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Abstract. We consider the Rastall theory for the flat Friedmann–Robertson–Walker universe
filled with a perfect fluid that satisfies a linear equation of state. The corresponding dynamical
system is a two dimensional system of polynomial differential equations depending on four
parameters. We show that this differential system is always Darboux integrable. In order
to study the global dynamics of this family of differential systems we classify all their non–
topological equivalent phase portraits in the Poincaré disc and we obtain 16 different dynamical
situations for our spacetime.

1. Introduction

One characteristic of Eistein’s theory of gravity is the conservation of the energy momentum
tensor. So the total rest energy of a system is conserved however there is no experimental
evidence for this. Rastall in 1972 proposed a modified theory of gravity where the matter
source is described by the energy momentum tensor as in general relativity and also by the
metric of the external space. Basically, Rastall suggests that the stress energy tensor of the
source of the gravitational field should not conserved and so there is a coupling in a non minimal
way between matter and geometry.

Rastall theory is considered as an extended theory of gravity, see for example [1] and provide
answers to some questions relating to observational cosmology (see additionally [2, 3]) and
quantum gravity [4, 5]. There is a kind of similarity between the particle creation process
[6, 7] and Rastall theory since both of them do not respect the conservation of the energy
momentum tensor. Additionally it has been extensively used in different contexts, see for
instance [2, 8, 9, 10, 11, 12, 13].

There is a theory similar to Rastall theory, the so called curvature matter theory of gravity,
where the matter and geometry are also coupled to each other in a non minimal way and the
standard energy momentum conservation law is also violated, see [14, 15, 16].

There is a discussion about when Rastall theory of gravity coincides with the classical Ein-
stein gravity, see for example the work of Visser [17] who supports that the Rastall theory is
completely equivalent to the Einstein theory. There is an arguing of Darabi et al. [1] where
explain that Rastall [18] did not define a new energy momentum tensor in contrast the claims
of Visser [17]. Rastall only assumed that the conservation of the energy momentum tensor is
not always valid in a curved spacetime and for this reason suggests a new relation between the
energy momentum tensor and the geometry and explain that are coupled to each other in a non
minimal way. Hansraj et al. [19] consider a variation of the Rastall parameter in the context of
perfect fluids spheres. Visser [17] support that the geometrical part of the field equations are
identical in both theories whereas in [19] defends that there is no evidence for this. Hansraj et
al. [19] show that the equation of pressure isotropy remains the same in Rastall and in Eistein
theory in the sense that the metric potentials for both theories are identical. Additionally using
Tolman metrics they proved that there are several differences in the physical behaviour of the
corresponding models in both theories, see [19].

In order to have a full knowledge of the dynamical system we should be able to control the
orbits that came or escape to infinity. For this reason we use the Poincaré compactification.
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Thinking about 2–dimensional systems we have that the Poincaré disc D is the closed disc
centered at the origin of coordinates of radius one. The interior of D is identified with R2, and
its boundary the circle S1 with the infinity of R2, in the plane we can go to infinity in as many
directions as points has the circle S1. It is well known that any polynomial vector field X can be
extended to an analytic vector field p(X ) defined in the whole closed disc D, called the Poincaré
compactification of X . For more details on this compactification see for instance chapter 5 of
[20].

Whenever the dynamical system has a first integral then we can reduce the dimension of
the system using the expression of that integral. In particular, for a 2–dimensional differential
system, the existence of a first integral H̃ enclose a lot of information about the behaviour of
the dynamical system. This is due to the fact that the level sets H̃ = c, with c a constant
define the orbits of the system. Additionally, using the first integral we can distinguish when an
equilibrium point is a center and a focus, otherwise this distinction can be difficult. In general
for the differential systems depending on parameters it is extremely hard to decide about the
existence or non–existence of a first integral. There are many techniques in the literature about
the search of first integrals of a differential system, like Lax pairs [21], Lie symmetries [22],
Noether symmetries [23], Darboux theory of integrability [24], Painlevé analysis [25], Differential
Galois Theory [26], ... This variety of techniques illustrate the difficulty of finding first integrals.

There are also works in the literature that consider generalized Rastall gravity with variable
Rastall parameter, see for example [12, 27].

The aims of this paper are the following ones:

• We present the equations of our model applying Rastall theory for the flat Friedmann–
Robertson–Walker universe filled with a perfect fluid that satisfies a linear equation of
state following the work of Babichev and collaborators [28]. Note that the correspond-
ing dynamical system is a two dimensional system of polynomial differential equations
depending on four parameters, see section 2. We apply affine transformations in the
variables and we achieve to reduce our system into a two parametric family maintaining
the polynomial structure of our system.

• Since our dynamical system is polynomial we apply the Darboux theory of integrability
in order to decide about the integrability of the system. Our result is given in Theorem
4 where we prove that for all the values of the parameters the dynamical system has a
first integral that can be constructed easily using the invariant curves of the differential
system. This is an important information because we have explicitly the expressions of
the first integrals for all the values of the parameters. Therefore all the trajectories of
the system are contained in the level sets of such first integrals and additionally helps
us to decide about some singular points (to distinguish between center and focus).

