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Abstract The center problem, i.e. distinguish between a focus and a center
is a classical problem in the qualitative theory of planar differential equations
which go back to Darboux, Poincaré and Liapunov. Here we solve the center
problem for the class of planar analytic or polynomial differential systems

ẋ = −y +X = −y +
k∑

j=2

Xj , ẏ = x+ Y = x+
k∑

j=2

Yj , k ≤ ∞,

where Xj = Xj(x, y) and Yj = Yj(x, y) are homogenous polynomials of degree
j > 1, under the condition

(x2 + y2)

(
∂X

∂x
+
∂Y

∂y

)
= µ (xX + yY ) with µ ∈ R \ {0}.
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Moreover we prove that these centers are weak centers, additionally, we provide
their first integrals.
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1 Introduction and main results

Let X = (−y +X)
∂

∂x
+ (x+ Y )

∂

∂y
be the real planar analytic or polynomial

vector field associated to the real planar differential system

ẋ = −y +X = −y +
k∑

j=2

Xj , ẏ = x+ Y = x+
k∑

j=2

Yj , for k ≤ ∞ (1)

where Xj = Xj(x, y) and Yj = Yj(x, y) are homogenous polynomials of degree
j. The Poincaré center-focus problem asks about conditions on the coefficients
of X and Y under which all trajectories of system (1) contained in a small open
neighborhood of the origin are closed, of course with exception of the origin.
One of the mechanism to solve the center-focus problem is the following result
due to Poincaré and Liapunov.

Theorem 1 A planar analytic or polynomial differential system (1) has a
center at the origin if and only if it has a first integral of the form

H =
∞∑

j=2

Hj(x, y) =
1

2
(x2 + y2) +

∞∑

j=3

Hj(x, y), (2)

where Hj are homogenous polynomials of degree j.

The first integral H is called the Poincaré-Liapunov first integral.
A center is called a weak center if the Poincaré-Liapunov first integral

satisfies

H =
x2 + y2

2
(1 + h.o.t.) := H2Φ.

The next theorem is proved in [4].

Theorem 2 A center of an analytic (polynomial) (2) differential system is a
weak center if and only if (2) can be written as

ẋ = −y(1 + Λ(x, y)) + xΩ(x, y),

ẏ = x(1 + Λ(x, y)) + yΩ(x, y).
(3)

Differential system (3) is called Λ−Ω differential equation. Another well-
know mechanism to solve the center-focus problem is the Reeb criterium.
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Theorem 3 [Reeb’s criterion] (see for instance [8]). The analytic differential
system (1) has a center at the origin if and only if there is a local nonzero

analytic inverse integrating factor of the form V = 1 +
∞∑

j=1

gj(x, y), called

in what follows the Reeb inverse integrating factor, in a neighborhood of the
origin, where gj = gj(x, y) is the homogenous polynomial of degree j > 0.

The following result is proved in [7].

Corollary 1 Assuming that differential system (1) has a center at the origin.
Then the Poincaré-Liapunov first integral H can be written as

H =
∞∑

n=1

(xYn − yXn)

(
1

n+ 1
−
∞∑

k=1

Tk
k + n+ 1

)
, (4)

where Tk is a homogenous polynomial for k ≥ 1 such that

1

V
=

1

1 +
∞∑

j=2

gj

= 1−
∞∑

j=1

Tj , Tk = gk −
k−1∑

j=1

gjTk−j ,

for k ≥ 1 where T1 = g1, and V is the Reeb inverse integrating factor.
In particular if the vector field X is polynomial of degree m then (4) becomes

H =
m∑

n=1

(xYn − yXn)

(
1

n+ 1
−
∞∑

k=1

Tk
k + n+ 1

)
.

Moreover if the center is a weak center then

H = H2

∞∑

n=1

2Λn−1(x, y)

(
1

n+ 1
−
∞∑

k=1

Tk
k + n+ 1

)
,

where Λ0 = 1.

