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Bielliptic quotient modular curves with N square-free

Francesc Bars∗, Josep González †and Mohamed Kamel

Abstract

Let N ≥ 1 be an square free integer and let WN be a non-trivial subgroup of the group
of the Atkin-Lehner involutions of X0(N) such that the modular curve X0(N)/WN has
genus at least two. We determine all pairs (N,WN ) such that X0(N)/WN is a bielliptic
curve and the pairs (N,WN ) such that X0(N)/WN has an infinite number of quadratic
points over Q.

1 Introduction

Let X be a smooth projective curve defined over a number field K of genus gX at least two.
For a finite extension L/K, the set of points of X defined over L, X(L), is finite. When we
consider the set

Γ2(X,K) := ∪[L:K]≤2X(L) ,

we know that this set is not finite if and only if X is hyperelliptic over K, i.e. there is an
involution w defined over K such that the quotient curve has genus zero and K-rational points,
or X is bielliptic over K, i.e. there exist an involution u (called bielliptic) whose quotient
curve E has genus one, such that E is an elliptic curve over K and its K-rank is at least one
(cf. [HS91] and [Bar18, Theorem 2.14]).

We focus our attention on the modular curves X0(N)/WN defined as the quotient of the
modular curve X0(N) by a proper non-trivial subgroup WN of the group B(N) of all Atkin-
Lehner involutions. For the trivial subgroup WN = {1}, the study concerning quadratic points
for X0(N) is already done in [Bar99] and for WN = B(N) the study can be found in [BG19a]
and [BG19b].

In this paper we restrict to square-free levels N . Under this assumption, all automorphisms
of the modular curve X0(N)/WN are defined over Q (see §2) and, therefore, if X0(N)/WN is
bielliptic over a number field, then it is already bielliptic over the Q.

The pairs (N,WN) where X0(N)/WN is an hyperelliptic curve are known (cf. [FH99] and
[Has95]).The pairs (N,B(N)) where X∗0 (N) = X0(N)/B(N) is a bielliptic curve can be found
in [BG19a] and the pairs (N, 〈wN〉), where wN is the Fricke involution, for which the modular
curve X0(N)/〈wN〉 is bielliptic are given in [Jeo18] (cf. Table 4 in §7). We only consider
non-trivial subgroups WN of B(N) different from the subgroup 〈wN〉.

There are two main differences between the curves X∗0 (N) and X0(N)/WN . On the one
hand, for N 6= 37 we have that Aut(X0(N)) = B(N) and a non-trivial involution of X∗0 (N) does
not come from an involution of X0(N). Nevertheless, the non-trivial group B(N)/WN provides
a subgroup B′ of Aut(X0(N)/WN) and, also, involutions of X0(N)/WN , when B′ 6= {1}. Since
the normalizer of the group Γ0(N) in SL2(R) is the group B(N) when N is square-free, an
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automorphism u ∈ Aut(X0(N)/WN)\B′ is called exceptional, in the sense that it does not
come from an automorphism acting on the complex upper half-plane.

On the other hand, the endomorphism algebra of the jacobian of X∗0 (N) is isomorphic to the
product of totaly real number fields and the jacobian ofX0(N)/WN can have a non-commutative
endomorphism algebra. In particular, if E/Q is an elliptic curve quotient of X∗0 (N), there is
an only vector subspace of Ω1

X∗0 (N)/Q of dimension 1 that is the pullback of Ω1
E/Q under any

projection X∗0 (N)→ E. This fact can fail for elliptic quotients of the curve X0(N)/WN .
Next, we summarize the procedure used to determine all pairs (N,WN) such thatX0(N)/WN

is bielliptic. By a result of Silverman-Harris, for a finite map C → C ′ of smooth projective
curves over K, one has that if C is bielliptic , then C ′ is bielliptic or hyperelliptic or its genus
is ≤ 1. We consider the natural map

X0(N)/WN → X∗0 (N) := X0(N)/B(N) .

It is known the finite list M of levels N such that the curve X∗0 (N) is bielliptic [BG19a],
hyperelliptic [HH96] or has genus ≤ 1 [GL98]. The levels N ∈ M are the product of at most
four primes (the case of one prime is cover by [Jeo18]). For such a value N ∈ M, we only
will need to consider subgroups WN of B(N) for which the decomposition of the jacobian of
X0(N)/WN has an elliptic curve E.

In §3, by reducing modulo a suitable prime p with p - N , we can reduce the finite list of pairs
(N,WN) to be considered. Next, §4, §5 and §6 are devoted to study the cases that N is the
product of two, three or four primes respectively. The hyperelliptic case can be solved easily
by determining the automorphism group. To deal with the non-hyperelliptic case we use a
theorem of Petri and the same proposition that the one applied in [BG19b] in order to conclude
if the curve X0(N)/W corresponding to pair (N,WN) is bielliptic or not. The novelty here with
respect to [BG19a] is that in the Jacobian decomposition of X0(N)/WN via Q-isogeny, would
appear repeated elliptic factors in the endomorphism algebra of the Jacobian, see §2 for further
explanations (this is a phenomena that does not appears for X∗0 (N) with N square-free).

The main results are the two following theorems.

Theorem 1.1. Let N > 1 be a square-free integer. Assume that the genus of the modular
curve X0(N)/WN is at least 2 for a non-trivial subgroup WN of B(N) different from 〈wN〉.
The curve X0(N)/WN is a bielliptic curve if, and only if, there exists v ∈ B(N) \WN such
that the genus of X0(N)/〈WN , v〉 is one, except for the following quotient modular curves of
genus 4: X0(154)/〈w2, w77〉, X0(285)/〈w3, w95〉 and X0(286)/〈w2, w143〉. The complete list of
these bielliptic quotient modular curves is exhibited in Table 2 of §7.

Remark 1.2. The genus 4 bielliptic modular curves X0(154)/〈w2, w77〉, X0(285)/〈w3, w95〉 and
X0(286)/〈w2, w143〉 are the only curves X0(N)/WN , under the assumption of Theorem 1.1, such
that their bielliptic involutions must be exceptional.

Remark 1.3. In [Ken76], Kenku proves that if, for any subgroup WN of the Atkin-Lehner
involutions of X0(N), the modular quocient X0(N)/WN is elliptic, then N is smaller than e60.
As a by-product of the results, we obtain the complete list of all square-free values such that the
curve X0(N)/WN is elliptic.

Since X0(N)/WN has a Q-point corresponding to a cusp (always assume that the genus of
X0(N)/WN is ≥ 2), the curve X0(N)/WN will have an infinite number of quadratic points over
Q if, and only if, X0(N)/WN is hyperelliptic (see Table 1 in §7) or is bielliptic with a bielliptic
quotient with positive Q-rank. We obtain then,

Theorem 1.4. Let N > 1 be a square-free integer. Assume that the genus of the modular curve
X0(N)/WN is at least 2 for a non-trivial subgroup WN of B(N) different from 〈wN〉. Then,
the set Γ2(X0(N)/W,Q) is infinite if, and only if, the pair (N,WN) is in Table 3 of §7.
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2 Notation and preliminary results

Let N > 1 be an square-free integer. We fix once and for all the following notation.

(i) We denote by B(N) the group of the Atkin-Lehner involutions of X0(N). So, the order
of B(N) is 2ω(N), where ω(N) is the number of primes dividing N .

(ii) For N ′|N , B(N ′) denotes the subgroup of B(N) formed by the Atkin-Lehner involutions
wd such that d|N ′. In general, WN denotes a non-trivial subgroup of B(N).

(iii) The integers gN , gWN
and g∗N are the genus ofX0(N), X0(N)/WN andX∗0 (N) = X0(N)/B(N)

respectively.