• Using the Poincaré compactification, which allows to study the solutions of the differ-
ential system near the infinity, we are able to present the global dynamics of our two
dimensional family when the parameters vary. Note that there is no numerical approxi-
mation in the parameters and the study is purely analytic. Additionally we present the
topological classification of the global phase portraits in the Poincaré disk and we find
16 dynamical different situations in the spacetime, see Theorem 5 and Figure 2.

• The physical and cosmological consequences of our study are presented in Theorem 7.

• We also study the existence of singular/no singular cosmologies when the Rastall pa-
rameter λ is not a constant but it depends on the time. For the radiation era and for
a choose of λ we find a singular universe, see section 3. For a pressureless matter we
prove that Rastall parameter does not affect the evolution of the universe and we can
obtain a non singular cosmology.
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2. The dynamical system and statement of the main results

We recall that Rastall theory [18, 29] suggest that the stress energy tensor of the source of
the gravitational field should not conserved, namely it should be Tµν;ν 6= 0. Rastall proposed to
take Tµν;ν = λR,µ, where R is the Ricci scalar and λ is the Rastall constant parameter. Then
the gravitational field equations can be written as (see also [18])

Gµν + kλgµνR = kTµν , (1)

The dynamical systems are used for studying the global properties of several cosmologies not
only in general relativity [30] but also in other higher order theories of gravity [31, 32, 33]. Using
such techniques some qualitative properties are obtained related to the singular points of the
system and their stability, but also the invariant surfaces or invariant curves. The importance
of such techniques is that there is no need of solving the system explicitly in order to know
the qualitative behavior of the solutions, i.e. where they born or they die, if they are periodic
or not, ..., see for example [34, 35]. When the system depends on parameters then a careful
classification of all the features of the system is needed according to the parameters. where
Gµν is the Einstein tensor and k is the gravitational constant in Rastall theory. Rastall showed
that (1) yields to R(4kλ− 1) = T , where T is the trace of the energy momentum tensor. Since
T is not always zero and λ is a constant, Rastall [18] indicates that the expression 4kλ − 1
cannot be zero. Moradpour et al. [36] using the concept of the Newtonian limit showed that
also 6kλ− 1 6= 0.

The case λ = 0 and k = 8π gives rise to the classical Einsten’s field equation of general
relativity whenever Tµν;ν = 0, see [18].

For the Friedmann–Robertson–Walker universe filled with a perfect fluid with Tµν = diag(ρ,−p,−p,−p),
the gravitational equations (1) can be written according to Yuan and Huang [37] like

3(1− 4kλ)H2 − 6kλḢ + 3(1− 2kλ)
κ

a2
= kρ,

3(1− 4kλ)H2 + 2(1− 3kλ)Ḣ + (1− 6kλ)
κ

a2
= −kp,

(2)

and H = ȧ/a is the Hubble parameter. Here the dot represents time derivative. The a(t) is
the scale factor (dimensionless). Here κ = −1, 0,+1 for open, flat and closed spatial sections
respectively. As usual ρ is the energy density and p is the pressure. Here we consider the case
of flat spatial sections and so we consider that κ = 0. Hence, from the first equation of (2) and
considering that λ 6= 0 and k 6= 0 we obtain

Ḣ = −4kλ− 1

2kλ
H2 − 1

6λ
ρ. (3)

Now the contracted Bianchi identities Gµν;µ = 0 yields to the equation of continuity (see [38])

(3kλ− 1)ρ̇+ 3kλṗ+ 3(4kλ− 1)(ρ+ p)H = 0. (4)

A perfect fluid with linear equation of state has the following form (see the work of Babichev
and collaborators [28])

p = αρ− ρ0, (5)

where α and ρ0 are constant parameters. (Note that equation p = αρ − ρ0 = α(ρ − ρ̃0) with
ρ0 = αρ̃0 is in agreement with reference [28].)

Now equation (4) using relation (5) and for 3kλ(1 + α)− 1 6= 0 becomes

ρ̇ =
3(1− 4kλ)

3kλ(1 + α)− 1
((1 + α)ρ− ρ0)H. (6)
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Note that equations (3) and (6) defines a polynomial quadratic differential system in the vari-
ables H and ρ. Set H = x and ρ = y. In these new variables, the system writes

ẋ =
1− 4kλ

2kλ
x2 − 1

6λ
y,

ẏ =
3(1− 4kλ)

3kλ(1 + α)− 1
((1 + α)y − ρ0)x,

(7)

and note that is a four parametric family.

Remark 1. For system (7) we assume that λk 6= 0 and 3kλ(1 + α)− 1 6= 0. Note that from a
mathematical point of view we can allow the case that 1− 4kλ = 0 and 1− 6kλ = 0 unlike the
Rastall theory [18] and see also [36]. Also note that for α = 1 we have that 3kλ(1 + α) − 1 =
6kλ− 1. The validity of the case 4kλ− 1 = 0 has been also investigated in [12].