A partial integral of the vector field X is a differentiable function G : D −→
R where D is an open subset of R2 satisfying

X (G) = P
∂G

∂x
+Q

∂G

∂y
= KG,

with K a function of the same class than G.
We say that an analytic (polynomial) vector field X is quasi–Darboux in-

tegrable if there exist r polynomial partial integrals g1, . . . , gr ∈ R[x, y] and
s non-polynomial Cr with r > 0 partial integrals where Kj = Kj(x, y) is a
convenient analytic (polynomial) for j = 1, . . . , s such that the function

F = ek(x,y)/h(x,y)gλ1
1 (x, y) . . . gλrr (x, y)fκ1

1 (x, y) . . . fκss (x, y),
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is a first integral, where k = k(x, y), h = h(x, y) are analytic (polynomial)
functions, and λ1, . . . , λr, κ1, . . . , κs, are complex constants.

In [4] the following conjecture was stated.

Conjecture 1. Any analytic (polynomial) vector field with a weak center at
the origin is quasi–Darboux integrable.

This conjecture is supported in particular by the results given in the proof
of the next Theorem 5 and the following two results. Note that the first result
is a local one.

Theorem 4 Any analytic (polynomial) vector field with a weak center at the
origin is locally quasi–Darboux integrable.

Theorem 4 is proved in section 2
The weak conditions provided by Alwash and Lloyd [1] give sufficient con-

ditions for the existence a center. More precisely, they proved:

Proposition 1 The origin of coordinates of the polynomial differential system

ẋ = −y +Xm, ẏ = x+ Ym, (5)

where Xm and Ym are homogenous polynomial of degree m is a center if there
exists µ ∈ R \ {0} such that

(x2+y2)

(
∂(−y +Xm)

∂x
+
∂(x+ Ym)

∂y

)
= µ (x(−y +Xm) + y(x+ Ym)) , (6)

and either m = 2k; or m = 2k − 1 and µ 6= 2k; or m = 2k − 1, µ = 2k and∫ 2π

0

(
∂X2k−1
∂x

+
∂Y2k−1
∂y

)∣∣∣∣
x=cos t, y=sin t

dt = 0.

The main objective of this paper is to extend and improve the result of Propo-
sition 1 to analytic and polynomial differential systems. Thus our two main
results are the following ones.

Theorem 5 Differential system (1), satisfying the condition

(x2 + y2)

(
∂(−y +X)

∂x
+
∂(x+ Y )

∂y

)
= µ (x(−y +X) + y(x+ Y )) , (7)

where µ ∈ R \ {0}, has a weak center at the origin if and only if:
For the analytic systems one of the following conditions holds

(i) µ /∈ N \ {1},
(ii) µ = 2,

(iii) µ = 2k + 1 ∈ N
(iV) µ = 2k ∈ N\{2}, and

β2k−1 :=

∫ 2π

0

(
∂X2k−1
∂x

+
∂Y2k−1
∂y

)∣∣∣∣
x=cos t, y=sin t

dt = 0. (8)
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For the polynomial systems of degree m one of the following conditions holds

(i) µ /∈ {1, 3, . . . ,m+ 1} ,
(ii) µ = 2,

(iii) µ = 2k + 1 ∈ {1, 2, . . . ,m+ 1},
(iv) µ = 2k ∈ {3, . . . ,m+ 1} and β2k−1 = 0.

Moreover differential system (1) satisfying (7) and having a weak center at the
origin is quasi-Darboux integrable.

Corollary 2 Differential system (5) under condition (6) has a weak center at
the origin if and only if

(i) If µ /∈ {2,m+ 1},
(ii) If µ = 2,

(iii) If µ = 2k + 1 ∈ {1,m+ 1},
(iv) If µ = 2k = m+ 1 and β2k−1 = 0.

Theorem 5 and Corollary 2 are proved in section 3.

2 Preliminary results

In the proofs of our results it plays an important role the following propositions
and corollaries.

The Poisson bracket of two functions f and g is defined as

{f, g} :=
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
.

Proposition 2 The next relation holds

∫ 2π

0

{H2, Ψ}|x=cos t, y=sin t dt = Ψ(cos 2π, sin 2π)− Ψ(cos 0, sin 0)

for arbitrary C1 function Ψ = Ψ(x, y) defined in U ⊆ R2.