(iv) We denote by NewN the set of normalized newforms in S2(Γ0(N)). The sets NewWN
N and

S2(N)WN are the subsets of NewN and S2(Γ0(N)) formed by the cusp forms invariant
under the action of the group WN .

(v) J0(N) and J0(N)WN are the jacobians Jac(X0(N)) and Jac(X0(N)/WN) respectively.

(vi) For a normalized eigenform g ∈ S2(Γ0(N)), Ag denotes the abelian variety defined over Q
attached by Shimura to g. This abelian variety can be viewed as the optimal quotient of
J0(N) such that the pullback of Ω1

Ag
is the vector space generated by the Galois conjugates

of g(q) dq/q.

(vii) Given two abelian varieties A and B defined over the number field K, the notation A
K∼ B

stands for A and B are isogenous over K.

(viii) For an integer m ≥ 1 and f ∈ NewN , am(f) is the m-th Fourier coefficient of f .

(ix) As usual, ψ denotes the Dedekind psi function.

(x) For an integer M > 1 and a letter x, EMx denotes the Q-isogeny class of an elliptic curve
of conductor M and labeled with the letter x in Cremona notation.

We recall that the Q-decomposition for J0(N) is of the form

J0(N)
Q∼
∏
M |N

∏
f∈NewM /GQ

A
nf

f ,

where nf is the number of positive divisors of N/M and GQ denotes the absolute Galois group
Gal(Q/Q). Each newform f ∈ NewM provides a nf dimensional vector subspace of S2(N)
generated by {f(qd) : 1 ≤ d|N/M}.

To determine the Q-decomposition for J0(N)WN

J0(N)WN
Q∼
∏
M |N

∏
f∈NewM /GQ

A
mf

f ,

we need to control which Af appears in this decomposition and the precise exponent 0 < mf ≤
nf . The next lemma allows us to determine a basis of S2(N)WN and, in particular, the splitting
of J0(N)WN (see [BG19b, Lemma 2.1]).

Lemma 2.1. Let M and N be positive integers such that M |N . Let M1 be a positive divisor
of M such that and gcd(M,M/M1) = 1 and let d be a positive divisor of N/M such that
gcd(M1 d,N/(M1 d)) = 1. If f ∈ S2(Γ0(M)) is an eigenvector of the Atkin-Lehner involution
wM1 with eigenvalue ε(f) and ε ∈ {−1, 1}, then f(q) + ε d f(qd) ∈ S2(Γ0(N)) is an eigenvector
of the Atkin-Lehner involution wM1 d with eigenvalue ε(f) · ε.
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Again, consider the Q-decomposition for J0(N)WN

J0(N)WN
Q∼
∏
M |N

∏
f∈NewM /GQ

A
mf

f .

Now, for f ∈ NewM if mf > 0 then f is necessarely fix by the Atkin-Lehner involutions
wd ∈ WN , with d|M , and f provides mf -eigenforms gi ∈ S2(N)WN lying in the vector space
generated by {f(qd) : 1 ≤ d|N/Mi}. The integer mf is determined by using Lemma 2.1.

For example, consider the case such that N is the product of two primes p1 and p2 .
Without lost of generality, we can assume WN = 〈wp1〉. If fi ∈ New

wp1
p1 , then mi = 2 because

fi provides in S2(N)WN the two dimensional vector space generated by the two cusp forms
fi(q)± p2fi(q

p2). If fi ∈ Newp2 then mi = 1 and we have only one modular form associated to
S2(N)WN corresponding to fi(q) + p1fi(q

p1). Finally, if fi ∈ New
wp1
N , then mi = 1. In any case,

each f ∈ NewM with M |p1p2 provides at least a Q-factor Af in the splitting of J0(p1p2)WN if
f ∈ Newwd

M with d = gcd(M, p1).
We can provide also a similar ad-hoc argument when N is a product of 3 or 4 primes

(with a fix subgroup WN) in order to control the factors and the power of such factor in the
Q-decomposition of J0(N)WN .

For N square-free, we recall the following result [Rib75, Proposition 3.1]:

Theorem 2.2. If N is square-free, then all endormorphisms of J0(N) are defined over Q.

Corollary 2.3. Assume N square-free. Then all endomorphisms of J0(N)WN are defined
over Q and, in particular, all automorphism of X0(N)/WN are defined over Q. If the Q-
decomposition of J0(N)WN satisfies that mf ≤ 1 for all f ∈ NewM \GQ, then Aut(X0(N)/WN)
is an elementary 2-abelian group.

Proof. The first part is an immediate consequence of Theorem 2.2. If mf ≤ 1 for all f ∈ NewM ,
then the statement follows form the fact that End(J0(N)WN )⊗Q is isomorphic to the product
of totaly real numbers field.

Now, if X0(N)/WN is bielliptic, there is an involution u ∈ AutQ(X0(N)/WN), called biel-
liptic involution, which is unique if gWN

≥ 6 [HS91]) such that (X0(N)/WN)/u is a genus 1
curve defined over Q. Sinced X0(N)/WN(Q) is not empty, the genus 1 curve has a rational
point and, therefore, it is an elliptic curve E over Q, called a bielliptic quotient of X0(N)/WN .
In particular, such an elliptic curve is a Q-isogeny factor for J0(N)WN .

If X0(N)/WN is hyperelliptic, we know an equation (see [HH96], [Has95]) and Magma
computes the automorphism group over Q. In this case, if X0(N)/WN has a non hyperelliptic
involution, we can compute the genus of the quotient curve by using [Ogg74, Proposition 1]
and to determine if X0(N)/WN is bielliptic or not.

Consider X be a non-hyperelliptic curve of genus g ≥ 3 defined over a subfield K of the
complex field C. For a fixed basis ω1, · · · , ωg of Ω1

X/K and an integer i ≥ 2, we denote by Li
the K-vector space formed by the homogenous polynomials Q ∈ K[x1, · · · , xg] of degree i such
that Q(ω1, · · · , ωg) = 0.

By using a theorem of Petri in [BG19a, Lemma 13], it is characterized the existence of
a bielliptic involution of X∗0 (N) with N square-free and not hyperelliptic. Later, [BG19b,
Proposition 2.6] generalizes this result to any non hyperelliptic curve of genus > 2.

Proposition 2.4. With the above notation, assume that Jac(X)
K∼ Em × A, where E is an

elliptic curve and A an abelian variety that does not have E as a quotient defined over K.
Denote by Ig−m ∈ Mg−m(Q) the identity matrix. Take the basis {ωi} such tat ω1, · · · , ωm
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and ωm+1, · · · , ωg are base of the pullbacks of Ω1
Em/K and Ω1

A/Q respectively. Then, E is K-
isogenous to the jacobian of a bielliptic quotient of X over K if, and only if, there exists a
matrix A ∈ GLm(K) that satisfies

Q((−x1, x2, · · · , xg) · B) ∈ L′i for all Q ∈ Li and for all i ≥ 2 , (2.1)

where B is the matrix

(
A 0
0 Ig−m

)
∈ GLg(K) and L′i = {Q((x1, x2, · · · , xg) · B)) : Q ∈ Li}.

Remark 2.5. The K-vector space L′i is the set of homogenous polynomials in K[x1, · · · , xg] of
degree i such that Q(ω′1, · · · , ω′m, ωm+1, · · ·ωg) = 0, where (ω′1, · · · , ω′m) = A−1(ω1, · · · , ωm).

Remark 2.6. We recall that if g = 3, then dimL4 = 1 and the condition (2.1) can be restricted
to i = 4. When g > 3, dimL2 = (g − 3)(g − 1)/2. In this case, it suffices to check (2.1) only
for i = 2, 3 and, in the particular case that X is neither a smooth quintic plane curve (g = 6)
nor a trigonal curve, we can restrict the condition to i = 2.

As in [BG19a], for j ≤ g we introduce the K-vector space

L2,j = {Q ∈ L2 : Q(x1, · · · , xj−1,−xj, xj+1, · · · , xn) ∈ L2} .

