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Abstract: Background: Interleukin-6 (IL-6) is a pleiotropic and multifunctional cytokine that plays a
critical role in induction of experimental autoimmune encephalomyelitis (EAE), a mouse model of
multiple sclerosis (MS). Although EAE has always been considered a peripherally elicited disease,
Il6 expression exclusively within central nervous system is sufficient to induce EAE development.
Neurons, astrocytes, and microglia can secrete and respond to IL-6. Methods: To dissect the relevance
of each cell source for establishing EAE, we generated and immunized conditional Il6 knockout
mice for each of these cell types with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) peptide
dissolved in complete Freund’s adjuvant (CFA) and supplemented with Mycobacterium tuberculosis.
Results and conclusions: The combined results reveal a minor role for Il6 expression in both astrocytes
and microglia for symptomatology and neuropathology of EAE, whereas neuronal Il6 expression was
not relevant for the variables analyzed.

Keywords: conditional IL-6 knockout; experimental autoimmune encephalomyelitis; MOG35-55peptide;
neuroinflammation

1. Introduction

Interleukin 6 (IL-6) is a pleiotropic and multifunctional cytokine that has been linked to immune
system control and has also been involved in the coordination between endocrine and central nervous
systems (CNS) in both basal and inflammatory conditions [1]. Overproduction of IL-6 has been
described in several inflammatory and immune disorders such as multiple sclerosis [2,3].

Multiple sclerosis (MS) is the most common disabling autoimmune disease of the CNS in young
adults and affects more than 2 millions of people worldwide [4]. Different MS patterns based on
imaging and biological markers as well as disease activity and progression have been described.
Patients are not usually affected by a single clinically isolated attack, rather many of them develop
a relapsing-remitting pattern and suffer progressive disability during the course of the disease. The
major pathological features of MS are demyelinating lesions in white matter of the CNS accompanied
by lymphocyte infiltrates, high production of cytokines, and gliosis, which cause neuronal damage [5].
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Although the etiology of MS is unknown, a complex interaction among genetic, environmental, and
lifestyle factors could contribute to disease susceptibility [6]. Increased levels of Il6 mRNA and/or IL-6
protein have been detected in serum, cerebrospinal fluid, and nervous tissue from MS patients [3,7,8].
Moreover, polymorphisms of the Il6 gene could are associated with higher MS risk [9–11]. Different
experimental models have been used to mimic features of MS disease. Experimental autoimmune
encephalomyelitis (EAE) produced by active immunization is one of the most used models to study
acute and chronic inflammation in the spinal cord [12]. This model consists in the injection of
the Myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) peptide dissolved in complete Freund’s
adjuvant (CFA) and supplemented with Mycobacterium tuberculosis [13], which causes an inflammatory
encephalomyelitis with primary axonal injury mediated by T-helper cells producing IL-17 (Th17) [14].
IL-6 is a critical cytokine in the induction phase of EAE pathogenesis, as total Il6-deficient mice (IL-6
KO) are resistant to EAE and IL-6 blockade inhibits the development of EAE symptoms [15–20].
Several mechanisms may underlie this resistance. For instance, IL-6 KO mice showed an incompetent
Th17 response and presented few infiltrates of T lymphocytes and monocytes [17,21]. Indeed, it has
been described that IL-6 blocks TGFβ-induced regulatory T cells (Treg) differentiation and induces,
together with TGFβ, the retinoid-related orphan-γt and -α receptors (ROR-γt and ROR-α), which are
key transcription factors for Th17 differentiation [21–24]. IL-6 has also been involved in the regulation
of adhesion molecules in endothelial cells, thus regulating the trafficking of infiltrating cells [17].
However, the role of IL-6 in MS and EAE dynamics is unclear, given that, surprisingly, IL-6 blockade is
ineffective once EAE starts [19]. Moreover, some authors have observed a neuroprotective role of IL-6
since it might induce myelin repair in inactive demyelinated lesions from MS patients [7] or even that
the exogenous administration of IL-6 or its production may reduce the clinical signs of EAE [25–27].
With respect to the production of IL-6 by peripheral cells, it is known that IL-6 from T cells, B cells,
and dendritic cells promotes the clinical signs of EAE [28,29]. However, only dendritic cell-derived Il6
deficiency was able to completely block the EAE induction [29].

IL-6 can be produced within the CNS in neuroinflammatory conditions by a wide variety of brain
cells and infiltrating inflammatory cells. Thus, studying the multiple cellular sources of IL-6 could
help to better understand the contribution of each one to the pathological process of EAE. Astrocytes
have been involved in each stage of the EAE pathologic process from the scar-like formation to restrict
the inflammation to the axonal damage before EAE symptoms begin [30,31]. Astrocytes are one of
the major sources of IL-6 in EAE and its production has been shown to be increased in areas of injury
by proximal astrocytes [3,32,33], and in a preliminary study we showed that MOG35-55-immunized
astrocytic Il6-deficient females had a delay and an amelioration of EAE clinical signs [34]. Nevertheless,
some evidence that IL-6 secreted by astrocytes could be detrimental is also available, since mice with a
chronic non-resolving form of EAE displayed IL-6 production mainly in astrocytes, and when they
were injected with the IL-6 antibody, their clinical signs improved [33]. These authors suggested that
the detrimental role of astrocyte-derived IL-6 during EAE might be mediated through microglia, since
an upregulation of Galectin-1 expression was observed in the brain, which is secreted by astrocytes and
limits microglial activation [33]. Microglia are resident immune cells of the CNS that can acquire a
phagocytic phenotype. Microglia are resident immune cells of the CNS that can acquire a phagocytic
phenotype. Besides astrocytes, microglia are one of the main sources and target of IL-6 following
neuroinflammatory processes [35]. Although most data suggest that microglial activation begins after
formation of demyelinating MS plaques, in some cases their activation has been described before
demyelinating processes and axonal injuries [36]. Different roles for their activation have been reported
in MS and EAE pathogenesis, including myelin debris removal, antigen presentation, and cytokine
production. Moreover, other study also reported that inhibiting microglia activation would delay and
reduce the EAE clinical score [37]. Recent data have highlighted the possible neuroprotective effects of
IL-6 derived from microglia and infiltrated macrophages in EAE pathogenesis [29,38]. Another cellular
source of IL-6 within the CNS is neurons [39,40]; however, the way in which neuronal IL-6 participates
in EAE pathogenesis has not yet been studied.
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Since EAE pathogenesis is coordinated by IL-6 and brain production of IL-6 could be relevant in
the symptomatology and inflammatory response of this disease, a thorough understanding of role of
IL-6 derived from astrocytes, neurons, and microglia is important. In this study, we have investigated
the role or astrocytes, microglia, and neurons in the MOG35-55-immunization-induced EAE. Our results
suggest that astrocytic and microglial IL-6, but not neuronal IL-6, play a role in EAE symptomatology
and the subsequent neuropathology in a sex-dependent manner.