Due to equation (5) we have that ρ + p = (1 + α)ρ − ρ0. Null energy condition holds when
ρ + p ≥ 0, and so holds when (1 + α)ρ − ρ0 ≥ 0, or equivalently (1 + α)y − ρ0 ≥ 0, and it is
violated in the phantom region (ρ+ p < 0). Hence, for α > −1 the energy density is increasing
and for α < −1 is decreasing.

Note that the condition ρ+ p = 0 represents the straight line g1 = (1 +α)y− ρ0 = 0 and this
line is invariant for system (7) with cofactor

Kg1 =
3 (1− 4 kλ) (1 + α)

3 kλ (1 + α)− 1
x.

For more details about invariant algebraic curves, cofactors and Darboux first integrals see
Appendix 3.1.

System (7) for 4 kλ−1 6= 0 has the invariant conic g2 = 3 (4 kλ− 1)x2−k (3 kλ(1 + α)− 1) y+
3 k2λ ρ0 = 0 with cofactor Kg2 = ((1− 4 kλ)/(kλ))x. System (7) has the three (whenever are
defined) finite singular points: Q0 = (0, 0) and

Q± =

(
±
√

k ρ0
3 (1− 4 kλ) (1 + α)

,
ρ0

1 + α

)
.

The points Q± belong to the straight line g1 = 0 and also to the conic g2 = 0. The point Q0

belongs to the phantom region when ρ0 > 0. For ρ0 = 0 the equation of state (5) becomes
p = αρ. In this case the points Q± collide with the origin Q0 and belong to the phantom
dividing line g1 = 0.

For α 6= −1 system (7) has the Darboux first integral

H̃(x, y) = (3 (4 kλ− 1)x2 − k (3 kλ(1 + α)− 1) y + 3 k2λ ρ0)((1 + α)y − ρ0)
1−3kλ(1+α)
3kλ(1+α) .

For α = −1 the equation of state (5) becomes p = −ρ− ρ0, and so p+ ρ = −ρ0. In this case
system (7) has only one singular point, the origin Q0 and admits the Darboux first integral

H̃(x, y) = (3 (4 kλ− 1)x2 + ky + 3 k2λ ρ0)exp

(
− y

3ρ0 kλ

)
.

Remark 2. For 4kλ − 1 = 0 system (7) is the linear system ẋ = −y/(6λ), ẏ = 0 and has the

polynomial first integral H̃(x, y) = y. Moreover, y(t) = C and x(t) = −Ct/(6λ)+C1 with C,C1

real constants. After the change of time ds = (−y/(6λ))dt system becomes ẋ = 1 and ẏ = 0.
The phase portrait of this linear system in the Poincaré disc is given in Figure 1.

After Remark 2 we assume that 4kλ− 1 6= 0. Consider the change of coordinates

x = − 2kλ

4 kλ− 1
X, y =

12kλ2

4 kλ− 1
Y. (8)
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Figure 1. The phase portrait of system (7) for the case 1 − 4kλ = 0. Note
that the system is a linear differential system. The line y = 0 is filled of singular
points. According to Rastall this case has no physical meaning, see Remark 1.

Then system (7) is rewritten

Ẋ = Y +X2,

Ẏ = − (4 kλ− 1) ρ0
2λ (3 kλ (α+ 1)− 1)

X + 6
kλ (1 + α)

3 kλ (α+ 1)− 1
XY.

(9)

Setting

a = − (4 kλ− 1) ρ0
2λ (3 kλ (α+ 1)− 1)

, and b =
6kλ (1 + α)

3 kλ (α+ 1)− 1
, (10)

system (9) becomes

Ẋ = Y +X2, Ẏ = X(a+ bY ). (11)

We recall that k 6= 0, λ 6= 0, 3 kλ (α+ 1)− 1 6= 0, 4kλ− 1 6= 0, ρ0 and α are real constants.

There is an abuse of notation relating to the parameter a. Note that the parameter a that
appears in the differential system (11) is a parameter, and it is not the scale factor relating with
the Hubble parameter.

We rename the variables of system (11) and we can rewrite that system as

ẋ = y + x2, ẏ = x(a+ by), (12)

with a, b real constants.

Remark 3. For 4kλ − 1 6= 0 system (12) is the same as system (7) after the scaling of
coordinates (8). However is more easy to work with system (12) because it depends only on
two parameters whereas system (7) depends on four parameters.

Since system (12) is a polynomial differential system we can apply the Darboux theory of
integrability [24] for finding a first integral of this system. This is a constructive method that
can provide the explicit expression of a first integral using the invariant algebraic curves of the
system, see for more details the Appendix 6.1.

Our first result is about the Darboux integrability of system (12).

Theorem 4. System (12) is Darboux integrable for all the values of the parameters a and b.
More precisely system has the following first integrals.

(a) If b 6= 0, 2 system (12) has the first integral

H̃(x, y) =
((2− b)x2 + 2y + a)b

(by + a)2
. (13)

(b) If b = 2 system (12) has the first integral

H̃(x, y) =
1

2 y + a
exp

(
2x2 − a
2 y + a

)
. (14)
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(c) If b = 0 and a 6= 0 system (12) has the first integral

H̃(x, y) =
(
2x2 + 2 y + a

)a/2
exp(−y). (15)

(d) If a = b = 0 system (12) has the first integral H(x, y) = y.