By using that the polynomials in L2 are irreducible, in [BG19a] it is proved that

L2,j = {Q ∈ L2 : Q(x1, · · · , xj−1, xj, xj+1, · · · , xn) = Q(x1, · · · , xj−1,−xj, xj+1, · · · , xn)} .

A similar result is obtained when g = 3 and we replace L2,j with L4,j.

Remark 2.7. We have J0(N)WN
Q∼
∏s

i=1A
ni
fi

, for some fi ∈ NewMi
with Mi|N and the abelian

varieties Afi are pairwise non isogenous over Q. Any fi determines ni normalized eigenforms

gj in S2(N)WN such that J0(N)WN
Q∼
∏r

j=1Agj , where r =
∑s

i=1 ni and g1, · · · , gr are all of
these eigenforms. The basis of the Galois conjugated of the newforms fi together the exponents
ni allow us to compute |X0/WN(Fpn)| for all primes p - N , thanks to the Eichler-Shimura
congruence. The basis of the regular differentials formed by all Galois conjugates of gj(q) dq/q
allows us to compute equations for X0/WN by use of a theorem of Petri in the non-hyperelliptic
case.

Now, we assume that X0(N)/WN has a bielliptic involution u defined over Q. Let us denote
by E the elliptic quotient X0(N)/〈WN , u〉 and by π the non constant morphism

X0(N)→ X0(N)/WN → E

of degree 2 · |WN | which is defined over Q. Let M be the conductor of E. It is well-known, that
M |N and there exists a morphism πM : X0(M)/(WN ∩Γ0(M)) � E and a normalized newform

fE ∈ New
W∩Γ0(M)
M such that π∗M(Ω1

E/Q) = Q(fE(q)d q/q). Moreover, π∗(Ω1
E/Q) = Q(g(q)d q/q),

where g ∈ S2(N)WN is an eigenform in the vector space generated by {fE(qi) : 1 ≤ i|N/M}
which is invariant by WN . Note that for a prime p - M , |E(Fp2)| ≤ (p + 1)2, but due to the
congruence of Eichler-Shimura |E(Fp2)| = (p+ 1)2 − a2

p(fE).

Lemma 2.8. Assume X0(N)/WN is bielliptic over Q, and p - N . Then the following equalities
hold:

(a)
ψ(N)

|WN |
≤ 12 ·

2|E(Fp2)| − 1

p− 1
, (b) gWN

≤ 2
|E(Fp2)|
p− 1

,

in particular we have,

(a)
ψ(N)

|WN |
≤ 12 · 2(p+ 1)2 − 1

p− 1
, (b) gWN

≤ 2
(p+ 1)2

p− 1
.
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Proof. Assume p - N . We generalize the argument used by Ogg in [Ogg74]. Indeed, X0(N)(Fp2)
contains 2ω(N) cusps and at least (p− 1)ψ(N)

12
many supersingular points (cf. [BGGP05, Lemma

3.20 and 3.21]). Since there is a nonconstant morphism defined over Q from X0(N) to an
elliptic quotient E of X0(N)/W which has degree 2 · |WN |, |X0(N)(Fp2)| ≤ 2 · |WN ||E(Fp2)|.
Part (b) is obtained applying [BGGP05, Lemma 3.25].

Similarly as in [BG19a, Lemma 7], for optimal quotients with conductor M = N for elliptic
quotient (related with strong Weil parametrization) it is easy to derive the following lemma.

Lemma 2.9. Let E ′ be the optimal elliptic curve in the Q-isogeny class of the bielliptic quotient
E of X0(N)/WN with conductor M = N . Then the degree D of the modular parametrization
πN : X0(N)→ E ′ divides 2 · |WN |.

Note that the degree D can be found in [Cre17, Table 5].

3 Selecting candidate bielliptic curves X0(N)/WN

The starting point of our selection is based on the following result.

Lemma 3.1. Let N be an integer and let W ′
N and WN be subgroups of B(N) such that W ′

N ⊂
WN . If X0(N)/W ′

N is bielliptic, then X0(N)/WN is hyperelliptic or bielliptic or has genus at
most one. In particular, X∗0 (N) is hyperelliptic or bielliptic or has genus at most one.

Proof. We have the natural morphisms X0(N)/W ′
N → X0(N)/WN → X∗0 (N). The statement

follows from [HS91, Proposition 1]. �
From the results of Hasegawa for hyperelliptic curves and by Bars-González [BG19a] for

bielliptic curves for X∗0 (N) we have the following result

Theorem 3.2. Let N be an square-free integer. Then,

(i) (González-Lario) g∗N = 0 if, and only if, N ∈ {2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19,
21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 38, 39, 41, 42, 46, 47, 51, 55, 59, 62, 66, 69, 70,
71, 78, 87, 94, 95, 105, 110, 119}

(ii) (González-Lario) g∗N = 1 if, and only if, N ∈ { 37, 43, 53, 57, 58, 61, 65, 74, 77, 79,
82, 83, 86, 89, 91, 101, 102, 111, 114, 118, 123, 130, 131, 138, 141, 142, 143, 145, 155,
159, 174, 182, 190, 195, 210, 222, 231, 238}

(iii) (Hasegawa) X∗0 (N) is hyperelliptic if, and only if, N ∈ { 67, 73, 85, 93, 103, 106, 107,
115, 122, 129, 133, 134, 146, 154, 158, 161, 165, 166, 167, 170, 177, 186, 191, 205, 206,
209, 213, 215, 221, 230, 255, 266, 285, 286, 287, 299, 330, 357, 390}. In all these cases
g∗N = 2.

(iv) (Bars-González) X∗0 (N) is bielliptic with g∗N ≥ 2 if and only if N ∈ { 106, 122, 129, 158,
166, 178, 183, 215, 246, 249, 258, 290, 303, 318, 370, 390, 430, 455, 510}.

Let M be the set of the square-free integers N that appear in Theorem 3.2 which are not
primes. Recall that we are assuming WN 6= 〈wN〉.

To discard curves X0(N)/WN with N ∈ M that are not bielliptic, we apply the strategy
used in [BG19a], that is summarized in Proposition 3.3.
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Indeed, for a prime p - N , (X0(N)/WN)(Fpk) denote the set of the Fpk-points of the reduction
modulo p of X0(N)/WN . Moreover, if E is a bielliptic quotient over Q of X0(N)/WN , then

n(N,E, pE
kE) := |X∗0 (N)(Fpk)| − 2|E(Fpk)| ≤ 0

for all k > 0.
From previous arguments and Lemmas 2.8 and 2.9, it follows the next result:

Proposition 3.3. Suppose that the curve X0(N)/WN with gWN
≥ 2 satisfies one of the three

following conditions:

(i) There exist a prime p - N such that ψ(N)
|WN |

> 12 · 2(p+1)2−1
p−1

.

(ii) Every elliptic curve E defined over Q of conductor NE which appear in the Q-decomposition
of J0(N)WN satisfies:

• If NE is a strict divisor or N , then there exist a prime pE - N and a positive natural
kE such that n(N,E, pE

kE) > 0.

• If NE = N , then the above condition on the existence of a prime pE - N and a
positive natural kE is satisfied or the degree of the Weil strong parametrization of E
does not divide 2 · |WN |.

Then, the curve X0(N)/WN is not bielliptic over Q.

All objects appeared in Proposition 3.3 can be computed by Magma (and Cremona tables).
We refer to the web page http://mat.uab.cat/∼francesc/JacobiandecompositionquotientsXoN.pdf
for the programmes in Magma computing (which we introduced small modification of the ones
used by X∗0 (N) in [BG19a], following the previous section) the different objects involved in
Proposition 3.3, and the list of the Q-decomposition of the Jacobian of X0(N)/WN for N
square-free with N ∈M with the computation of different n(N,E, pE

kE).
After applying Proposition 3.3, we obtain a list of pairs (N,WN) to study if the modular

quotient curve X0(N)/WN is bielliptic. These candidate are presented in the next sections
according to the number of primes dividing N .