2. Materials and Methods

2.1. Animals

All mice used in this study were fed ad libitum and housed under constant temperature and 12h
light/ 12h dark cycle. All experiments were performed with approval by the Ethics Committee on
Animal Experiments of the Universitat Autònoma de Barcelona and the Generalitat de Catalunya (Refs.
3782 and 9684, respectively).

Conditional IL-6 KO Mice

To obtain conditional KO mice where Il6 expression was blunted in astrocytes, neurons, or
microglia, we used Il6lox/lox mice [41] and mice in which Cre recombinase was driven by Gfap [42],
Syn1 [43], or Cx3cr1 [44] promoters, respectively. Il6lox/lox mice were back-crossed C57BL/6OlaHsd
mice for more than 10 generations before being crossed with Cre-expressing mice. The offspring
positive for Cre were selected and crossed again with Il6lox/lox mice obtaining four genotypes: Il6lox/wt

Cre+/-, Il6lox/wt Cre-/-, Il6lox/lox Cre+/-, and Il6lox/lox Cre-/-. For the different experiments, we selected as
subjects of study the Il6lox/lox Cre+/- (IL6:GFAP KO, IL6:SYN1 KO, or IL6:CX3CR1 KO), which lacked Il6
expression in astrocytes, neurons, or microglia, respectively, and as controls the Il6lox/lox Cre-/- (Il6lox/lox

(floxed) mice, which is wild type (WT)).

2.2. Genotyping

All mice were genotyped by PCR analysis of tail, liver, and brain DNA, which were previously
extracted by boiling in 100 µL of 50 mM sodium hydroxide for 7 min. This is essential to exclude
animals with ectopic recombination. The primers and PCR protocol to genotype the Il6 gene and Cre
recombinase of the conditional IL-6 KO mice were obtained from Quintana et al. [41] and Sanz et al. [45].

2.3. Animals Used for EAE and Tamoxifen Treatment

The induction of EAE was carried out using adult mice. A single experiment was carried out with
IL6:GFAP KO and their WT mice (2–3 months old); and with IL6:CX3CR1 KO and their WT mice (3–5
months old). Because of the very high rate of ectopic recombination observed (which severely restricted
the number of mice usable for experiments; see below), two separate experiments were carried out with
IL6:SYN1 KO and WT mice, which have been pooled; most of the mice from both experiments were
4–11 months old, and 1 male KO and 1 female WT were 2 months old. Gfap-Cre and Synapsin-1-Cre
mice are constitutive models [42,43], whereas Cx3cr1CreER mouse is a tamoxifen-inducible model [44].
Therefore, the IL6:CX3CR1 KO mice and their respective controls were injected with Tamoxifen (TAM).
TAM solution was prepared in two steps: (i) First, TAM (Sigma 5648, Madrid, Spain) was dissolved
in ethanol at a concentration of 10 mg/100 µL by shaking and heating at 37 ◦C [46], and then, (ii) the
solution was diluted with sunflower oil to 10 mg/mL. Mice received one intraperitoneal injection of
100 µL of solution (1 mg of TAM) per day for five consecutive days, and they were used for EAE
experiments 8 weeks later.

2.4. Induction of EAE and Clinical Evaluation

The induction of EAE was carried out as follows. Mice were anesthetized by inhalation with
isoflurane (oxygen flowmeter to 0.8 L/min and isoflurane vaporizer to 4% and 1.5% during induction
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and maintenance, respectively) as described [13,15]. The emulsion was prepared by sonication
from two separate solutions in equal volumes: one in which the lyophilized MOG35–55 peptide
(MEVGWYRSPFSRVVHLYRNGK, purity >98%; peptide synthetized under request in the Peptide
Synthesis Facility at the Universitat Pompeu Fabra, Barcelona, Spain) was diluted with 10 mM
phosphate buffered saline (PBS 1X) to 3 mg/mL, and another in which the M. tuberculosis H37RA (BD
Difco 231141, New Jersey, USA) was diluted with complete Freund’s adjuvant (CFA; Sigma-Aldrich
F5881, St. Louis, MO, USA) to 4 mg/mL. On day 0, mice were immunized with two subcutaneous
injections of 100 µL of MOG35–55 emulsion into the hind flanks, whereas those used as controls
(whenever possible) were immunized instead with an emulsion containing 3 mg/mL of bovine serum
albumin (BSA; Sigma A9647). Additionally, mice were injected intraperitoneally with 2.5 µg/mL
Bordetella pertussis toxin (Native Antigen Company PT-TNL-50, UK) to facilitate the EAE induction.
A second dose of B. pertussis toxin was injected 2 days after immunization.

Body weight and progression of EAE were monitored daily after immunization, with the latter
being assessed in each animal with a numerical scale following criteria: 0 = no signs of disease, 0.5 =

partial loss of tail tonus, 1 = loss of tail tonus, 2 = moderate hind limb paraparesis, 2.5 = severe hind
limb paraparesis, 3 = partial hind limb paralysis, 3.5 = hind limb paralysis, 4 = tetraplegia, and 5 =

death. When mice lost more than 10% weight, they were injected with saline supplemented with
3.6% glucose. The self-mutilation, weight loss greater than 25%, and tetraplegia for more than two
days were considered as endpoints. The time to disease onset, time to peak disease, peak-score, and
cumulative score (sum of all scores) were also calculated individually [13,15].