The proof of Theorem 4 is given in section 4.

Note that if a 6= 0 then the first integral of system (7) is always well defined in the neighbor-
hood of the singular point Q0.
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Figure 2. The phase portraits of system (12) according with the values of the
parameters a and b. In each phase portrait S denotes the number of separatrices
and R denotes the number of canonical regions.

Our next goal is to study the dynamics of systems (7) depending on its parameters a and b,
i.e. we shall describe all the phase portraits of that system in the Poincaré disc. Therefore we
also study the dynamics of systems (7) in a neigborhood of the infinity. For this we consider
the two cases, when 4kλ− 1 6= 0 and so we study system (12) and the case when 4kλ − 1 = 0
which is a linear system, see Remark 2. Thus our main result is the following.
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Theorem 5. System (12) has 16 non–topological equivalent phase portraits in the Poincaré
disc, see Figure 2.

The proof of Theorem 5 is given in section 4.

The phase portraits of system (7) are these 16 phase portraits that appear in Theorem 5 and
we should add the phase portrait when 4kλ− 1 = 0 which appears in Figure 1, see also Remark
2. Note that this additional phase portrait of Figure 1 is non–topological equivalent to the ones
of Figure 2. So we have the following result.

Corollary 6. System (7) has 17 non–topological equivalent phase portraits in the Poincaré disc.

The physical and cosmological consequences of our dynamical study of the model with Rastall
gravity are summarized in the next theorem, which is proved along the section 4.

Theorem 7. Let a and b the parameters defined in (10), H the Hubble constant and ρ the
energy density. Then the flat de-Sitter model is

(a) empty and unstable if a > 0 and (H, ρ) = (0, 0),
(b) empty and stable if a < 0 and (H, ρ) = (0, 0),

(c) unstable if a > 0, b > 0 and (H, ρ) = (
√
a/b,−a/b),

(d) stable if a > 0, b > 0 and (H, ρ) = (−
√
a/b,−a/b), and

(e) unstable if if a < 0, b < 0 and (H, ρ) = (±
√
a/b,−a/b).

There are some interesting works in the literature relating gravitational collapsing and Rastall
theory, see for exemple [39].

Remark 8. Here we consider ρ0 = 0 and from equations (2) we obtain

2Ḣ + bH2 = 0, b =
3(1 + α)(1− 4kλ)

1− 3kλ(1 + α)
, (16)

and since H = ȧ/a the general solution of this equation is

a(t) = C2(bt+ 2C1)
2
b

with C1, C2 are arbitrary constants. Using the initial conditions a(t0) = a0 and a(ts) = 0 we
have that

a(t) = a0

(
t− ts
t0 − ts

) 2
b

, H(t) =
2

b(t− ts)
,

and with [t0, ts] we denote the time interval of the collapse process, so t ∈ [t0, ts]. We need that
the scale factor a(t) vanishes at a finite time, so we need to assume that b > 0.

3. The generalized Rastall theory with varying Rastall parameter

In this section we investigate the case where the Rastall parameter λ is not a constant. So
we choose λ as a function of time and we check if there is non-singular cosmological solution.
From equations (2) (we recall that κ = 0) and using equation (5) we obtain

2Ḣ +
3(1 + α)(1− 4kλ)

1− 3kλ(1 + α)
H2 = −k ρ0

1− 3kλ(1 + α)
. (17)

First, for simplicity, we consider the case α = 1/3. We choose the Rastall parameter

λ =
Hb1 + a1

4b1kH
,

with b1, a1 constants. Then (17) becomes

2a1Ḣ + 4a1H
2 − b1kρ0H = 0,
7



and for ρ0 6= 0 has the general solution

H (t) =
b1 k ρ0(

C b1 k ρ0exp
(
− b1 k p0 t

2a1

)
+ 4 a1

) .

Let H0 be the Hubble parameter at an arbitrary fixed time t0, namely H(t0) = H0. Then we
have

H (t)

H0
=

b1 k ρ0(
(b1 k ρ0 − 4H0 a1) exp

(
− b1 k ρ0 (t−t0)

2a1

)
+ 4H0 a1

) ,

and presents a singularity at

tc = − 1

b1 kρ0

(
−b1 kρ0 t0 + 2a1 ln

(
4

H0 a1
−b1 kρ0 + 4H0 a1

))
.

Additionally, for a(t0) = a0 we have

a2(t)

a20
=

(
4H0 a1 exp

(
b1 kρ0 (t−t0)

2a1

)
+ b1 kρ0 − 4H0 a1

)

b1 kρ0
.

So we have a big bang universe. After the big bang the universe evolves in an exponential
manner.
Now lets consider the particular case ρ0 = 0 (and still λ = (Hb1 + a1)/(4b1kH) and α = 1/3,

this is the radiation era). Then (17) becomes

Ḣ + 2H2 = 0,

and the solution satisfying the condition H(t0) = H0 is

H (t)

H0
=

1

1 + 2 (t− t0)H0
,

a2 (t)

a20
= (1 + 2 ( t− t0))H0

and presents a singularity at

tc =
2H0 t0 − 1

2H0
.