4 N ∈M with N = p1p2 a product of two primes

Assume N = p1p2 ∈M and set WN = 〈wk〉 with k equal to p1 or p2. We collect the candidates
in three blocks depending on wether if the genus g∗N satisfies g∗N ≥ 2, g∗N = 1 or g∗N = 0.
• For g∗N ≥ 2, if X0(N)/WN is bielliptic, then the pairs (N, 〈wk〉) that should be considered

are in the following list.

gWN
(N,WN)

6 (122, 〈w61〉),(129, 〈w3〉),(133, 〈w7〉),(166, 〈w83〉)
7 (129, 〈w43〉)
10 (158, 〈w2)〉

Table II-1, candidates N with two primes and g∗N ≥ 2

• For g∗N = 1, if gWN
> 1, then the Fricke involution wN provides a bielliptic involution of

X0(N)/WN with bielliptic quotient X∗0 (N). We get the following result.
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Proposition 4.1. Assume g∗N = 1. The curve X0(N)/WN is bielliptic over Q if, and only
if, the genus gWN

> 1 and, in this case, the elliptic curve X∗0 (N) is a biellitic quotient. This
occurs for the following pairs (N,WN)

gWN
(N,WN)

2 (57, 〈w3)〉,(58, 〈w29〉),(142, 〈w71〉)
3 (57, 〈w19〉),(58, 〈w2〉),(65, 〈w5〉),(65, 〈w13〉),(77, 〈w7)〉,(82, 〈w41〉),(91, 〈w13〉),

(118, 〈w59〉),(123, 〈w41〉), (141, 〈w47〉)
4 (74, 〈w2〉),(74, 〈w37〉),(77, 〈w11〉),(82, 〈w2〉),(86, 〈w43〉),(91, 〈w7〉),(145, 〈w29〉)
5 (86, 〈w2〉),(111, 〈w3〉),(155, 〈w31〉)
6 (111, 〈w37〉),(143, 〈w13〉),(145, 〈w5)〉,(159, 〈w53〉)
7 (118, 〈w2〉),(123, 〈w3〉),(143, 〈w11〉)
8 (141, 〈w3〉),(155, 〈w5〉)
9 (142, 〈w2〉),(159, 〈w3〉).

• If g∗N = 0, then the only quotients curves X0(N)/WN that may be bielliptic correspond
to the following pairs (N,WN):

gWN
(N,WN)

2 (33, 〈w3〉),(38, 〈w2〉)
3 (46, 〈w2〉),(51, 〈w3〉),(55, 〈w5〉)

Table II-2, candidates N with two primes and g∗N = 0

Now we proceed case by case for the above possible pairs (N, 〈wk〉) in Tables II-1 and II-2
to determine if X0(N)/〈wk〉 is bielliptic or not.

4.1 Hyperelliptic case

We recall that among the candidates to be studied, only are hyperelliptic curves the five quotient
curves corresponding to the pairs in Table II-2. In the paper of Hasegawa [Has95], there are
equations of the form y2 = f(z) for such hyperelliptic curves. All automorphisms are defined
over Q and by using Magma

P<z>:=PolynomialRing(Rationals()); H1:=HyperellipticCurve(f(z)); H1;

AutomorphismGroup(H1);

we obtain that the automorphism group over Q for these five curves have order 2. Therefore,
all of them are not bielliptic.

4.2 Non hyperelliptic case

It remains to study the quotient curves corresponding to the six pairs (N,WN) in Table II-1.

4.2.1 Genus 6

For gWN
= 6, we have the quotient curves corresponding to the four pairs (122, 〈w61〉), (129, 〈w3〉),

(133, 〈w7〉) and (166, 〈w83〉) with possible bielliptic quotient E61a, E129a, E19a and E83a re-
spectively. See all the results in
http://mat.uab.cat/∼francesc/JacobiandecompositionquotientsXoN.pdf. Now we apply the
theorem of Petri explained in §2 for each of this quotient curves and possible bielliptic quotients.
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The splitting of the jacobians of these curves is

J0(122)〈w61〉 Q∼ E61a2 × E122a× Af3 , dimAf3 = 3, f3 ∈ New(122)〈w61〉 ,

J0(129)〈w3〉 Q∼ E43a× Af2 × E129a× Af4 , dimAf2 = dimAf4 = 2, f2 ∈ New43 , f4 ∈ New
〈w3〉
129 ,

J0(133)〈w7〉 Q∼ E19a× Af2 × Af3 , dimAf2 = 2, dimAf3 = 3, f2 ∈ New∗133, f3 ∈ New
〈w7〉
133 ,

J0(166)〈w83〉 Q∼ E83a2 × E166a× Af3 , dimAf3 = 3, f3 ∈ New
〈w83〉
166 .

We know that dim(L2) = 6. We obtain by use of techniques in §2 concerning a theorem of
Petri.

(129, 〈w3〉) (133, 〈w7〉)
dimL2,3 = 3 dimL2,1 = 1

Therefore X0(129)/〈w3〉 and X0(133)/〈w7〉 are not bielliptic.
For the situations where the possible elliptic quotient E appears in the decomposition of

the Jacobian with an exponent n > 1, we need to study if there is matrix in GLn(Q) satisfying
Proposition 2.4. For the levels N = 122 or 166, if X0(N)/WN is bielliptic it should exist a

matrix A =

(
a1 b1

a2 b2

)
∈ GL2(Q) satisfying the condition

Q2(a1x1 + a2x2, b1x1 + b2x2, x3, . . . , x6) = Q2(−a1x1 + a2x2,−b1x1 + b2x2, x3, . . . , x6) ,

for all Q2 ∈ L2. After computing, we can check that such a matrix A does no exist.

Lemma 4.2. The genus 6 curves X0(122)/〈w61〉, X0(129)/〈w3〉, X0(133)/〈w7〉, X0(166)/〈w83〉
are not bielliptic.

4.2.2 Genus ≥ 7

Only remains to study two modular quotient curves. The genus 7 curve X0(129)/〈w43〉, where

J0(129)〈w43〉 Q∼ E43a2 × E129a× E129b× Af4 , dimAf4 = 3

with E43a as possible bielliptic quotient.
By computing similarly as in the previous subsection, we get that there is no a matrix

A ∈ GL2(Q) satisfying

Q2(a1x1 + a2x2, b1x1 + b2x2, x3, . . . , x6, x7) = Q2(−a1x1 + a2x2,−b1x1 + b2x2, x3, . . . , x6, x7)

for all Q2 ∈ L2. Hence, X0(129)/〈w43〉 is not bielliptic.
Consider the genus 10 curve X0(158)/〈w2〉,

J0(158)〈w2〉 Q∼ E79a× E158b× E158d× Af4 × Af5 , dimAf4 = 5, dimAf5 = 2

with E158b as possible bielliptic quotient.
Now dimL2 = 28 and we obtain dimL2,2 = 20, obtaining that X0(158)/〈w2〉 is not bielliptic

and concluding the proof of Theorem 1.1 when the level is a product of two primes.
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4.2.3 Quadratic points for X0(p1p2)/WN with gWN
≥ 2

The Birch and Swinnerton-Dyer conjecture has been checked for all elliptic curves E defined over
Q contained in Cremona tables (cond(E) < 500000). It is well-known that for f ∈ New

〈WM 〉
M ,

its L-function has an odd vanishing order at s = 1. Therefore, for N square-free, when g∗N = 1
one has that the Q-rank of the elliptic curve X∗0 (N) is odd and, thus, at least one.