Mice were killed by decapitation and the blood was collected from the trunk, with the serum
obtained by centrifugation at 9500× g for 10 min at 4 ◦C and stored at −85 ◦C. The vertebral column
was cut between the ninth and tenth thoracic vertebrae, and the upper part was fixed with 4%
paraformaldehyde (PFA) for histological analysis, while the lower part was carefully dissected,
snap-frozen in liquid nitrogen, and stored at −80 ◦C for molecular analysis. In the case of IL6:GFAP
KO and their controls, the medulla oblongata was used for molecular analysis and the entire spinal
cord was fixed for histological analysis.

2.5. Quantitative Polymerase Chain Reaction (qPCR)

RNA was extracted from spinal cord (~20 mg) of BSA- and MOG35-55-immunized mice using
Promega Maxwell RSC simplyRNA kit following manufacturer’s instructions. Before synthesizing
cDNA using iScript cDNA synthesis kit (BioRad Laboratories, Madrid, Spain), 2 µg of RNA of each
sample was treated with an extra DNase I step (Qiagen, Hilden, Germany). Then, a two-step qPCR
protocol was performed using the iTaq Universal SYBR Green Super-mix (1725124, BioRad Laboratories,
Madrid, Spain) and different pairs of primers. Samples were loaded in duplicate to the plate at the
appropriate concentration, which depended on the pair of primers (Supplementary Figure S1). In
addition, primers for Glyceraldehyde 3-phosphate dehydrogenase (Gapdh) gene were used in each cDNA
concentration and a 3-point 10-fold dilution curve (sample mixture) was also included to obtain the
efficiency of amplification of the primers of interest.

The analysis of fold change expression was calculated using the delta-delta-Ct method with
different efficiencies, which were obtained from the slope of the standard curve for each gene, and
Gapdh as reference gene. Finally, the average of whole BSA-immunized WT male group was used
as calibrator in the experiment of gene expression of IL6:CX3CR1 KO mice and WT mice, and its
expression change average was always 1. In the other gene expression experiments (IL6:GFAP KO
mice and IL6:SYN1 KO their respective controls), the calibrator was the whole MOG35-55-immunized
WT male group.

2.6. Histology

The vertebral column with spinal cord was carefully dissected, removing the vertebral column
and post-fixing the spinal cord in fresh 4% PFA for 24 h. Afterwards, the spinal cord was washed



Cells 2020, 9, 330 5 of 18

with PBS 1X, embedded in paraffin and cut sagittally into 8-µm wide sections. For myelin evaluation,
samples were incubated with 0.1% Luxol Fast Blue (LFB) overnight at 56 ◦C and then differentiated
with 0.05% lithium carbonate (Fluka 62K70, Bucharest, Romania) and 70% ethanol. Samples were
counterstained with hematoxylin solution (Sigma MHS16, Madrid, Spain). Other sections were used
for IHC analysis, with microglia/macrophage, astrocytes, lymphocytes cluster of differentiation 3 +

(CD3+), and Th17 being identified by antibodies against ionized calcium binding adaptor molecule-1
(IBA-1; Wako Pure Chemical industries 019-19741, 1/1500, Osaka, Japan), GFAP (Dako Z0334, 1/900,
Denmark A/S), CD3+ (Dako A0452, 1/100, Denmark A/S), and IL-17 (Santa Cruz Biotechnology 7927,
1/50, Heidelberg, Germany), respectively. Endothelial cells were detected by antisera against Factor
Von Willebrand (FVW; Dako A0082, 1/800, Denmark A/S).

Antigen retrieval treatment was required in IBA-1, CD3, IL-17, and FVW IHC. For the former,
samples were treated with citrate buffer (10 mM sodium citrate 0.05% tween, pH 6) for 20 min at 96
◦C whereas for the latter three, sections were treated with 1 g/L protease type XIV (Sigma, P5147,
Madrid, Spain) for 8 min at 37 ◦C. Then, blocking endogenous peroxidase was performed using 70%
methanol and 3% hydrogen peroxide (H2O2) for 15 min. Afterwards, samples were blocked in 1%
BSA in Tris-buffered saline 0.05 M and 0.5% triton at least for 1 h and then incubated with primary
antibodies overnight at 4 ◦C. The following day, samples were incubated with secondary antibody
Atom BA-1000 (biotininylated anti-rabbit IgG (H + L) 1/300, Vector Laboratories, Burlingame, CA,
USA) for 1 h at room temperature (RT) and later with horseradish peroxidase-coupled streptavidin
(Vector SA-5004, 1/500-600, Burlingame, CA, USA). Immunoreactivity was visualized by adding 50
mg/mL 3,3-diaminobenzidine-tetrahydrohloride and 0.033% H2O2 for 1–5 min at RT. Finally, slides
from CD3 and FVW IHC were counterstained with hematoxylin solution.

Two non-consecutive sections from each animal were used for each histological analysis. Serial
images of the tissues from duplicates were taken at 10-20x using a Nikon Eclipse 90i microscope and
Nikon Act-1 software. Samples were quantified using ImageJ software, and in those of CD3 and
FVW IHQ counterstained with hematoxylin and of LFB/hematoxylin staining, we previously used the
color deconvolution plugin of Image J to divide both colors and quantify only CD3+ cells, vessels,
and myelin. In LFB staining and IL-17 IHC, the percentage of demyelinated and infiltrated area,
respectively, was evaluated in the white matter. For CD3 IHC, we quantified the integrated density of
CD3 per infiltrate. For IBA-1 and GFAP IHC, quantification of integrated density of white and grey
matter of the spinal cord was annotated. This was not possible in the case of IBA-1 staining of the
white matter of IL6:GFAP KO cross because background was too high; therefore, we counted instead
the reactive IBA-1+ cells per infiltrate. For FVW IHC, we focused on integrated density of white matter.
All results were normalized using all the measured area.