Proof Indeed,

∫ 2π

0

{H2, Ψ}|x=cos t, y=sin t dt =

∫ 2π

0

(
x
∂ Ψ

∂ y
− y ∂ Ψ

∂ x

)∣∣∣∣
x=cos t, y=sin t

dt

=

∫ 2π

0

(
ẋ
∂ Ψ

∂ x
+ ẏ

∂ Ψ

∂ y

)∣∣∣∣
x=cos t, y=sin t

dt =

∫ 2π

0

d

dt
(Ψ(cos t, sin t)) dt

= Ψ(cos 2π, sin 2π)− Ψ(cos 0, sin 0).

The following corollary is due to Liapunov (see Theorem 1, page 276 of [3])
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Corollary 3 Let U = U(x, y) be a homogenous polynomial of degree m. The
linear partial differential equation

x
∂ V

∂ y
− y ∂ V

∂ x
:= {H2, V } = U,

has a unique homogenous polynomial solution V of degree m if m is odd; and if
V is a homogenous polynomial solution when m is even then any other homoge-
nous polynomial solution is of the form V +c(x2+y2)m/2 with c ∈ R. Moreover,

for m even these solutions exist if and only if

∫ 2π

0

U(x, y)|x=cos t, y=sin t dt = 0.

Proof (Proof of Theorem 4) Indeed, if the analytic vector field has a weak
center at the origin then it admits a Poincaré-Liapunov local analytic first
integral at the origin H = H2(1 + h.o.t) = H2Φ(x, y). From Theorem 2 we
get that Ḣ2 = 2H2Ω(x, y), i.e. H2 is a partial integral with analytic cofactor
2Ω(x, y). It is easy to show that the analytic function Φ(x, y) is an analytic
partial integral with cofactor −2Ω(x, y). In short the theorem is proved.

In the proof of Theorem 5 and Corollary 2 we need the following two
propositions which also appeared in the Ph.D. [7], and for completeness we
prove them here.

Proposition 3 Let

ẋ = P (x, y), ẏ = Q(x, y) (9)

be an analytic (polynomial) differential system . Then this system can be writ-
ten as

ẋ = P = −∂F
∂y
− y G, ẏ = Q =

∂F

∂x
+ xG. (10)

where F and G are convenient analytic (polynomial) functions, if and only if

∫ 2π

0

(
∂P

∂x
+
∂Q

∂y

)
|x=cos t, y=sin tdt = 0. (11)

holds.

Moreover if (11) holds then differential system (9) can be written as

ẋ = −∂Φ
∂y
− y Λ̃

µ
+
x

µ

(
∂P

∂x
+
∂Q

∂y

)
,

ẏ =
∂Φ

∂x
+ x

Λ̃

µ
+
y

µ

(
∂P

∂x
+
∂Q

∂y

)
,

(12)

where Φ = µF + 2H2G, µ ∈ R\{0}, and Λ̃ is a convenient function.
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Proof Indeed, if (11) holds then there exist a function G such that

{H2, G} =
∂P

∂x
+
∂Q

∂y
⇐⇒ x

∂G

∂y
− y ∂G

∂x
=
∂P

∂x
+
∂Q

∂y
⇐⇒

∂(Q− xG)

∂y
+
∂(P + yG)

∂x
= 0⇐⇒ P + yG = −∂F

∂y
, Q− xG =

∂F

∂x
,

consequently (10) holds.
Assume that (10) holds then

∂P

∂x
+
∂Q

∂y
= {H2, G}+

∂2H̃

∂y∂x
− ∂2H̃

∂x∂y
,

and by considering that
∂2H̃

∂y∂x
=

∂2H̃

∂x∂y
we get that

{H2, G} =
∂P

∂x
+
∂Q

∂y
.

Hence in view of the relation

∫ 2π

0

{H2, G} |x=cos t, y=sin tdt = 0 we obtain that

(11) holds. In short the proposition is proved.
Now we prove formula (12) for differential system (9) under the condition

(11).
If (11) holds then from (10) we get that

{H2, G} =
∂P

∂x
+
∂Q

∂y
, {F, H2} = xP + yQ.

So

{µF + 2H2G, H2} = (x2 + y2)

(
∂P

∂x
+
∂Q

∂y

)
− µ (xP + yQ) .

