (cf Figure 4c), despite the

lack of correlation with the rate of increase (cf Table 1 and

Figure 4b). We suggest that increasing catchability dominates

the catch increase, therefore supporting similar trends of rising

catch, while temperature-dependent biomass replacement rates

influence the rate of catch decrease. Sensitivity tests with the

model confirm the role of temperature on the biomass turnover

in warm waters, arising from faster reproduction and growth of

ectotherms, convolved with variations in the phytoplankton rep-

resentative size that limits recruitment (see Supplementary

Information S4).

Discussion
The observed temporal progression of catches across the global

ocean is largely consistent with the expectation from spatial varia-

tions in economic development, but also with the expected

impacts of spatial variations in water temperature. Specifically,

the observed year of peak catch occurred earlier in ecosystems

with higher HDI and in colder water, while the rate of post-peak

catch decline was more rapid in colder water. PP alone was not

a good predictor of the year of historical catch peaks. While

differences in the accumulation of capital and technological de-

velopment undoubtedly explain a good part of these historical

progressions, our results suggest that the impact of water temper-

ature on ecosystem metabolism played a complementary role.

Most importantly, greater pristine standing biomass density

should have allowed an earlier development of profit-driven

industrial fisheries in cold waters, while fishing technology was

less advanced. More rapid turnover of biomass and recruitment

in warm waters is likely to have played a secondary role, contrib-

uting to slower post-peak declines in catches at low latitudes.

Uncertainty in observed LME-level correlations
The analysis above was carried out at the coarse scale of LMEs

and annually averaged observations, potentially masking finer-

scale spatio-temporal variations that could impact the strength of

our correlations. However, since many fish species are migratory,

an analysis at finer spatial scales would raise other issues, such as

potential mismatches between spawning grounds, feeding

grounds, and the regions where fish are caught. A complementary

analysis is provided in Supplementary Information S11 by look-

ing at the catch time-series according to exclusive economic zones

(EEZs). This analysis shows weaker correlations with temperature

than at the LME scale, which may reflect the fact that some EEZs

span multiple ecosystems, blurring environmental distinctions,

while in other cases, a single ecosystem is partitioned between

multiple EEZs, potentially separating fishing grounds from

regions of biomass production. The weaker correlations may also

reflect an accentuation of country-specific social and economic

factors that cloud the environmental influence.

Our analysis also relies on reconstructions of catch time-series

from SAUP with their own inherent uncertainties. We assessed

the degree to which the correlation between catch peak years and

LME temperature is robust to the set of LMEs selected by varying

the parameters of our method to identify large catch peaks in

time-series (see Supplementary Information S2) and by isolating

distinct sets according to the characteristics of the environment

and the management (see Supplementary Information S6).

The correlation remains significant when our method is applied

to the catch time-series before reconstruction (Supplementary

Information S6) or even when applied to the 56 LMEs

(Supplementary Information S10). Thus, the covariation of the year

of maximum catch at LME with ecosystem temperature appears to

be robust.

Individual stocks vs. LME-level changes
In the analysis above, we only consider aggregated time-series of

the total catch. The aggregation conceals the fact that different

species and stocks within a given ecosystem can vary in terms

of their economic features, catchability, and vulnerability to

exploitation (Cheung et al., 2007). The vulnerability depends on

stock-specific factors including the maximum length, the age at

first maturity, the fecundity, and the growth rate. Conceivably,

these different features of individual stocks could influence the

development and decline in fisheries preferentially targeting these

stocks, influencing the sequential succession of stock exploita-

tions and thereby influencing the shape and timing of the LME

catch peak (see Supplementary Information S12).

However, an analysis of SAUP catch records carried out at the

species level does not indicate systematic features that would bias

the LME-level aggregation (Supplementary Information S12).

The timing of peak catch years for individual stocks was not

systematically related to the year of peak catch, and post-peak

declines in individual stocks were similar to those of the LMEs in

which they are found. We therefore conclude that species-level

effects do not play a major role in determining the LME-level

peak year and post-peak decline.

Mechanisms beyond bioenergetics
Any model presents, by necessity, a simplified view of a complex

global ecosystem. In the model used here, the temperature effect

on growth, recruitment, and mortality rates places the dominant

control on standing biomasses, and thereby the development and

decline of fishing, but temperature also covaries with other envi-

ronmental factors that can influence standing biomasses that are

not explicitly included in the model. For example, extensive con-

tinental shelves allow high fractions of benthic production that

can accumulate high biomass and are also easily exploited (Van
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Denderen et al., 2018). In addition, the higher diversity of ex-

ploitable fish species in warm, low-latitude ecosystems could

cause harvest peaks to be extended as fishers shift from one stock

to the next, decreasing the slope of post-peak declines (Maureaud

et al., 2019). Finally, the simple features of our economic model

place technological development as the dominant drivers and

ignore other such as changes in profitability that may have

occurred when fisheries change targeted species as they move

equatorward, or changes in cost as steaming distance from port

increases. Accounting for these additional effects would add fur-

ther nuance to the historical progression of global fisheries.

Concluding remarks
While spatially variable socio-economic drivers certainly influ-

enced the historical progression of industrial fishing from high

latitudes to the tropics, our results indicate the likelihood that

ecosystem temperature also played a role through its influence on

the biological component of these coupled ecological–economic

systems. The observed correlations between the year of peak catch

and HDI are not stronger than those with temperature, and our

bioeconomic model produced a progression similar to the obser-

vations when forced only with a globally homogeneous progres-

sion of technological development. Together, these findings

emphasize the role that ecosystem temperature could have played

in shaping the historical development of fisheries over the past

70 years.

The recognition that temperature, via its influence on

ecosystem-level metabolism, could have contributed to the

historical progression of fisheries provides a new perspective on

these complex human-ecological systems. Importantly, it is con-

sistent with the expected changes in fisheries productivity under

climate change, with warmer ecosystems supporting less fish bio-

mass and lower maximum sustainable yields (Cheung et al., 2010;

Carozza et al., 2019; Lotze et al., 2019; Free et al., 2019). In addi-

tion, the fact that water temperature has opposing influences on

biomass accumulation vs. biomass replacement suggests that the

outcome of future warming on fish catches will vary with fishing

pressure. These findings provide support for a greater emphasis

on temperature-dependent ecosystem bioenergetics, which con-

siders the long-term outlook for fisheries.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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