Theorem 1.4 for levels N that are product of two primes follows from previous computations.
Effectively, every bielliptic curve X0(N)/WN satisfies that one bielliptic quotient is X∗0 (N) and
has positive rank and §7 contains the list of hyperelliptic quotient curves X0(N)/W . These
curves are the only quotient modular curves with gWN

≥ 2 which have an infinite number of
quadratic points in any field extension of Q, in particular over Q.

Remark 4.3. We computed all bielliptic quotients for the curves X0(N)/WN when g∗N = 1.
When gWN

= 2 there are two bielliptic quotients, otherwise there is an only bielliptic quo-
tient. Next, we present the table (N, 〈wp〉, E, rankE), where E denotes a bielliptic quotient of
X0(N)/〈wp〉:

gWN
(N, 〈wp〉, E, rankE)

2 (57, 〈w3〉, E19a, 0),(57, 〈w3〉, E57a, 1),(58, 〈w29〉, E58a, 1),(58, 〈w29〉, E58b, 0),
(142, 〈w71〉, E142b, 1),(142, 〈w71〉, E142d, 0)

3 (58, 〈w3〉, E58a, 1),(65, 〈w5〉, E65a, 1),(65, 〈w13〉, E65a, 1),(77, 〈w7〉, E77a, 1),
(82, 〈w41〉, 82a, 1),(91, 〈w13〉, E91a, 1),(123, 〈w41〉, E123b, 1),(141, 〈w47〉, E141d, 1)

4 (74, 〈w37〉, 37a, 1),(77, 〈w11〉, E77a, 1),(82, 〈w2〉, E82a, 1),(86, 〈w43〉, E43a, 1),
(91, 〈w7〉, E91a, 1),(145, 〈w29〉, E145a, 1),

5 (86, 〈w2〉, E43a, 1),(111, 〈w3〉, 37a, 1),(155, 〈w31〉, 155c, 1)
6 (111, 〈w37〉, 37a, 1),(143, 〈w13〉, 143a, 1),(145, 〈w5〉, E145a, 1),(159, 〈w53〉, E53a, 1)
7 (118, 〈w2〉, E118a, 1),(123, 〈w3〉, E123b, 1),(143, 〈w11〉, E143a, 1)
8 (141, 〈w3〉, E141d, 1),(155, 〈w5〉, E155c, 1),
9 (159, 〈w3〉, E53a, 1).

5 N ∈M with N = p1p2p3

Assume that N ∈ M is the product of 3 primes, i.e N = p1p2p3. Now, B(N) has order 8. As
in the previous section, we split the cases in three blocks depending on the value of g∗N .

By use of the Jacobian decomposition with Prop.3.3 and the Prop.3.1, the only candidates
to bielliptic quotient modular curves X0(N)/WN are presented in next tables and, moreover,
the quotient curves that are already bielliptic by use Prop.3.1 joint with genus computations.
See web page links for the Jacobian decomposition and genus computations:

http://mat.uab.cat/∼francesc/JacobiandecompositionquotientsXoN.pdf
http://mat.uab.cat/∼francesc/GenusquotientXoN.pdf
• Assume g∗N ≥ 2. All candidate pairs (N,WN) obtained satisfy |WM | = 4.
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gWN
(N,WN)

3 (165, 〈w11, w15〉)
4 (154, 〈w2, w77〉),(170, 〈w2, w85〉), (285, 〈w3, w95〉),(286, 〈w2, w143〉)
5 (154, 〈w2, w7〉),(154, 〈w14, w22〉), (165, 〈w3, w55)〉,(165, 〈w5, w33)〉,

(170, 〈w17, w10〉), (170, 〈w2, w17〉),(186, 〈w6, w62〉),(230, 〈w5, w46〉)
(230, 〈w2, w115〉),(285, 〈w15, w57〉),(357, 〈w7, w17〉),

6 (154, 〈w2, w11〉),(170, 〈w2, w5〉),(186, 〈w31, w6〉),(255, 〈w3, w85〉)
(266, 〈w7, w38〉),(285, 〈w5, w19〉),(357, 〈w3, w119)〉

7 (186, 〈w2, w3〉),(255, 〈w3, w17〉),(246, 〈w3, w41〉),(246, 〈w41, w6〉),
(258, 〈w6, w86〉), (290, 〈w29, w10〉),(318, 〈w3, w53〉),(318, 〈w2, w159〉)

8 (258, 〈w2, w129〉),(290, 〈w5, w58〉),(318, 〈w6, w106)〉
9 (255, 〈w5, w17〉), (266, 〈w2, w7〉),(285, 〈w3, w5〉),(286, 〈w11, w26〉)
11 (357, 〈w7, w51〉)

Table III-1, candidates N with three primes and g∗N ≥ 2.

• Assume g∗N = 1 (i.e. N ∈ {102, 114, 130, 138, 174, 182, 190, 195, 222, 231, 238}). For WN

with |WN | = 4 we obtain that X0(N)/W → X∗0 (N) is a degree two morphism to the elliptic
curve X∗0 (N), therefore

Proposition 5.1. Fix N ∈ {102, 114, 130, 138, 174, 182, 190, 195, 222, 231, 238} and let WN be
any of the seven subgroup of order 4 of B(N). Then, X0(N)/WN is a bielliptic curve. In
particular we obtain 77 bielliptic modular curves X0(N)/W with WN of order 4 and N = p1p2p3.

For WN with |WN | = 2 (recall we are assuming WN 6= 〈wN〉), we can reduce to study the
modular quotient curves corresponding to the following pairs:

gWN
(N,WN)

5 (102, 〈w51〉),(138, 〈w23〉)
6 (102, 〈w17〉), (114, 〈w38〉),(130, 〈w26〉)
7 (102, 〈w2〉)
8 (102, 〈w6〉), (102, 〈w34〉),(114, 〈w3〉),(114, 〈w57〉),(130, 〈w10〉)
9 (114, 〈w6〉),(138, 〈w69〉

Table III-2, candidates N with three primes and g∗N = 1.

• Assume g∗N = 0 (i.e. N ∈ {30, 42, 66, 70, 78, 105, 110}). If for some subgroup W such that
|W | = 4, the curve X0(N)/W has genus one, then for w ∈ B(N) \W the modular quotient
curve X0(N)/ < w > is a bielliptic curve. The next proposition provides all these cases.

Proposition 5.2. The following 35 quotient curves X0(N)/WN with |WN | = 2 of genus ≥ 2
are bielliptic curves. Each of them maps to a bielliptic quotient which corresponds to X0(N)/W
with |W | = 4 for certain W ≤ B(N) with WN ≤ W .

gWN
(N,WN)

2 (30, 〈w2〉),(30, 〈w3〉),(30, 〈w10〉) (〈42, w3〉),(〈42, w6〉),
(42, 〈w21〉) (66, 〈w11〉),(70, 〈w35〉),(78, 〈w39〉)

3 (42, 〈w2〉),(42, 〈w7〉),(70, 〈w14〉),(78, 〈w26〉),(105, 〈w35〉)
4 (66, 〈w2〉),(66, 〈w33〉),(70, 〈w5〉),(70, 〈w10〉),(110, 〈w55〉)
5 (66, 〈w3〉),(66, 〈w22〉),(70, 〈w2〉), (70, 〈w7〉),(78, 〈w3〉),(105, 〈w5〉),

(105, 〈w21〉),(110, w11〉)
6 (78, 〈w2〉),(78, 〈w13)
7 (105, 〈w3〉),(105, 〈w7)〉,(105, 〈w15〉),(110, 〈w10〉).
8 (110, 〈w2〉),(110, 〈w5〉)
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For the values N ∈ {30, 42, 66, 70, 78, 105, 110}, it remains to to study the pairs

gWN
(N,WN)

2 (66, 〈w2, w3〉),(66〈w6, w22〉),(66, 〈w3, w22〉), (70, 〈w2, w5〉),(70, 〈w2, w7)〉,
(70, 〈w7, w10〉), (78, 〈w2, w13〉),(110, 〈w10, w22〉).