Thus

x

(
µP − x

(
∂P

∂x
+
∂Q

∂y

)
+
∂Φ

∂y

)
+ y

(
µQ− y

(
∂P

∂x
+
∂Q

∂y

)
− ∂Φ

∂x

)
= 0.

Consequently, by introducing the function Φ = µF + 2H2G, we get that

µP − x
(
∂P

∂x
+
∂Q

∂y

)
− ∂Φ

∂y
= −Λ̃ y,

µQ− y
(
∂P

∂x
+
∂Q

∂y

)
− ∂Φ

∂x
= Λ̃ x,

Thus formula (12) is proved. In short the proposition is proved.



8 J. Llibre, R. Ramı́rez, V. Ramı́rez

Proposition 4 The analytic differential system (2) satisfying condition (7)
can be written as the Λ−Ω differential system

ẋ = −y(1 + Λ) +
x

µ

(
∂X

∂x
+
∂Y

∂y

)
= −y(1 + Λ) + xΩ(x, y),

ẏ = x(1 + Λ) +
y

µ

(
∂X

∂x
+
∂Y

∂y

)
= x(1 + Λ) + yΩ(x, y).

(13)

Where Λ = Λ(x, y) is a solution of the first order partial differential equation

{H2, Λ} = (µ− 2)Ω − x∂Ω
∂x
− y ∂Ω

∂y
, (14)

which in polar coordinates x = r cos θ, y = r sin θ becomes

∂

∂θ

(
Λ̃
)

=
∂

∂r

(
Ω̃

rµ−2

)

where Λ̃ = Λ(r cos θ, r sin θ) and Ω̃ = Ω(r cos θ, r sin θ).

Proof Indeed, from (7) it follows that

x

(
µX − x

(
∂X

∂x
+
∂Y

∂y

))
+ y

(
µY − y

(
∂X

∂x
+
∂Y

∂y

))
= 0.

Hence

µX − x
(
∂X

∂x
+
∂Y

∂y

)
= −µΛ, µY − y

(
∂X

∂x
+
∂Y

∂y

)
= µΛ,

where Λ = Λ(x, y) is a convenient function. Thus we obtain that

X = −yΛ+ xΩ, Y = xΛ+ yΩ,

where

Ω =
1

µ

(
∂X

∂x
+
∂Y

∂y

)
, (15)

Thus we easily obtain (13). From these relations we get that

∂X

∂x
= −y ∂Λ

∂x
+Ω + x

∂Ω

∂x
,

∂Y

∂y
= x

∂Λ

∂y
+Ω + y

∂Ω

∂y
.

Consequently the formula (14) it follows. Finally we observe that if

X = −∂Φ
∂y
−yΛ+xΩ, Y =

∂Φ

∂x
+xΛ+yΩ, with Ω =

1

µ

(
∂X

∂x
+
∂Y

∂y

)

where Ω is given by formula (15), and Λ is a solution of equation (14). Thus
the proposition is proved.
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A center O of system (1) is a uniform isochronous center if the equality
xẏ − yẋ = κ(x2 + y2) holds for a nonzero constant κ; or equivalently in polar
coordinates (r, θ) such that x = r cos θ, y = r sin θ, we have that θ̇ = κ.
Clearly that from Theorem 2 it follows that uniform isochronous centers are
weak center.

Example 1 For differential system (5) under the condition (6) we get that
differential system (13) and condition (14) becomes

ẋ = −y(1 + Λm−1) + xΩm−1,

ẏ = x(1 + Λm−1) + yΩm−1,

{H2, Λm−1} = (µ−m− 1)Ωm−1,

(16)

respectively. Consequently if µ−m− 1 6= 0, then system (16) can be written
as

ẋ = −y(1 + Λm−1) + x
{H2, Λm−1}
µ−m− 1

, ẏ = x(1 + Λm−1) + y
{H2, Λm−1}
µ−m− 1

,

and if µ−m− 1 = 0, then

ẋ = −y(1 + Λm−1(H2)) + xΩm−1, ẏ = x(1 + Λm−1(H2)) + yΩm−1. (17)

Since the differential system (17) in polar coordinates writes

ṙ = rΩm−1(r cos θ, r sin θ), θ̇ = 1 + Λ(1/2),

we get that the weak center in this case is a uniform center.