Now we consider a general α and that there is no pressure. Then by relation (5) we have that

ρ0 = −αρ. Then from equations (2) (we recall that κ = 0) we obtain

Ḣ =
kρ0
2α

,

and note that Rastall parameter λ does not appear in this equation. Now considering H(t0) =
H0 and a(t0) = a0 we obtain a non–singular universe

H(t) =
k (t− t0) ρ0 + 2H0 a

2a
, a (t) = a0exp

(
(4H0 α+ kρ0 (t− t0)) (t− t0 )

4α

)
.

For the particular case where ρ0 = 0 (so we have an empty space time, p = ρ0 = ρ = 0) the
Hubble constant as time pass it remains constant (H(t) = H0) and there is an exponential
growth in the scale factor a(t) = a0 exp(H0(t− t0)).

4. Darboux integrability and qualitative study of system (11)

Now we present the proofs of Theorems 4 and 5.

Proof of Theorem 4. First we consider that b 6= 0, 2. System (12) has the algebraic curves
f1 = by+ a = 0 and f2 = (2− b)x2 + 2y+ a = 0 invariant with cofactors K1 = bx and K2 = 2x
respectively. Note that for b = 2 the two curves coincide. Therefore for b 6= 2 we have that
bK2− 2K1 = 0, and so system (12) admits the first integral (13) of Darboux type, see for more
details Theorem 10 of Appendix 3.1. This proves statement (a).
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The previous first integral is rational if b is a positive integer different from 0 and 2, and a
polynomial first integral if b is a negative integer. In both cases all the orbits of system (12)
are contained in algebraic curves.

For b = 2 we have f1 = f2 and system (12) has the exponential factor exp
(
(2x2 − a)/(2y + a)

)

with cofactor L1 = 2x. Hence the straight line f1 = 0 has multiplicity at least two, see [40]. In
this case we have L1 −K1 = 0, and the first integral is given by (14) and is of Darboux type.
This proves statement (b).

For b = 0 and a 6= 0 system (12) admits the exponential factor exp(y) with cofactor L2 = ax.
In this case, the straight line at infinity has multiplicity bigger than one, see [40]. So we have
(a/2)K2−L2 = 0, and system (12) has the first integral (15). Therefore statement (c) is proved.

For b = a = 0 system (12) is the system ẋ = y+x2, ẏ = 0, and clearly it has the first integral
H(x, y) = y. Hence statement (d) is proved. �
Remark 9. Note that the two invariant curves f1 = 0 and f2 = 0 of system (12) are actually
the invariant curves g1 = 0 and g2 = 0 fof system (7). This can be easily checked taking into
account the scaling of the variables (8), the relations (10) and the expression of system (11).

4.1. The finite singular points of systems (12). We recall that system (12) is the same as
system (7) for the case where 1 − 4kλ 6= 0 and under the scaling of coordinates (8), see also
Remark 3.

System (12) has the finite singular point P0 = (0, 0) and it represents an empty flat model.

For ab > 0 there are the two additional finite singular points P± =
(
±
√

a
b ,−a

b

)
and represent

spatially flat de-Sitter models. Note that the points P± belongs to the algebraic curves f1 = 0
and f2 = 0. For b 6= 2 the curve f2 = 0 is a parabola whereas for b = 2 coincides with the
straight line f1 = 0. Note that

a

b
=

(1− 4 kλ) ρ0
12λ2k (1 + α)

.

Since for system (12) we have that 1− 4kλ 6= 0, we have that the only way that the points P±
collide with the origin P0 is when a = 0 which corresponds to ρ0 = 0. We recall that in this
case the equation of state becomes p = αρ.

The Jacobian matrix at the origin has eigenvalues ±√a. For a > 0 the origin is a hyperbolic
saddle, whereas for a < 0 the point P0 it may be a focus or a center. By Theorem 4 system
(12) with a < 0 is has a first integral defined in a neighborhood of the origin P0, so P0 is a
center. Therefore there is a neighborhood of P0 filled with periodic orbits. Since the singular
point P0 represents an empty flat model which is a saddle if a > 0 and a center if a < 0, it
follows statements (a) and (b) of Theorem 7.

For a = b = 0 system (12) becomes ẋ = y + x2, ẏ = 0 and after the change of time
ds = (y + x2)dt it writes as the linear system ẋ = 1, ẏ = 0. See Figure 25 for its phase portrait
in the Poincaré disc.

For a = 0 and b > 0 we apply Theorem 3.5 of [20] and the origin P0 is a union of one
hyperbolic and one elliptic sector, we will denoted like HE.

For a = 0 and b < 0 we apply Theorem 3.5 of [20] and we conclude that the origin P0 is a
saddle.