2.7. Statistics

All data are presented as mean ± SEM. Statistical calculations were performed using the Statistical
Package for Social Sciences (SPSS) software. The clinical score was statistically analyzed by generalized
linear model (GzLM) using the area under curve measure, which was previously calculated using
GraphPad Prism. Body weight gain and the other clinical evaluations were analyzed by generalized
estimated equations (GEE) and Mann–Whitney U test, respectively. Histological and gene expression
analysis were analyzed by GzLM using genotype and sex or genotype and treatment as mean factors.
In case of comparisons between two groups, t-Student was used. Statistical significance was set at p ≤
0.05 in all analyses.
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3. Results

3.1. IL6:GFAP KO, but not IL6:SYN1 KO and IL6:CX3CR1 KO Mice, Present an Ameliorated EAE
Symptomatology in a Sex-Dependent Manner

It is increasingly clear that ectopic recombination is widespread among Cre driver lines, which
must be properly controlled as thoroughly discussed recently [47]. Therefore, in all mice we assessed
specific and nonspecific Il6 recombination in DNA isolated from brain and tail and liver samples,
respectively. In accordance to previous results using GFAP-Cre, Syn1-Cre, and Cx3cr1CreER mice [40,48],
ectopic Il6 recombination (presumably indicating germline recombination) was very high in the former
two (~60–90%, respectively) and nearly absent in the latter. Therefore, we only used mice that showed
no peripheral recombination, which severely restricted the number of groups possible. MOG35–55

peptide and BSA immunizations were possible in the microglial model, but in the case of the astrocytic
and neuronal models, prioritizing MOG35–55 immunization was the most logical option, and therefore
no BSA-immunized animals were employed. Some non-immunized control animals were also included
in the astrocytic model for illustrating the effect of EAE on neuropathology in that cross; unfortunately,
that was not possible in the neuronal model.

All MOG35-55-immunized mice showed the prototypical ascending paralysis course in the three
crosses, starting at 10 days post-immunization (dpi) and peaking approximately at 15-17 dpi with a
clinical score of 2-3 (Figure 1A). It is important to emphasize that these are independent experiments,
using different Cre-expressing strains that carry different genetic backgrounds, performed not in
parallel but using different MOG35-55 batches; therefore, they cannot be compared directly with each
other. Regarding the development of EAE in mice presumably with (see below) Il6 expression blunted
in astrocytes, microglia, or neurons, there was a clear sex-dependent effect. Thus, no differences were
observed in male mice of the three models compared to their respective WT animals. In contrast,
female mice lacking IL-6 in astrocytes had a significantly ameliorated clinical EAE score (Figure 1A,
left), and the same trend was observed in those lacking IL-6 in microglia during the acute phase of the
disease (17-21 dpi; P=0.079) (Figure 1A, right), whereas no differences were observed in the neuronal
model (Figure 1A, middle). The day of onset, peak score, time to peak, and cumulative score were also
determined for each animal (Figure 1B). In accordance with the previous results, significant changes
were observed only in females lacking IL-6 in astrocytes, which showed a decrease in peak score and
cumulative score. Although the incidence of EAE was almost 100% for all of the groups, the mortality
rate was between 2 and 10 % depending on the cross, with no obvious differences between genotypes
(Figure 2B).

In accordance with the clinical scores observed, all EAE mice lost body weight, both absolute
(Figure 2A) and relative (Supplementary Figure S2A). Despite the significantly ameliorated clinical
EAE score of female mice lacking IL-6 in astrocytes, they lost the same amount of absolute and relative
body weight as their WT mice (Figure 2A, left; Supplementary Figure S2A, left). IL6:SYN1 KO and
IL6:CX3CR1 KO male and female mice lost weight similar to their respective WT group (Figure 2A
and Supplementary Figure S2A, middle and right, respectively). Interestingly, females lacking IL-6
in neurons weighed significantly less than their WT throughout the experiment regardless of EAE
(Figure 2A, middle).

In contrast to MOG35–55 immunization, BSA-immunized IL6:CX3CR1 KO and WT mice neither
displayed any type of paralyzing symptoms during the 27–29 dpi, nor showed these prominent weight
losses (Supplementary Figure S2B,C).
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Figure 1. Clinical score after myelin oligodendrocyte glycoprotein 35–55 (MOG35–55) immunization 
separated by sex and genotype. (A) Clinical course of EAE of IL6:GFAP KO and wild type (WT) mice 
(left); IL6:SYN1 KO and WT mice (middle); IL6:CX3CR1 KO and WT mice (right). All MOG35-55-
immunized mice displayed the prototypical ascending paralysis course starting at 10 dpi, but only 
IL6:GFAP KO females showed an ameliorated experimental autoimmune encephalomyelitis (EAE) 
symptomatology. (B) For each animal, we determined the time to disease onset, time to peak disease, 
peak score, and cumulative score (sum of all scores from disease onset to last day annotated). Only 
IL6:GFAP KO females showed a decrease in peak score and cumulative score. Number of mice per 
group as indicated. Results are MEAN ± SEM; ★ p ≤ 0.05 versus WT mice. 
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Figure 1. Clinical score after myelin oligodendrocyte glycoprotein 35–55 (MOG35–55) immunization
separated by sex and genotype. (A) Clinical course of EAE of IL6:GFAP KO and wild type (WT) mice (left);
IL6:SYN1 KO and WT mice (middle); IL6:CX3CR1 KO and WT mice (right). All MOG35-55-immunized
mice displayed the prototypical ascending paralysis course starting at 10 dpi, but only IL6:GFAP KO
females showed an ameliorated experimental autoimmune encephalomyelitis (EAE) symptomatology.
(B) For each animal, we determined the time to disease onset, time to peak disease, peak score, and
cumulative score (sum of all scores from disease onset to last day annotated). Only IL6:GFAP KO
females showed a decrease in peak score and cumulative score. Number of mice per group as indicated.
Results are MEAN ± SEM;F p ≤ 0.05 versus WT mice.
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Figure 2. Clinical assessment of EAE. (A) Absolute body weight changes of IL6:GFAP KO and WT 
mice (left); IL6:SYN1 KO and WT mice (middle); IL6:CX3CR1 KO and WT mice (right). All MOG35-55-
immunized mice displayed a prominent body weight loss peaking approximately at 15–17 dpi. 
IL6:SYN1 KO females weighed less than their controls regardless of EAE. (B) EAE incidence and 
mortality. Although all mice displayed paralyzing symptoms, the mortality rate was low during the 
studied days. Number of mice per group as indicated. Results are MEAN ± SEM; ★ p ≤ 0.05 versus 
WT mice. 