3 Proof of Theorem 5 and Corollary 2

Proof of Theorem 5. Multiplying (7) by (x2 + y2)(µ−2)/2 we get

V

(
∂

∂y
(−y +X) +

∂

∂y
(x+ Y )

)
= (−y +X)

∂V

∂x
+ (x+ Y )

∂V

∂y
,

where V = (x2 + y2)µ/2, or equivalently

∂

∂x

( −y +X

(x2 + y2)µ/2

)
+

∂

∂y

(
x+ Y

(x2 + y2)µ/2

)
= 0.

Hence there exists a function F̃ such that

−y +X

(x2 + y2)µ/2
= −∂F̃

∂y
,

x+ Y

(x2 + y2)µ/2
=
∂F̃

∂x
. (18)

Thus

−y +X = −(x2 + y2)µ/2
∂F̃

∂y
, x+ Y = (x2 + y2)µ/2

∂F̃

∂x
. (19)
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From this relation we easily obtain

∂X

∂x
+
∂Y

∂y
= µ(x2 + y2)(µ−2)/2{F̃ ,H2}.

Hence in view of Proposition 2 we get that
∫ 2π

0

(
∂X

∂x
+
∂Y

∂y

)∣∣∣∣
x=cos t, y=sin t

dt =

µ
(
F̃ (cos(2π), sin(2π))− F̃ (cos(0), sin(0))

)
.

(20)

On the other hand, from (19) and in view of Proposition 4 it follows

dF̃ =

(
x+ Y

(x2 + y2)µ/2

)
dx+

(
y −X

(x2 + y2)µ/2

)
dy

=
(x(1 + Λ(x, y)) + yΩ(x, y))

(x2 + y2)µ/2
dx+

(y(1 + Λ(x, y))− xΩ(x, y))

(x2 + y2)µ/2
dy.

(21)

From the condition
∂2F̃

∂y∂x
=

∂2F̃

∂x∂y
we get that the function Λ must be satisfies

the equation (14).
Clearly from (21) we obtain

dF̃ =
(1 + Λ(x, y))(xdx+ ydy)

(x2 + y2)µ/2
+
Ω(x, y)(y dx− x dy)

(x2 + y2)µ/2
. (22)

First we study the analytic case. Thus we assume that Λ(x, y) =
∞∑

j=1

Λj(x, y)

andΩ(x, y) =

∞∑

j=1

Ωj(x, y), where Λj(x, y) andΩj(x, y) are homogeneous poly-

nomials of degree j. Equation (22) in polar coordinates x = r cos θ, y = r sin θ
becomes

df =
1 + Λ(r cos θ, r sin θ)

rµ−1
dr − Ω(r cos θ, r sin θ )

rµ−2
dθ,

where f := f(r, θ) = F̃ (r cos θ, r sin θ) and

Λj(r cos θ, r sin θ ) = rjαj(θ), Ωj(r cos θ, r sin θ ) = rjτj(θ), for j ∈ N,

or equivalently

df =


r1−µ +

∞∑

j=1

rj+1−µαj(θ)


 dr −



∞∑

j=1

rj+2−µτj(θ)


 dθ. (23)

Hence

∂f

∂r
= r1−µ +

∞∑

j=1

rj+1−µαj(θ),
∂f

∂θ
= −

∞∑

j=1

rj+2−µτj(θ),
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From the compatibility conditions
∂2f

∂r∂θ
=

∂2f

∂θ∂r
we get that

∂

∂θ
(αj(θ)) = α′j(θ) = −(j + 2− µ)τj(θ), (24)

or equivalently
∂

∂θ

(
rjαj(θ)

)
= −(j + 2 − µ)rjτj(θ), which in cartesian coor-

dinates becomes

{H2, Λj} = −(j + 2− µ)Ωj

= (µ− 2)Ωj − x
∂Ωj
∂x
− y ∂Ωj

∂y
,

Assuming that µ /∈ N \ {1} then in (24) j+ 2−µ 6= 0. Consequently from (26)
we obtain that

df =


r1−µ +

∞∑

j=1

rj+1−µαj(θ)


 dr +



∞∑

j=1

rj+2−µ

j + 2− µα
′
j(θ)


 dθ

= d


 r2−µ

2− µ +
∞∑

j=1

rj+2−µ

j + 2− µαj(θ)


 .