The Jacobian matrix of system (12) at the point P+ has eigenvalues 2
√
a/b and b

√
a/b, and

at P− has eigenvalues −2
√
a/b and −b

√
a/b. Hence for a > 0 and b > 0 the singular point

P+ is an unstable node, and P− is a stable node. So P+ represent an expanding flat de-Sitter
model, whereas P− represents a contracting flat de-Sitter model. For a < 0 and b < 0 both
singular points P± are saddles, so in this case de flat de-Sitter model is unstable. This proves
statements (c), (d) and (e) of Theorem 7.
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Figure 3. The bifurcation diagram for the finite singular points of system (12).

Hence the straight lines a = 0 and b = 0 are the bifurcation lines that characterize the local
phase portraits at the finite singular points, see Figure 3.

4.2. The infinite singular points of system (12). In order to study the behaviour of the
orbits of system (12) in a neighborhood of infinity we need to write the expression of system
(12) into two charts, according to the Poincaré compactification, see chapter 5 of [20]. Hence
at the first chart (U1, F1) system (12) writes

ż1 = −z12z2 + az2 + bz1 − z1, ż2 = −z2 (z1 z2 + 1) , (18)

and for b 6= 1 the origin O1 is the only singular point of system (18). The Jacobian matrix of
system (18) at the origin O1 has the eigenvalues −1 and b − 1. Hence, for b > 1 the origin is
a hyperbolic saddle, whereas for b < 1 we have a stable node. For b = 1 then the infinity line
z2 = 0 is filled of singular points and Theorem 11 of Appendix 3.2 applies.

Now at the chart (U2, F2) system (12) becomes

ż1 = −az12z2 − bz12 + z1
2 + z2, ż2 = −z2 z1 (az2 + b) .

The Jacobian matrix at the origin O2 is not identically zero and the two eigenvalues are both
zero. Then from Theoem 3.5 of [20] we get:

• If b = 0 and a < 0 the origin O2 is a saddle.
• If b = 0 and a > 0 the origin O2 is a union of one hyperbolic and one elliptic sector,

that we denote by HE.
• If b ∈ (0, 1) the origin O2 is a saddle.
• If b < 0 or b > 1 the origin O2 is a union of one hyperbolic and one elliptic sector.
• If a = b = 0 we recall that system (12) becomes ẋ = x2 + y, ẏ = 0 and after the change

of time ds = (x2 + y)dt it writes as the linear system ẋ = 1, ẏ = 0.

The straight lines a = 0, b = 0 and b = 1 are the bifurcation curves for the infinite singular
point of system (12), see Figure 4.

Proof of Theorem 5. We use the Poincaré compactification to draw the phase portraits of system
(12) in the Poincaré disc, see for more details chapter 5 of [20].
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Figure 4. The bifurcation diagram for the infinite singular points of system (12).

To system (12) we associate the polynomial vector field

Xab = (y + x2)
∂

∂x
+ x(a+ by)

∂

∂y
.

In Figure 2 we present all the phase portraits in the Poincaré disc of system (12) or equiva-
lently of the compactified vector field p(Xab). We have construct these phase portraits taking
into account the local phase portraits at the finite and infinite singular points, the invariant
algebraic curves, and the theorem of Markus–Neumann–Peixoto, see Theorem 13 of Appendix
3.3, and the Appendix 3.4 where in the different figures of that appendix we illustrate how we
have obtained the phase portraits in the Poincaré disc for the different values of the parameters
a and b.

The key point of Theorem 13 for obtaining a phase portrait is to control its separatrices,
where they born and where they die. For our system (12) the unique separatrices are the
finite singular points, all the orbits at infinity and the separatrices of the hyperbolic sectors of
the finite and infinite singular points. See for more details on the separatrices Appendix 3.3.
Note that our system (12) has no limit cycles, because it is known that polynomial differential
systems of degree two as our system (12) if they have a limit cycle then in the bounded region
that they limited must be a focus, and our system (12) has no foci, for a proof of this result see
[41]. Furthermore two phase portraits are not topological equivalent when it does not exist a
homeomorphism to bring the separatrix configuration of one into the separatrix configuration
of the other, see Theorem 13 in Appendix 3.3.

In Figure 2 we have consider the bifurcation lines a = 0, b = 0, b = 1 and additionally the
line b = 2. We recall that for b 6= 2 there are two invariant algebraic curves, the straight line
f1 = 0 and the parabola f2 = 0, whereas for b = 2 we only have the straight line f1 = 0. Note
that for b = 0 we only have the parabola f2 = 0.

In the next table we put together the phase portraits of Figure 2 having the same number of
separatrices S and the same number of canonical regions R, and we distinguish between them

11



the ones which are topological equivalent.

S R
10 2 A12 = A13 6= A15 = A16,
11 2 A10

11 3 A14

13 4 A5 = A6 = A7, A5 6= A8, A5 6= A9, A5 6= A11, A8 6= A9, A8 6= A11, A9 6= A11

17 4 A1 = A2 6= A4

17 5 A17

19 6 A3

So we obtain twelve non topological equivalent phase portraits. Additionally we must consider
the phase portrats B0, B1, B2 and B3 having infinitely many separatrices. In summary systems
(12) have 16 non–topological equivalent phase portraits. �

5. Conclusions

In this work we study the integrability and the dynamics of a Rastall gravity model filled with
a perfect fluid that satisfies a linear equation of state. This model is given by a 2–dimensional
polynomial differential system depending on four parameters.