3.2. Demyelination, Infiltrates, and Gliosis in the Spinal Cord of MOG35-55-Immunized Mice are Regulated in 
Sex- and Cellular IL-6 Source-Dependent Manner 

Representative images of demyelination and CD3+ and IL-17 infiltrates in the spinal cord are 
shown in Figure 3A and quantification of the results is shown in Figure 3B. In accordance with the 
clinical signs, the spinal cord of MOG35–55-immunized mice, but not those immunized with BSA, 
showed clear signs of focal demyelination of the white matter and the presence of infiltrates. 
Quantification of luxol staining showed a general trend for a lower demyelinating area in all the KO 
mice (Figure 3B, left). Using sex as an additional factor in the statistical analysis, astrocytic Il6 
deficiency tended to decrease the percentage of demyelinated area (p = 0.075) (Supplementary Figure 
3). No effect on the CD3+ infiltrates between genotypes was observed (Figure 3B, middle; 
Supplementary Figure 3; Figure 4). In contrast, there is an interaction between sex and genotype 
(IL6:SYN1 KO and WT mice) with regard to IL-17 infiltrates and a significant difference between 
IL6:CX3CR1 KO and WT mice, with IL-17 infiltrates being decreased by lack of microglial IL-6 (Figure 
3B, right; and Supplementary Figure 4). 

 

Figure 2. Clinical assessment of EAE. (A) Absolute body weight changes of IL6:GFAP KO and
WT mice (left); IL6:SYN1 KO and WT mice (middle); IL6:CX3CR1 KO and WT mice (right). All
MOG35-55-immunized mice displayed a prominent body weight loss peaking approximately at 15–17
dpi. IL6:SYN1 KO females weighed less than their controls regardless of EAE. (B) EAE incidence and
mortality. Although all mice displayed paralyzing symptoms, the mortality rate was low during the
studied days. Number of mice per group as indicated. Results are MEAN ± SEM;F p ≤ 0.05 versus
WT mice.

3.2. Demyelination, Infiltrates, and Gliosis in the Spinal Cord of MOG35-55-Immunized Mice are Regulated in
Sex- and Cellular IL-6 Source-Dependent Manner

Representative images of demyelination and CD3+ and IL-17 infiltrates in the spinal cord are
shown in Figure 3A and quantification of the results is shown in Figure 3B. In accordance with
the clinical signs, the spinal cord of MOG35–55-immunized mice, but not those immunized with
BSA, showed clear signs of focal demyelination of the white matter and the presence of infiltrates.
Quantification of luxol staining showed a general trend for a lower demyelinating area in all the KO
mice (Figure 3B, left). Using sex as an additional factor in the statistical analysis, astrocytic Il6 deficiency
tended to decrease the percentage of demyelinated area (p = 0.075) (Supplementary Figure S3). No
effect on the CD3+ infiltrates between genotypes was observed (Figure 3B, middle; Supplementary
Figure S3; Figure 4). In contrast, there is an interaction between sex and genotype (IL6:SYN1 KO
and WT mice) with regard to IL-17 infiltrates and a significant difference between IL6:CX3CR1 KO
and WT mice, with IL-17 infiltrates being decreased by lack of microglial IL-6 (Figure 3B, right; and
Supplementary Figure S4).
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Figure 3. Analysis of demyelination and infiltrates in the white matter of CNS. (A) Representative 
images of LFB staining counterstained with hematoxylin (left), CD3 immunostaining counterstained 
with hematoxylin (middle), and Interleukin-17 (IL-17) (right) immunostaining of bovine serum 
albumin (BSA)- and MOG35–55-immunized mice. The discontinuous line delimits white matter (WM) 
from gray matter (GM). MOG35–55 immunization caused clear signs of demyelination and prominent 
accumulation of inflammatory cellular infiltrates. Scale bar: 100 µm. (B) Quantification of LFB staining 
(left), CD3+ (middle), and IL-17+ (right). BSA- and non-immunized (NI) mice had no demyelination or 
infiltrates in comparison with MOG35–55-imunized animals. No significant differences between 
genotypes were observed other than the decrease of IL-17 IHC in IL6:CX3CR1 KO mice and a sex-
dependent opposed effect in IL6:SYN1 KO mice. All results were normalized per total area and 
represented in MEAN ± SEM. Number of mice per group as indicated.  p ≤ 0.05 versus BSA/NI mice 
★ p ≤ 0.05 versus WT mice. 

◆
 Indicates a significant interaction between genotype and sex. 

Gliosis was evaluated by GFAP (astrocytes) and IBA-1 (microglia) IHC (Figure 4). We observed 
GFAP+ and IBA-1+ cells widespread across white and gray matter of the spinal cord in MOG35–55-
immunized IL6:CX3CR1 KO and WT mice compared to those immunized with BSA (Figure 4A,B). 
Moreover, BSA-immunized IL6:CX3CR1 KO mice showed exclusively GFAP+ and IBA-1+ cells with 
resting, ramified morphology both in the white and grey matter of spinal cord (Figure 4B, panels 1 
and 3). In contrast, after MOG35-55-immunization, mice displayed reactive, thicker cell processes, 
GFAP+ cells, and reactive, less ramified and even round IBA-1+ cells (Figure 4B, panels 2 and 4). 