Therefore

f =
r2−µ

2− µ +
∞∑

j=1

rj+2−µ

j + 2− µαj(θ),

is a first integral, which in cartesian coordinates becomes

F̃ (x, y) =

1

2− µ +

∞∑

j=1

Λj(x, y)

j + 2− µ
(x2 + y2)(µ−2)/2

.

Therefore

H =
1

F̃ (x, y)2/(µ−2)
=

2H2
 1

2− µ +

∞∑

j=1

Λj(x, y)

j + 2− µ




2/(µ−2) , (25)

is an analytic first integral defined in a neighborhood of the origin, i.e. it is
a Poincaré-Liapunov first integral. From the expression of this first integral

we obtain that the origin is a weak center. Clearly that H2 and
1

2− µ +

∞∑

j=1

Λj(x, y)

j + 2− µ are partial integrals with analytic cofactor 2Ω and (µ − 2)Ω

respectively.
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Now assume that µ ∈ N\{2}. Let j = µ−2, then αµ−2(θ) = αµ−2 =constant.
From (26) and in view of (24) we obtain that

df =


r1−µ +

αµ−2
r

+
∞∑

j=1
j 6=µ−2

rj+1−µαj(θ)


 dr

−


τµ−2(θ) +

∞∑

j=1
j 6=µ−2

rj+2−µτj(θ)


 dθ

= d


 r2−µ

2− µ +

∫
τµ−2(θ)dθ + αµ−2 log r +

∞∑

j=1

rj+2−µ

j + 2− µαj(θ)


 .

(26)

Thus

f =
r2−µ

2− µ +

∫
τµ−2(θ)dθ + αµ−2 log r +

∞∑

j=1

rj+2−µ

j + 2− µαj(θ),

or equivalently the function f is

1

rµ−2




1

2− µ + αµ−2rµ−2 log r +

∫
rµ−2τµ−2(θ)dθ +

∞∑

j=1
j 6=µ−2

rj

j + 2− µαj(θ)




=
1

rµ−2

( 1

2− µ + αµ−2rµ−2 log r +

∫
Ωµ−1(r cos θ, r sin θ)dθ

+
∞∑

j=1
j 6=µ−2

Λj(r cos θ, r sin θ)

j + 2− µ
)
.

We have that
∫
Ωµ−2(r cos θ, r sin θ)dθ

∣∣∣∣
r=
√
x2+y2, θ=arctan(y/x)

= βµ−1 arctan
y

x
+ ϕ,

where ϕ := ϕ(x, y) is a polynomial of degree µ−1 and βµ−1 is a constant such
that

βµ−1 =

∫ 2π

0

Ωµ−2(cos t, sin t)dt =

∫ 2π

0

1

µ

(
∂Xµ−1
∂x

+
∂Yµ−1
∂y

)
|x=cos t, y=sin tdt

=





0 if µ = 2k + 1,
1

µ

∫ 2π

0

(
∂X2k−1
∂x

+
∂Y2k−1
∂y

)
|x=cos t, y=sin tdt if µ = 2k,
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This first integral in cartesian coordinates becomes

F̃ (x, y) =
1

(2H)(µ−2)/2

( 1

2− µ + ϕ(x, y) + βµ−1 arctan
y

x

+
Λµ−2(2H2)

2
logH2 +

∞∑

j=1
j 6=µ−2

Λj(r cos θ, r sin θ)

j + 2− µ
)
,

Therefore from (20) we obtain that

F̃ (cos(2π), sin(2π))− F̃ (cos(0), sin(0)) =
βµ−1 arctan(tan(2π))

2µ/2−1
.

Thus in order to obtain a center at the origin from (20) we need that βµ−1 = 0.
From (24) we get that αµ−2 is a constant, i.e.

∑

j+k=µ−2
ak j cosk θ sinj θ = αµ−2 = constant,

Hence Λµ−2 = rµ−2αµ−2 thus

Λµ−2 = (2H)(µ−2)/2αµ−2 =

{
0 if µ 6= 2k,
(2H)k−1α2k−2 if µ = 2k.