In general to prove the integrability or non integrability of a differential system depending on
parameters is a very hard problem. In this work we prove that the model studied is Darboux
integrable for all the values of the parameters. The existence and the expression of the first
integral (see Theorem 4) shows that the equilibrium point localized at the origin of coordinates
cannot be a focus and it must be a center. So there is a neighborhood of the origin full of
periodic orbits, see section 4 and the phase portraits A12, A13, A14, A15, A16, A17 and B3 in
Figure 2. Moreover there is an invariant straight line that is involved in the expression of the
first integral and is related with the zero energy condition see Remark 9 and also the phase
portraits in the Appendix 6.4.

In order to understand the dynamics of our model we study the stability not only of the finite
singular points but also of the infinite ones. This is a big issue since we need to control the
orbits that may escape to infinity or may come from infinity. This is the reason that we draw
the global phase portraits in the Poincaré disc. In Figures 3 and 4 we present the bifurcation
diagrams of the finite and infinite singular points respectively. Hence we can control the changes
of the stability of the singular points when the parameters of the system vary.

The physical and cosmological consequences of our dynamical study of the Rastall model here
analyzed are given in Theorem 7 where we examine the stability of the flat de-Sitter models.
Additionally, in Figure 2 we present all the non–topological equivalent global phase portraits of
the model considered, see also Theorem 5 and Corollary 6. These phase portraits provide all
the different possible dynamical behaviours of the model.

Often the existence of several parameters, four parameters here, in a dynamical system makes
very difficult its global qualitative study, and usually the numerical analysis is necessary in order
to understand the dynamics of such models. There are many models in the literature relating
Rastall gravity see for example Capone [38], Silva et al. [5], Oliveira et al. [42] and Cruz et
al. [3] among others. We remark that we have used adequate transformations to reduce the
number of parameters and we have used the polynomial structure of our model to achieve our
results. Hence all the results in this work are not numeric, almost all of them are analytic, and
some of them are algebraic. Note that the global phase portraits in Figure 2 are not numeric
and provide all the possible dynamics of the Rastall model considered. An interesting future
study could be the investigation of a similar model with a perfect fluid that satisfies a nonlinear
equation of state.
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We also check the existence of singular/non singular universe when Rastall parameter is
varying with the time. We see that for a pressureless matter there is a non singular cosmology
where for the radiation era there is a singular universe.

6. Appendices

This section is composed by three appendices.

6.1. Appendix: Invariant curves, cofactors and Darboux first integrals. Consider the
polynomial differential system

ẋ = P (x, y), ẏ = Q(x, y). (19)

Let f = f(x, y) be a polynomial in the variables x and y. The algebraic curve f(x, y) = 0 is an
invariant algebraic curve of system (19) if

P
∂f

∂x
+Q

∂f

∂y
= Kf,

for some polynomial K = K(x, y) called the cofactor of the invariant algebraic curve f = 0.
The polynomial structure of system (19) forces that the degree of the cofactor is at most one
less than the degree of the polynomial system (19). Note, that the curve f = 0 is formed by
the orbits of system (19), and consequently it is invariant under the flow of this system.

There is another object called exponential factor which also provide cofactors and appear
when invariant algebraic curves collide, i.e. when they have multiplicity larger than one. Let
F (x, y) = exp(f(x, y)/g(x, y)) where f, g polynomials. Then F in an exponential factor of
system (19) if

P
∂F

∂x
+Q

∂F

∂y
= LF,

for some polynomial L called the cofactor of the exponential factor F , see for more details [40].

A Darboux function is a function of the form,

D =
∏

fλii F
µj
j ,

where the fi = 0 are invariant algebraic curves of the system, and Fj) are exponential factors.

The following result started with Darboux [24], for the present version see for example [20].

Theorem 10. Suppose that a polynomial system (19) admits p irreducible invariant algebraic
curves fi = 0 with cofactors Ki and q exponential factors Fj with cofactors Lj. Then there exist

λi’s and µj’s in C not all zero such that
p∑
i=1

λiKi +
q∑
j=1

µjLj = 0, if and only if the function

fλ11 · · · f
λp
p Fµ11 · · ·F

µq
q (20)

is a first integral of system (19).

The first integrals of the form (20) are called the Darboux first integrals.

6.2. Appendix: Normally hyperbolic manifold. Let φt be a smooth flow on a manifold M
and suppose C is a submanifold of M consisting entirely of equilibrium points for the flow. We
say that C is normally hyperbolic if the tangent bundle to M over C splits into three subbundles
TC, Es and Eu invariant under dφt and satisfying

(i) dφt contracts Es exponentially,
(ii) dφt expands Eu exponentially,

(iii) TC = tangent boundle of C.
13



The following theorem holds, see [43].