3 (78, 〈w2, w3〉),(78, 〈w13, w6〉),(105, 〈w3, w5〉), (105, 〈w3, w7〉),
(105, 〈w7, w15〉),(110, 〈w2, w11〉), (110, 〈w5, w22〉).

4 (110, 〈w2, w5〉),(66, 〈w6〉)
6 (78, 〈w6〉)
8 (110, 〈w22〉)

Table III-3, candidates N with three primes and g∗N = 0.

5.1 Hyperelliptic case

The hyperelliptic curves among the quotient curves corresponding to the pairs (N,WN) in tables
III-1, III-2 and III-3 are those such that gWN

≤ 3 and those that in Table III-3 satisfy gWN
= 4

and gWN
= 6 (genus 6). By [Has95], we know an equation for each of these hyperelliptic

curves and, by using Magma, we get that Aut(X0(N)/WN) has order 2 except to the pairs
(165, 〈w11, w15〉) (genus 3), (66, 〈w6〉) (genus 4) and (78, 〈w6〉) (genus 6). Again, by using
Magma, we get in these cases Aut(X0(N)/WN) is the Klein group.

Lemma 5.3. The quotient curve corresponding to the pair (165, 〈w11, w15〉) is the only curve
among the curves corresponding to the pairs in the tables III-1, III-2 and III-3 that is hyperel-
liptic and bielliptic. Moreover, the Q-isogeny class of the elliptic quotient is E55a.

Proof. We have only to consider the three cases mentioned above. In [Ogg74, Proposition 1],
Ogg proved that if X is a hyperelliptic curve over C with genus g ≥ 2 and u a nonhyperelliptic
involution of X, then the genus gu of the curve X/〈u〉 satisfies gu = g/2 when g is even or
gu ∈ {(g − 1)/2, (g + 1)/2} when g is odd. In any case, if v is the involution obtained as the
product of u by the hypereliptic involution, then gu+gv = g. Hence, only X0(165)/〈w11, w15〉 is

bielliptic. Since J
〈w11,w15〉
0

Q∼ E55a×Af with dimAf = 2, it follows that E55a is the Q-isogeny
class of the bielliptic quotient of X0(165)/〈w11, w15〉.

5.2 Non hyperelliptic case

Proposition 5.4. Among the genus 4 curves in Table III-1, only the quotient curves corre-
sponding to the pairs (154, 〈w2, w77〉), (285, 〈w2, w95〉) and (286, 〈w2, w143〉) are bielliptic.

Proof. We have the following decomposition over Q of J0(N)WN , where we mark in bold the
possible bielliptic quotients after applying Proposition 3.3

J0(154)〈w2,w77〉 Q∼ E11a× E14a× E77a× E154a ,

J0(170)〈w2,w85〉 Q∼ E17a× Af2 × E170a , dimAf = 2, f ∈ New
〈w85〉
85 ,

J0(285)〈w3,w95〉 Q∼ E15a× E19a× E57a× E285b ,

J0(286)〈w2,w143〉 Q∼ E11a× E26a× E143a× E286c .

We recall that a genus four curve is trigonal and satisfy dimL2 = 1 and dimL3 = 5. With
the chosen order in the regular differentials (from the above Jacobian decomposition), following
§2 we compute a non-zero polynomial Q2 ∈ L2
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(N,WN) Q2(x, y, z, t)
(154, 〈w2, w77〉) t2 + 9x2 − 9y2 + 4tz − 5z2

(170, 〈w2, w85〉) 3t2 + 2tx+ x2 − 6y2 − 16yz − 4z2

(285, 〈w2, w95〉) 7t2 + 9x2 − 9y2 − 8tz + z2

(286, 〈w2, w143〉) 3t2 + 3x2 − 3y2 − 4tz + z2

and a polynomial Q3 ∈ L3 that is not multiple of Q2:

(N,WN) Q3(x, y, z, t)
(154, 〈w2, w77〉) 9t3 − 14tx2 − ty2 − 4x2z + 4y2z + 6tz2

(170, 〈w2, w85〉) −2txy − x2y + 3y3 − 8txz − x2z + 13y2z + 20yz2 + 4z3

(285, 〈w2, w95〉) t3 + 7tx2 − ty2 + 8x2z − 8y2z − 7tz2

(286, 〈w2, w143〉) 25t3 − 9tx2 − 9ty2 − 24x2z − 12y2z + 29tz2

By [BG19a, Proof Prop.24], we know that the one dimensional elliptic curve E corre-
sponding to ωi is a bielliptic quotient if, and only if, Q2(. . . , xi, . . .) = Q2(. . . ,−xi, . . .) and
Q3(. . . ,−xi, . . .) ∈ L3. So, we obtain that

• X0(154)/〈w2, w77〉 is bielliptic; one bielliptic quotient is E11a and another is E14a.

• X0(285)/〈w3, w95〉 is bielliptic and has exactly two bielliptic quotient: E15a and E19a.

• X0(286)/〈w2, w143〉 is bielliptic and has exactly two bielliptic quotient: E11a and E26a
(corresponding to the variables x and y).

• X0(170)/〈w2, w85〉 is not bielliptic (Q2 is not an even polynomial in the variable t).

5.2.1 genus 5

Proposition 5.5. There is not a bielliptic curve among all genus 5 curves that appears in
Tables III-1 and III-2.

Proof. We consider first the Jacobian decomposition for each of genus 5 curves involved in
Tables III-1 and II-2, which are not hyperelliptic:

J0(102)〈w51〉 Q∼ A2
f1

∏4
i=2 Afi , Af1

Q∼ E17a , Af2
Q∼ E34a , Af3

Q∼ E102a , Af4
Q∼ E102b ,

J0(138)〈w23〉 Q∼ A2
f1

∏4
i=2 Afi , Af1

Q∼ E69a , Af2
Q∼ E138a , Af3

Q∼ E138b , Af4
Q∼ E138c ,

J0(154)〈w2,w7〉 Q∼
∏5

i=1 Afi , Af1
Q∼ E11a , Af2

Q∼ E77a , Af3
Q∼ E77c , Af4

Q∼ E154a , Af5
Q∼ E154c ,

J0(154)〈w14,w22〉 Q∼
∏4

i=1 Afi , Af1
Q∼ E11a , Af2

Q∼ E77a , Af3
Q∼ E154a , f4 ∈ New<w14,w22>

154 , dimAf4 = 2 ,

J0(165)〈w3,w55〉 Q∼
∏4

i=1 Afi , Af1
Q∼ E11a , Af2

Q∼ E15a , Af3
Q∼ E33a , f4 ∈ New<w3,w55>

165 , dimAf4 = 2 ,

J0(165)〈w5,w33〉 Q∼
∏3

i=1 Afi , Af1
Q∼ E11a , f2 ∈ New

〈w5〉
55 , dimAf2 = 2 , f3 ∈ New<w5,w33>

165 , dimAf3 = 2 ,

J0(170)〈w17,w10〉 Q∼
∏3

i=1 Afi , Af1
Q∼ E34a , f2 ∈ New∗85 , dimAf2 = 2 , f3 ∈ New

〈w17〉
85 , dimAf3 = 2 ,

J0(170)〈w17,w2〉 Q∼
∏3

i=1 Afi , f1 ∈ New∗85 , dimAf1 = 2 , f2 ∈ New
〈w17〉
85 , dimAf2 = 2 , Af3

Q∼ E170d ,

J0(186)〈w6,w62〉 Q∼
∏3

i=1 Afi , f1 ∈ New31 , dimAf1 = 2 , f2 ∈ New
〈w3,w31〉
93 , dimAf2 = 2 , Af3

Q∼ E186a ,

J0(230)〈w5,w46〉 Q∼
∏3

i=1 Afi , f1 ∈ New23 , dimAf1 = 2 , Af2
Q∼ E115a , f3 ∈ New

〈w5,w23〉
115 , dimAf3 = 2 ,

J0(285)〈w15,w57〉 Q∼
∏4

i=1 Afi , Af1
Q∼ E19a , Af2

Q∼ E57a , Af3
Q∼ E285b , f4 ∈ New<w15,w57>

285 , dimAf4 = 2 ,

J0(357)〈w7,w17〉 Q∼
∏4

i=1 Afi , Af1
Q∼ E21a , Af2

Q∼ E51a , Af3
Q∼ E357c , f4 ∈ New<w7,w17>

357 , dimAf4 = 2 ,
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For a quotient modular curve above, we fix the order of the regular differentials following the
splitting presented of its jacobian. Denote by xni

the variable corresponding to the differential
regular associated to an elliptic curve Afi . First, we assume that this is not repeated in
the Jacobian decomposition. In such non-repeated case, if Afi is a bielliptic quotient, then
dimL2 = dimL2,ni