Quantification of GFAP IHC is shown in Figure 4C, left. GFAP quantification in the white matter 
is challenging because background is high, which we think is rather due to myelin tracts than to 
unspecific staining, since when primary antibody was omitted, the staining was very low (not 
shown). Therefore, quantification of overall staining intensity did not reveal clear effects of EAE or 
IL-6 deficiencies in this spinal cord area. In contrast, quantification of GFAP IHC was more 
meaningful in the gray area, where we could observe clear increases in EAE animals in IL6:GFAP KO 
mice (compared to non-immunized animals) and in IL6:CX3CR1 KO mice (compared to BSA-

Figure 3. Analysis of demyelination and infiltrates in the white matter of CNS. (A) Representative
images of LFB staining counterstained with hematoxylin (left), CD3 immunostaining counterstained
with hematoxylin (middle), and Interleukin-17 (IL-17) (right) immunostaining of bovine serum albumin
(BSA)- and MOG35–55-immunized mice. The discontinuous line delimits white matter (WM) from gray
matter (GM). MOG35–55 immunization caused clear signs of demyelination and prominent accumulation
of inflammatory cellular infiltrates. Scale bar: 100 µm. (B) Quantification of LFB staining (left), CD3+

(middle), and IL-17+ (right). BSA- and non-immunized (NI) mice had no demyelination or infiltrates in
comparison with MOG35–55-imunized animals. No significant differences between genotypes were
observed other than the decrease of IL-17 IHC in IL6:CX3CR1 KO mice and a sex-dependent opposed
effect in IL6:SYN1 KO mice. All results were normalized per total area and represented in MEAN ±
SEM. Number of mice per group as indicated. • p ≤ 0.05 versus BSA/NI miceF p ≤ 0.05 versus WT
mice. � Indicates a significant interaction between genotype and sex.

Gliosis was evaluated by GFAP (astrocytes) and IBA-1 (microglia) IHC (Figure 4). We observed
GFAP+ and IBA-1+ cells widespread across white and gray matter of the spinal cord in
MOG35–55-immunized IL6:CX3CR1 KO and WT mice compared to those immunized with BSA
(Figure 4A,B). Moreover, BSA-immunized IL6:CX3CR1 KO mice showed exclusively GFAP+ and
IBA-1+ cells with resting, ramified morphology both in the white and grey matter of spinal cord
(Figure 4B, panels 1 and 3). In contrast, after MOG35-55-immunization, mice displayed reactive, thicker
cell processes, GFAP+ cells, and reactive, less ramified and even round IBA-1+ cells (Figure 4B, panels
2 and 4).

Quantification of GFAP IHC is shown in Figure 4C, left. GFAP quantification in the white matter is
challenging because background is high, which we think is rather due to myelin tracts than to unspecific
staining, since when primary antibody was omitted, the staining was very low (not shown). Therefore,
quantification of overall staining intensity did not reveal clear effects of EAE or IL-6 deficiencies in this
spinal cord area. In contrast, quantification of GFAP IHC was more meaningful in the gray area, where
we could observe clear increases in EAE animals in IL6:GFAP KO mice (compared to non-immunized



Cells 2020, 9, 330 10 of 18

animals) and in IL6:CX3CR1 KO mice (compared to BSA-immunized animals). The effect of EAE was
clearly higher in the former than in the latter cross, perhaps because the timings were different: 19 dpi
vs 27–29 dpi, respectively. No clear differences between genotypes were observed when using sex
as a factor in the statistical analysis. However, if males and females were analyzed separately, in the
IL6:SYN1 KO cross, a significant decrease was observed in the gray matter of IL6:SYN1 KO male mice
compared to their WT animals (Figure 4C, left).
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Figure 4. Assessment of the gliosis. (A) Representative images of GFAP immunostaining (astrocytes;
left) and IBA-1 immunostaining (microglia; right) of BSA- and MOG35–55-immunized IL6:CX3CR1
KO mice. The discontinuous line delimits white matter (WM) from gray matter (GM). MOG35-55

immunization caused a dramatic accumulation of activated astrocytes and microglia widespread across
white and gray matter of the CNS. Scale bar: 100 µm. (B) High magnifications of (A) showing the
different morphologies of GFAP+ and IBA-1+ cells. (1) Ramified, resting GFAP+ cells; (2) reactive,
hypertrophic GFAP+ cells; (3) ramified, resting IBA-1+ cells; (4) reactive, with shorter and thicker cell
processes (dashed black arrows) and round (black arrow) IBA-1+ cells. (C) Quantification of GFAP (left)
and IBA-1 (right) IHC in the three crosses revealed activation of astrocytes and microglia, respectively.
In general, the effect of EAE was more robust on microgliosis (clearly seen in both white and gray
matter areas of the spinal cord) than on astrogliosis (more obvious in gray matter); but there were no
clear differences between genotypes in comparison to their control mice. Number of mice per group as
indicated. All results were normalized per total area and were represented in MEAN ± SEM; • p ≤ 0.05
versus BSA/NI mice. � Indicates a significant interaction between factors.
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p ≤ 0.05 versus WT mice
in a specific sex of EAE animals.

Quantification of IBA-1 IHC (integrated density) is shown in Figure 4C, right. In general, this
could be done in both the white and the gray matter, but in the IL6:GFAP KO cross, the background
was too high in the white matter (Supplementary Figure S3); therefore, in this case, we instead counted
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the number of reactive IBA-1+ cells per infiltrate. Regardless of the method employed, the effect of
EAE was clearly visible in both areas of the spinal cord when compared with NI or BSA-immunized
animals, but again no clear differences between genotypes were observed, other than a trend for
decreasing microgliosis in IL6:CX3CR1 KO females (p = 0.070) (Figure 4C, right). Finally, angiogenesis
was analyzed with FVW IHC in the white matter of IL6:GFAP KO and WT mice (Supplementary Figure
S5A). This staining was increased in MOG35-55-immunized mice compared to NI mice. If the latter are
excluded as a factor in the statistical analysis, a significant difference was observed between genotypes
(Supplementary Figure S5B).