Hence

H̃ =

(
1

F̃ (x, y)

)2/(µ−2)∣∣∣∣∣
βµ−1=0

=
2H2


1

2− µ +

∞∑

j=1
j 6=µ−2

Λj
j + 2− µ +

Λµ−2(H2)

2
log (2H2) + ϕ(x, y)




2/(µ−2) .

Thus if µ 6= 2k

H =
H2


1

2− µ +

∞∑

j=1
j 6=µ−2

Λj
j + 2− µ + +ϕ(x, y)




2/(µ−2) , (27)

and if µ = 2k then

H̃ =
H2


1

2− 2k
+

∞∑

j=1
j 6=2k−2

Λj
j + 2− 2k

+
(2H2)k−1

2
logH2 + ϕ(x, y)




1/(k−1) .
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When µ = 2k > 2 the first integral H̃ is such that lim
(x,y)−→ (0,0)

H̃ = 0 and

it is not analytic. So we have a center, by considering that is a center of a
Λ−Ω equation we obtain that the origin is a weak center. Evidently that H2

and
1

µ− 2
+

(2H2)k−1

2
logH2+ϕ(x, y)+

∞∑

j=1
j 6=2k−2

Λj
j + 2− µ are partial integrals

with analytic cofactor 2Ω and (µ− 2)Ω.
If µ 6= 2k then H is a first integral an analytic at the origin. Thus the

origin is a weak center. Clearly that H2 and
1

µ− 2
+

∞∑

j=1
j 6=µ−2

Λj
j + 2− µ +ϕ(x, y)

are partial integrals with analytic cofactor 2Ω and (µ− 2)Ω.
Finally we consider the case µ = 2. Then from (26) and (24) we have that

df(r, θ) =


r−1 +

∞∑

j=1

rj−1αj(θ)


 dr +



∞∑

j=1

rj

j
α′j(θ)


 dθ

= d


log r +

∞∑

j=1

rj

j
αj


 = d


log r +

∞∑

j=1

Λj
j


 .

Therefore the first integral F̃ (x, y) becomes

F̃ (x, y) =
1

2
log 2H2 +

∞∑

j=1

Λj
j

=
1

2
log


2H2 exp


2

∞∑

j=1

Λj
j




 .

The Poincaré-Liapunov first integral in this case is

H = H2 exp


2

∞∑

j=1

Λj
j


 .

So if µ = 2 then the origin is a weak center, and Theorem 5 is proved for the
analytic case.

The condition in order that a polynomial differential system of degree m
satisfying condition (7) has a center at the origin are obtained directly from
conditions proved in the analytic case.

Polynomial differential system of degree m satisfying condition (7) has a
weak center at the origin if and only if (8) holds. We provide the expressions
of the first integrals in the case of polynomial differential systems.

If µ 6∈ {3, 4, . . . ,m+ 1} , then we get the analytic first integral in the
neighborhood of the origin from (25)

H =
H2

 1

2− µ +
m−1∑

j=1

Λj
j + 2− µ




2/(µ−2) .
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If µ 6= 2k ∈ {3, 4, . . . ,m+ 1} , then from (27) we get that the Poincaré-
Liapunov first integral is

H =
H2


1

2− µ + ϕ(x, y) +

m−1∑

j=1
j 6=µ−2

Λj
j + 2− µ+




2/(µ−2) ,

where ϕ(x, y) is a polynomial such that

ϕ(x, y) =

(∫
Ωµ−2(r cos θ, r sin θ)dθ

∣∣∣∣
r=
√
x2+y2, θ=arctan(y/x)

)∣∣∣∣∣
βµ−1=0

.

and if µ = 2k ∈ {3, 4, . . . ,m+ 1} , then

H̃ =
H2

−
1

2− 2k
+ ϕ(x, y) +

m−1∑

j=1
j 6=2k−2

Λj
j + 2− 2k

+
(2H2)k−1

2
logH2




1/(k−1) .

The first integral H̃ is such that lim
(x,y)−→ (0,0)

H̃ = 0 and is not analytic. So we

have a center, by considering that is a center of the Λ−Ω equation we obtain
that the origin is a weak center.