= 3 (from Prop.2.4 with Remark 2.6). We compute such dimensions and
we obtain

(N,WN) dimL2,ni

(102, 〈w51〉) dimL2,2 = dimL2,4 = 1, dimL2,3 = 2
(138, 〈w23〉) dimL2,2 = dimL2,4 = 2, dimL2,3 = 1

(154, 〈w2, w7〉) dimL2,i = 0, i = 1, 3, 5; dimL2,j = 1, j = 2, 4
(154, 〈w14, w22〉) dimL2,2 = dimL2,3 = 1, dimL2,1 = 0
(165, 〈w3, w55〉) dimL2,2 = dimL2,3 = 1, dimL2,1 = 0
(165, 〈w5, w33〉) dimL2,1 = 0

(170, 〈w17, w10〉) dimL2,1 = 0
(170, 〈w17, w2〉) dimL2,3 = 0
(186, 〈w6, w62〉) dimL2,3 = 0
(230, 〈w5, w46〉) dimL2,2 = 1

(285, 〈w15, w57〉) dimL2,2 = dimL2,3 = 1, dimL2,1 = 0
(357, 〈w7, w17〉) dimL2,i = 0, i = 1, 2, 3

Therefore any of the non-repeated elliptic factors of the Jacobian decomposition is not a biel-
liptic quotient.

Now consider repeated elliptic factors, i.e. the pairs (102, 〈w51〉), (138, 〈w23〉). By using

Prop.2.4 and Remark 2.6, we check that there is not a matrix A =

(
a1 a2

b1 b2

)
∈ GL2(Q)

satisfying the condition

Q2(a1x1 + a2x2, b1x1 + b2x2, x3, x4, x5) = Q2(−a1x1 + a2x2,−b1x1 + b2x2, x3, x4, x5) (5.1)

for all Q2 ∈ L2. Therefore such quotient modular curves are not bielliptic.

5.2.2 Genus ≥ 6

Among the list of genus ≥ 6 in Tables III-1, III-2 and III-3, all pairs (N,WN) 6= (78, 〈w6〉)
are not hyperelliptic. By applying the arguments used in the previous subsection on genus 5
curves, we obtain the following result.

Proposition 5.6. All curves in Tables III-1,III-2 and III-3 of genus ≥ 6 are not bielliptic.

For completeness, one can consult of the computations in the rar file
http://mat.uab.cat/∼francesc/productthreeprimes.rar .

5.2.3 Quadratic Points

Because X0(N)/WN has a Q-point and all automorphism are defined over Q, it has infinite
number of quadratic points over Q if, and only if, X0(N)/WN is hyperelliptic, or is bielliptic
with a bielliptic quotient of positive Q-rank.

First, we observe that each of the 77 bielliptic modular curves in Proposition 5.1 has an
infinite number of quadratic points because the bielliptic quotient is the elliptic curve X∗0 (N)
which has positive Q-rank.
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In Proposition 5.4 we determine all bielliptic quotients for the bielliptic (non-hyperelliptic)
modular quotients corresponding to the pairs (154, 〈w2, w77〉), (285, 〈w3, w95〉) and (286, 〈w2, w143〉).
In each case there are two bielliptic quotients and, by [Cre17, Table 2], all have rank 0. There-
fore, these three bielliptic modular curves of genus 4 have a finite set of quadratic points.

Only remains 35 quotient bielliptic modular curves of Proposition 5.2, we consider only
the not hyperelliptic ones. We obtain that all remaining quotient modular curves do not have
elliptic curves in their Jacobians with positive Q-rank and, therefore, all of them have a finite
set of quadratic points over Q.

6 N ∈M with N = p1p2p3p4

Assume that N ∈M is the product of 4 primes p1, p2, p3, p4, with p1 < p2 < p3 < p4. In such
a case, N ∈ {210, 330, 390, 510}. We observe that B(N) of order 16, and it has 15 subgroups
of order exactly 2, 35 subgroups of order exactly 4, and 15 subgroups of order exactly 8.

We begin to study the subgroups WN of order 8 of B(N). We denote by H1, . . . , H15 the
following sets

H1 := {1, p1, p2, p3, p1p2, p1p3, p2p3, p1p2p3} ,
H2 := {1, p1, p2, p4, p1p2, p1p4, p2p4, p1p2p4} ,
H3 := {1, p4, p2, p3, p4p2, p4p3, p2p3, p4p2p3} ,
H4 := {1, p1, p4, p3, p1p4, p1p3, p4p3, p1p4p3} ,
H5 := {1, p1p2, p3p4, p2p3, p1p4, p2p4, p1p3, p1p2p3p4} ,
H6 := {1, p1p2p3, p1, p2p3, p4, p1p2p3p4, p1p4, p2p3p4} ,
H7 := {1, p1p2p3, p2, p1p3, p4, p1p2p3p4, p2p4, p1p3p4} ,
H8 := {1, p1p2p3, p3, p1p2, p4, p1p2p3p4, p3p4, p1p2p4} ,
H9 := {1, p1p3p4, p1, p3p4, p2, p1p2p3p4, p1p2, p2p3p4} ,
H10 := {1, p1p3p4, p3, p1p4, p2, p1p2p3p4, p2p3, p1p2p4} ,
H11 := {1, p2p3p4, p3, p2p4, p1, p1p2p3p4, p1p3, p1p2p4} ,
H12 := {1, p1p2p3, p2p3p4, p1p3p4, p2p4, p1p4, p1p2, p3} ,
H13 := {1, p1p2p3, p2p3p4, p2p1p4, p1p4, p3p4, p1p3, p2} ,
H14 := {1, p1p2p3, p1p3p4, p1p2p4, p2p3, p2p4, p3p4, p1} ,
H15 := {1, p1p2p4, p2p3p4, p1p3p4, p1p2, p1p3, p2p3, p4} .

The groups Hi = {wd ∈ B(N) : d ∈ Hi} are all subgroups of B(N) of order 8. Since g∗210 = 1,
we get the following.

Proposition 6.1. The fifteen quotient modular curves X0(210)/Hi are bielliptic and the curve
X∗0 (210) is a bielliptic quotient.

By applying proposition 3.3 for N ∈ {330, 390, 510} we can only claim that are not bielliptic
the quotient curves

(510, H1), (510, H2), (510, H4), (510, H5), (510, H7), (510, H15)

In,
http://mat.uab.cat/∼francesc/Productoffourprimes.rar,

it can be found the computations of the equations for the reaming quotient curves (N,Hi), and
we can conclude

Lemma 6.2. All quotient modular curves X0(N)/Hi with N ∈ {330, 390, 510} are not bielliptic.