3.3. IL6:GFAP KO and IL6:CX3CR1 KO, but not IL6:SYN1 KO Mice, Present an Altered Expression of Some
Inflammation-Related Genes During EAE

MOG35-55-immunization caused an upregulation of Il6 mRNA levels of the spinal cord compared
to BSA-immunized animals, with the increase being higher at 15 dpi than at 27–29 dpi (Figure 5). At
the time periods studied, Il6 mRNA levels were lower in IL6:GFAP KO and IL6:CX3CR1 KO, but not in
IL6:SYN1 KO mice, compared to their respective WT controls.Cells 2020, 9, 330 12 of 18 
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In addition, to dissect the putative role of IL-6 derived from each cellular source in EAE dynamics,
we also analyzed the expression of several genes related to gliosis (Mac1 and Gfap), and M1 (Cd16;
pro-inflammatory role) and M2 (Tgfb and Cd206; immunoregulatory role) phenotypic markers in
IL6:GFAP KO, IL6:SYN1 KO, and IL6:CX3CR1 KO mice (Figure 5). Concerning the latter model, where
we could analyze BSA- and MOG35-55-immunized animals, all the genes analyzed but Cd206 were
significantly upregulated during EAE compared to BSA-immunized mice (Figure 5, bottom). Microglial
Il6 deficiency tended to decrease some of these responses when analyzing all the groups simultaneously
(separately for each sex). If analyzed separately at 15 and 27 dpi, a significant decrease was observed
at 15 dpi for Gfap and Cd206 expression in males.

Regarding IL6:GFAP KO and IL6:SYN1 KO mice, we could not include BSA or non-immunized
animals (see above). Therefore, the focus is in the putative differences compared to WT animals during
EAE. While some trends were observed in astrocytic and neuronal models at 19 and 27 dpi, respectively,
the only significant difference was for RORgt mRNA levels, which were significantly upregulated in
MOG35-55-immunized IL6:GFAP KO mice compared to their controls (Figure 5, top).

4. Discussion

MS is one of first causes of chronic disability among young people worldwide but its underlying
pathological mechanisms are still not well defined. In the past years, many groups have described
IL-6 as a key mediator at the induction phase of EAE [15–20]. This result together with others that
demonstrate the possible neuroprotective roles of IL-6 in EAE reflect the multifunctional character
of this cytokine [25,26]. Since IL-6 is produced by diverse brain and peripheral cellular types, the
study of IL-6 from different cellular sources in the inflammatory response to EAE could give some
insight into the heterogeneity of its functions. Although EAE has always been considered as a
peripheral disease [49], we observed that Il6 expression exclusively within CNS could induce the
atypical EAE-related symptoms known to occur in GFAP-IL6 mice without systemic IL-6 [15]. This is in
agreement with results in systemic IL-6 KO mice reporting that IL-6 could mediate locally EAE disease,
since the resistant phenotype cannot be explained solely by lack of encephalitogenic T cells [50]. To
dissect the specific role of astrocyte-, neuron-, and microglia-derived IL-6, we have used the Cre-lox
system. As stated above, ectopic recombination is widespread among Cre driver lines [47], and
therefore ectopic Il6 recombination was adequately controlled and only animals with the specific
recombination were used.

The production of cytokines and IL-6, in particular, is increased in the spinal cord during
EAE [32,51], agreeing with our results in measuring Il6 mRNA levels. By using IL6:GFAP KO, IL6:SYN1
KO, and IL6:CX3CR1 KO mice, significant decreases of Il6 mRNA levels could be expected compared to
their respective WT animals since astrocytes, neurons, and microglia, respectively, are potential sources
of this cytokine; we recently described the effectiveness of these three Cre mouse models [40,48]. Il6
mRNA levels during EAE were indeed decreased in IL6:GFAP KO and IL6:CX3CR1 KO mice, which is
not surprising since astrocytes and microglia are two of the main brain cellular sources of IL-6 [3,52]. In
contrast, bulk Il6 mRNA levels of IL6:SYN1 KO mice were not different from those of their control mice.
Since this model provides neuronal recombination (see [40] for further discussion), the present results
suggest that during EAE neurons might not be the main cells producing IL-6 in the inflammatory
cascade of this disease or maybe there exists a compensatory response by other Il6-expressing cells. To
some extent, this can be correlated to the decrease of the clinical scores observed in the two former
models, and the lack of it in the IL6:SYN1 KO mice. While systemic IL-6 KO mice are resistant to
EAE [15,17], we can conclude that restricting IL-6 production solely in brain cells can eventually only
reduce, but not prevent, EAE. Astrocytes seem to be the most relevant source of IL-6 in this regard. We
previously showed that IL6:GFAP KO mice with limited backcrossing with C57BL/6OlaHsd mice (5
generations) had an ameliorated EAE only in females [34], which is the same result obtained in this
study with floxed mice fully backcrossed (>10 generations), with a lower EAE clinical score, decreased
peak and cumulative scores, and a trend for increased day to onset. In the former study, 2-month-old
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IL6:GFAP KO females lost less weight during EAE [34]; however, this did not occur in the present
study when mice with similar ages (2–3 months old) were used, suggesting that genetic background
likely influences the results in this regard. The same trends were observed in 3-5 months old microglial
Il6-deficient mice, but they were not significant, despite Il6 mRNA bulk levels were decreased similarly.
Finally, IL6:SYN1 KO mice had a normal EAE, which in principle is consistent with their normal Il6
mRNA levels. We cannot rule out that the wide age range of the mice (2–11 months) could influence
the clinical signs, although the comparison of the younger versus the older mice yielded similar results.
The body weights were altered during EAE, but in contrast to the clinical scores, no differences were
observed between IL-6 genotypes and their respective WT controls. Interestingly, IL6:SYN1 KO female
mice showed a lower body weight regardless of the EAE disease. It is feasible that the roles of these
cellular sources of IL-6 in the control of body weight can be related to these results to some extent.
Indeed, we did observe a major phenotype of IL6:SYN1 KO female mice, in line with the present
results, when fed with a high-fat diet [40,48]. Taking all these data together, our results reinforce the
idea that IL-6 derived from different brain cellular sources may participate in EAE pathogenesis in a
cell-type specific manner.