If µ = 2 the Poincaré-Liapunov first integral in this case is

H = H2 exp


2

m−1∑

j=1

Λj
j


 ,

then the origin is a weak center, and Theorem 5 is proved for polynomial case.
Thus Theorem 5 is proved.

Proof of Corollary 2. It is a simple consequence of Theorem 5 for the polyno-
mial case the Poincaré-Liapunov first integral is

H =
1

2
(
F̃ (x, y)

)2/(m−1) =
H2(

1

m− 1
+

Λm−1
m+ 1− µ

)2/(m−1) .

If µ /∈ {2,m + 1}. Clearly that H2 and
1

m− 1
+

Λm−1
m+ 1− µ are partial

integrals with polynomial cofactor 2Ωm−1 and (m− 1)Ωm−1 respectively.
If µ = m+ 1 6= 2k then the Poincaré-Liapunov first integral is

H =

(
1

F̃ (x, y)

)2/(m−1)∣∣∣∣∣
βm−1=0

=
2H2(

1

m− 1
+ ϕ(x, y)

)1/(m−1) ,
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where ϕ(x, y) is a polynomial of degree m− 1 and such that

ϕ(x, y) =

(∫
Ωm−1(r cos θ, r sin θ)dθ

∣∣∣∣
r=
√
x2+y2, θ=arctan(y/x)

)∣∣∣∣∣
βm−1=0

,

and βm−1 =

∫ 2π

0

(
∂X2k−1
∂x

+
∂Y2k−1
∂y

)∣∣∣∣
x=cos t, y=sin t

dt = 0.

If µ = m+ 1 = 2k then the first integral is

H̃ =
H2

(
− 1

2− 2k
+

(2H2)k−1

2
logH2 + ϕ(x, y)

)1/(k−1) .

The first integral H̃ is such that lim
(x,y)−→ (0,0)

H̃ = 0 and it is not analytic. So

we have a center, by considering that is a center of the Λ − Ω equation we
obtain that the origin is a weak center.

If µ = 2 then we get the following Poincaré-Liapunov first integral

H = H2 exp

(
2
Λm−1
m− 1

)
.

In short the corollary is proved.

4 Example

In [5,6] we state the following conjecture

Conjecture 2. The polynomial differential system of degree m

ẋ = −y(1 + κ (a1 y − a2 x)) + x(a1x+ a2y +Ωm−1) = −y +X,

ẏ = x(1 + κ (a1 y − a2 x)) + y(a1x+ a2y +Ωm−1) = x+ Y,
(28)

where (κ + m − 2)(a21 + a22) 6= 0, and Ωm−1 = Ωm−1(x, y) is a homogenous
polynomial of degree m−1, has a weak center at the origin if and only if system
(28) after a linear change of variables (x, y) −→ (X,Y ) is invariant under the
transformations (X,Y, t) −→ (−X,Y,−t).

Theorem 6 Conjecture 2 holds for m = 2, 3, 4, 5, 6.

The center problem for the case when (κ + m − 2)(a21 + a22) = 0, we solve in
the next proposition.

Proposition 5 polynomial differential system of degree m (28) satisfies the
condition (6) if (κ+m− 2)(a21 + a22) = 0.
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Proof After some computations we get that

xX + yY = (x2 + y2)(a1x+ a2y +Ωm−1),

∂ X

∂x
+
∂ Y

∂y
= (κ+ 3)(a1x+ a2y) + x

∂Ωm−1
∂x

+ y
∂Ωm−1
∂y

+ 2Ωm−1

∣∣∣∣
κ=m−2

= (m+ 1)(a1x+ a2y +Ωm−1),

hence we get that

(x2 + y2)

(
∂ X

∂x
+
∂ Y

∂y

)
= (m+ 1) (xX + yY ) ,

which coincide with (6) with µ = m + 1. In this case we get that βm−1 =∫ 2π

0

Ωm−1(cos t, sin t)dt.

To solution of the center problem for differential system (28) under the con-
dition (κ + m − 2)(a21 + a22) = 0 is a simple consequence of Theorem 5 with
µ = m+ 1. The case when a1 = a2 = 0 was study in [2].
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