Theorem 11. Let C be a normally hyperbolic submanifold of equilibrium points for φt. Then
there exist smooth stable and unstable manifolds tangent along C to Es

⊕
TC and Eu

⊕
TC

respectively. Furthermore, both C and the stable and unstable manifolds are permanent under
small perturbation of the flow.

6.3. Appendix: Separatrix configuration. Our aim is to present the topological classifi-
cation of the phase portraits of system (12). We use the definition of parallel flows given by
Markus [44] and Neumann in [45]. Let φ be a Cω local flow on the two dimensional manifold
R2 or R2 \ {0}. The flow (M,φ) is Ck parallel if it is Cω–equivalent to one of the following ones:

strip: (R2, φ) with the flow φ defined by ẋ = 1, ẏ = 0.

spiral: (R2 \ {0}, φ) with the flow φ defined by ṙ = r, θ̇ = 1.

annular: (R2 \ {0}, φ) with the flow φ defined (in polar coordinates) by ṙ = 0, θ̇ = 1.

We say that two polynomial vector fields Xa1b1 and Xa2b2 on R2 are topologically equivalent
in the Poincaré disc D if there exists a homeomorphism of D preserving the infinity S1 and
carrying orbits of the flow induced by p(Xa1b1) into orbits of the flow induced by p(Xa2b2). This
homeomorphism should preserve or reverse simultaneously the sense of all orbits of the two
compactified vector fields p(Xa1b1) and p(Xa2b2).

The separatrices of a vector field p(Xab) in the Poincaré disc D are

(i) All the finite singular points of p(Xab).
(ii) All the separatrices of the hyperbolic sectors of the finite and infinite singular points of

p(Xab).
(iii) All the orbits of p(Xab) which are in the boundary S1 of the Poincaré disc.
(iv) All the limit cycles of p(Xab).
Let Σ be the union of all separatrices of the flow (D, φ) defined by the compactified vector

field p(Xab) in the Poincaré disc D. Then Σ is a closed invariant subset of D. We say that every
connected component of D \ Σ, with the restricted flow, is called a canonical region of φ.

Theorem 12. Let φ be a Cω flow in the Poincaré disc with finitely many separatrices, and let
Σ be the union of all its separatrices. Then the flow restricted to every canonical region is Cω
parallel.

For a proof of Theorem 12 see [46] and [45].

The separatrix configuration Σc of a flow (D, φ) is the union of all the separatrices Σ of the
flow together with an orbit belonging to each canonical region. The separatrix configuration Σc

of the flow (D, φ) is topologically equivalent to the separatrix configuration Σ̃c of the flow (D, φ̃)

if there exists a homeomorphism from Σc to Σ̃c which transforms orbits of Σc into orbits of Σ̃c.

Theorem 13. Let (D, φ) and (D, φ̃) be two compactified Poincaré flows with finitely many sep-
aratrices coming from two polynomial vector fields (12). Then they are topologically equivalent
if and only if their separatrix configurations are topologically equivalent.

The reader can find the proof of Theorem 13 in [44, 45, 47].

According to Theorem 13 the topological classification of the phase portraits in the Poincaré
disc of a family of polynomial differential system with finitely many separatrices can be done
by considering their separatrix configurations.

6.4. Appendix: The local and the phase portraits of system (12). In this appendix and
through the different figures we explain how the phase portraits in the Poincaré disc that appear
in Figure 2 are obtained from the local phase portraits of the finite and infinite singular points,
taking also into account their invariant algebraic curves and their separatrix configurations.
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Figure 5. The local and global the phase portraits of system (12) for a > 0
and b > 2. In both pictures we have drawn the straight line and the parabola.
Here S = 17 and R = 4.
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Figure 6. The local and global the phase portraits of system (12) for a > 0
and b = 2. The parabola does not exist and in both pictures we have drawn the
straight line. Here S = 17 and R = 4.
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Figure 7. The local and global the phase portraits of system (12) for a > 0 and
b ∈ (1, 2). In both pictures we have drawn the straight line and the parabola.
We have S = 19 and R = 6.
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Figure 8. The local and global the phase portraits of system (12) for a > 0
and b = 1. In both pictures we have drawn the straight line and the parabola.
Here the infinity is filled by singular points.
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Figure 9. The local and global the phase portraits of system (12) for a > 0 and
b ∈ (0, 1). In both pictures we have drawn the straight line and the parabola.
Here S = 17 and R = 4.
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Figure 10. The local and global the phase portraits of system (12) for a > 0
and b = 0. In this case the straight line does not exist and in both pictures we
have drawn the parabola. Here S = 13 and R = 4.
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premier degré (mélanges). Bull. Sci. Math. 2ème Série, 2:60–96, 123–144, 151–200, 1878.

[25] T.C. Bountis, A. Ramani, B. Grammaticos, and B. Dorizzi. On the complete and partial
integrability of non–hamiltonian systems. Phys. A, 128:268–288, 1984.

[26] J.J. Morales-Ruiz. Differential Galois Theory and Non-integrability of Hamiltonian Sys-
tems. Progress in Mathematics 179. Birkhäuser, 1999.
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