As stated, EAE is normally considered as a peripheral disease where infiltrating T cells into
the CNS have a major role [49]. However, although astrocytic (significantly) and microglial IL-6
seemed to have a role in the clinical course of EAE, no significant differences were observed in the
number of CD3+ cells infiltrating the spinal cord at 19 and 27–29 dpi. Since this is a general marker
of T cells, it is possible that specific T cell populations could be altered in the Il6-deficient animals
studied. Since IL-6 acts as a key regulator in the differentiation of Th17 cells, which participate in EAE
pathogenesis [21,53,54], we analyzed the presence of Th17+ cells. Indeed, IL6:CX3CR1 KO mice did
show significantly decreased numbers of Th17+ cells at 27–29 dpi. Recent data support the idea of
possible positive feed-back loop between IL-17 and IL-6, given that Th17 cells produce IL-17, which
would interact with astrocytes and microglia, enhancing the production of IL-6 of these cells, and in
turn, inducing Th17 differentiation [55–57].

A grossly exaggerated accumulation of activated astrocytes and microglia in the CNS are linked
to EAE pathology, and it has long been known that IL-6 overexpression in the brain causes a prominent
gliosis [58]. However, while there were trends for decreased gliosis, as measured by IHC, in the
three models studied, the differences were small, which, together with the results already observed in
Erta et al. [34], strongly suggest that astrocytes, neurons, and microglia during EAE are not critical
regarding gliosis (or at least at 19, 27, and 27–29 dpi, respectively). To further determine the nature of
the inflammatory response, gene expression of gliosis markers was also analyzed. Although microglial
Il6 deficiency did not have a significant effect on Gfap and Mac1 expression at 27–29 dpi in comparison
to their WT controls, IL6:CX3CR1 KO male mice showed lower Gfap expression at 15 dpi. Thus, it
is feasible that in the induction phase, IL-6 is more relevant and that might be also the case with
astrocytic and neuronal Il6, which deserves to be studied in the future. We cannot rule out, however,
a SNC-specific area effect, since IHC was carried out in the spinal cord, and white and gray matter
were analyzed separately, whereas qPCR was done in spinal cord (neuronal and microglial models)
and medulla oblongata (astrocytic model) homogenates. We also confirmed a decreased vasogenesis
in IL6:GFAP KO mice [34], which in fact is consistent with results in GFAP-IL6 mice, which display
a proliferative angiopathy [58]. Since blood vessels regulate the traffic of leukocytes into the brain
parenchyma, it is feasible that a decreased vascular compartment might be related to a decreased EAE.
Nevertheless, this is unlikely a straightforward relationship. For instance, vasogenesis was reduced in
both sexes, yet EAE was reduced only in IL6:GFAP KO female mice; and CD3+ leukocytes were not
different between genotypes.

Another mechanism that contributes to EAE pathology is the recruitment of macrophages
to the CNS [59]. Once microglia are activated in neuroinflammatory conditions, they acquire a
macrophage-like phenotype and although recently some markers have been proposed as specific
for microglia, they are still under debate. The hypothesis of polarization between classically
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activated macrophages/microglia (M1) and alternatively activated macrophages/microglia (M2) is hotly
debated [60]. In this paper, we have focused on three markers to know whether astrocytic, neuronal,
and microglial Il6 deficiency would alter the “M1-like” (Cd16) and “M2-like” (Cd206 and Tgfb) gene
expression profile. Cd206 expression was downregulated in microglial Il6-deficient males at 15 dpi.
Interestingly, Il6-expressing macrophages M2 were associated with CD206 marker [38], demonstrating
the possible positive feedback between Il6 and Cd206 expression. However, although Cd206, Tgfb, and
Cd16 expression were higher in MOG35-55-immunized mice than BSA-immunized mice at 27-29 dpi,
their expressions were marginally affected by the lack of astrocytic, microglial, and neuronal IL-6. IL-6
in combination with TGFβ induces upregulation of RORgt expression triggering the developmental
program of Th17 cells [21]. Given the lack of Il6 expression in astrocytes, we hypothesize that the
upregulation of RORgt mRNA levels at 19 dpi might be modulated by other factors. In fact, a previous
study detailed that systemic IL-6 KO mice do not generate Th17 cells, but the deletion of Treg cells
from these animals caused a reappearance of Th17 cells given the cooperation of TGFβ with IL-21 [61].
These results together with others demonstrate the complexity of IL-6 actions.

So far, the present results strongly suggest a limited role of brain IL-6 during EAE. Peripheral
sources of IL-6, in contrast, are clearly important. Studies using the same floxed mice suggest that
dendritic cells as well as T-cell and B-cells may be critical. Dendritic cell-derived Il6 plays the most
relevant role in EAE, since naïve T cells could not differentiate into Th17 cells because of the lack
of the so-called IL-6 cluster signaling [29]. The same study also reported an amelioration of EAE
in animals with Il6 deficiency in T-cell and B-cells, although, together with a former study, the role
of B-cell Il6 deficiency may have a variable effect in MOG35-55-immunized mice [28,29]. In contrast,
macrophage-derived Il6 deficiency aggravated the symptoms in MOG35-55-immunized mice during
the first days of the disease [29], revealing once again that Il6 derived from different cells, also in the
periphery, could play dissimilar role in the same context. Importantly, these results in macrophages
are in sharp contrast to those observed in microglia.

5. Conclusions

In summary, the present results demonstrate that the symptomatology and inflammatory response
to EAE may be influenced to some extent by IL-6-expressing brain cells. However, the role of IL-6
depends on the cellular source and the sex of the mice, with, in general, females being the most affected
regarding astrocytic and microglial Il6 deficiency. Interestingly, MS is more common and caused more
burden in women [4], and the existence of an interplay between estrogens and IL-6 has long been
known [40,46,62,63]. Clearly these sex-dependent effects must be considered and merit further studies.
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