By Lemma 3.1 with the results on hyperelliptic quotient curves, see Table 1 in appendix,
we obtain
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Corollary 6.3. The curves X0(N)/WN with N ∈ {330, 390, 510} and |WN | < 16 are not
bielliptic.

Now, for N = 210 we have to study the 35 curves X0(210)/WN , where |WN | = 4. By apply-
ing proposition 3.3 to the pairs (210,WN) with |WN | = 4, we can claim that (210, 〈w2, w21〉),
(210, 〈w21, w15〉) are not bielliptic. The computations for the remainder 33 pairs can be found
in the rar file with all the computations in

http://mat.uab.cat/∼francesc/Productoffourprimes.rar.
Finally, we conclude with the following result.

Lemma 6.4. The curves X0(210)/WN with |WN | ≤ 4 are not bielliptic.

Remark 6.5. Instead of discarding the above quotient modular curves by use Petri theorem,
which required computation, we could discard some of them by unramified criteria [JKS20], with
the use that we know few automorphism for such quotient modular curves, such criteria and
different ones will be presented in dealing with the non-square free levels in [BGKS19].

6.1 Quadratic points when N is a product of four primes

Observe that in this case, all bielliptic quotient modular curves are the curves described in
Proposition 6.1. In all theses cases, the curves have infinite quadratic points because X∗0 (210)
is an elliptic curve with positive rank. Theorem 1.4, follows from collecting the results of all
subsections concerning to quadratic points.

7 Appendix

This section is devoted to present tables of results. Again, N is square-free and WN is a non
trivial subgroup of B(N) different from 〈wN〉.

First, we present the list of the pairs (N,WN) such that X0(N)/WN is hyperelliptic (cf.
[FH99] and [Has95]).

gWN
(N,WN )

2 (30, 〈w2〉), (30, 〈w3〉), (30, 〈w10〉), (33, 〈w3〉), (35, 〈w7〉),(38, 〈w2〉), (39, 〈w13〉),(42, 〈w3〉),(42, 〈w6〉),
(42, 〈w21〉), (57, 〈w3〉),(58, 〈w29〉),(66, 〈w11〉),(66, 〈w2, w3〉),(66, 〈w3, w22〉),(66, 〈w6, w22〉),
(70, 〈w35〉),(70, 〈w2, w5〉), (70, 〈w2, w7〉),(70, 〈w7, w10〉),(78, 〈w39〉),(78, 〈w2, w13〉),(87, 〈w29〉),
(102, 〈w3, w17〉), (102, 〈w2, w51〉),(110, 〈w10, w22〉),(114, 〈w3, w38〉),(130, 〈w10, w26〉),
(138, 〈w3, w23〉),(138, 〈w23, w6〉),(142, 〈w71〉), (190, 〈w5, w19〉),(210, 〈w6, w10, w14〉).

3 (46, 〈w2〉),(51, 〈w3〉),(55, 〈w5〉), (70, 〈w14〉),(78, 〈w26〉),(78, 〈w2, w3〉),(78, 〈w13, w6〉),(95, 〈w19〉),
(105, 〈w3, w5〉),(105, 〈w3, w7〉),(105, 〈w7, w15〉),(110, 〈w2, w11〉),(110, 〈w5, w22〉),(114, 〈w2, w19〉),
(130, 〈w2, w13〉),(165, 〈w11, w15〉),(195, 〈w5, w39〉).

4 (62, 〈w2〉),(66, 〈w6〉),(69, 〈w3〉),(70, 〈w10〉),(110, 〈w2, w5〉),(119, 〈w17〉).
5 (87, 〈w3〉),(95, 〈w5〉).
6 (78, 〈w6〉),(94, 〈w2〉),(119, 〈w7〉).

Table 1, Hyperelliptic curves X0(N)/WN
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Bielliptic modular quotients X0(N)/WN

gWN
(N = p1p2,WN )

2 (57, 〈w3〉),(58, 〈w29〉),(142, 〈w71〉).
3 (57, 〈w19〉),(58, 〈w2〉),(65, 〈w5〉),(65, 〈w13〉),(77, 〈w7〉),(82, 〈w41〉),(91, 〈w13〉), (118, 〈w59〉),

(123, 〈w41〉),(141, 〈w47〉).
4 (74, 〈w2〉),(74, 〈w37〉),(77, 〈w11〉),(82, 〈w2〉),(86, 〈w43〉),(91, 〈w7〉),(145, 〈w29〉).
5 (86, 〈w2〉),(111, 〈w3〉),(155, 〈w31〉).
6 (111, 〈w37〉),(143, 〈w13〉),(145, 〈w5〉),(159, 〈w53〉).
7 (118, 〈w2〉),(123, 〈w3〉),(143, 〈w11〉).
8 (141, 〈w3〉),(155, 〈w5〉).
9 (142, 〈w2〉),(159, 〈w3〉).

(N = p1p2p3,WN )

2 (30, 〈w2〉),(30, 〈w3〉),(30, 〈w10〉),(42, 〈w3〉),(42, 〈w6〉),(42, 〈w21〉),(66, 〈w11〉),(70, 〈w35〉),
(78, 〈w39〉),(102, 〈w3, w17〉),(102, 〈w2, w57〉),(114, 〈w3, w38〉),(130, 〈w10, w26〉),
(138, 〈w3, w23〉),(138, 〈w23, w6〉),(190, 〈w5, w19〉),

3 (42, 〈w2〉),(42, 〈w7〉),(70, 〈w14〉),(78, 〈w26〉), (102, 〈w2, w17〉),(102, 〈w6, w34)〉,(102, 〈w17, w6〉),
(105, 〈w35〉),(114, 〈w2, w19〉),(114, 〈w6, w38〉),(114, 〈w2, w57〉),(130, 〈w2, w13〉),
(130, 〈w2, w65)〉,(130, 〈w5, w26〉),(138, 〈w2, w23〉),(165, 〈w11, w15〉),(174, 〈w3, w29〉),
(174, 〈w2, w87〉),(182, 〈w14, w26〉),(190, 〈w10, w38〉),(190, 〈w2, w95〉),(195, 〈w15, w39〉),
(195, 〈w3, w65〉),(195, 〈w5, w39〉),(222, 〈w6, w74〉),(231, 〈w3, w77〉),(238, 〈w7, w17〉),
(238, 〈w14, w34〉),(238, 〈w2, w119〉).

4 (66, 〈w2〉),(66, 〈w33〉),(70, 〈w5〉),(70, 〈w10〉),(110, 〈w55〉),(102, 〈w2, w3〉),(102, 〈w3, w34〉),
(114, 〈w2, w3〉),(114, 〈w3, w19〉),(114, 〈w19, w6〉),(130, 〈w13, w10〉),(130, 〈w2, w5〉),
(130, 〈w5, w13〉),(138, 〈w2, w69〉),(154, 〈w2, w77〉),(174, 〈w6, w58〉),(174, 〈w29, w6〉),
(182, 〈w2, w91〉),(182, 〈w7, w26〉),(182, 〈w13, w14〉),(222, 〈w2, w111〉),(231, 〈w21, w33〉),
(231, 〈w7, w33〉),(231, 〈w11, w21〉),(285, 〈w2, w95〉),(286, 〈w2, w143〉).

5 (66, 〈w3〉),(66, 〈w22〉),(70, 〈w2〉),(70, 〈w7〉),(78, w3〉),(105, 〈w5〉),(105, 〈w21〉),(110, 〈w11〉),
(138, 〈w6, w46〉),(138, 〈w3, w46〉),(182, 〈w2, w13〉),(182, 〈w7, w13〉),(190, 〈w19, w10〉),
(195, 〈w3, w13〉),(195, 〈w5, w13〉),(195, 〈w13, w15〉),(222, 〈w3, w37〉),(222, 〈w3, w74〉).

6 (78, 〈w2〉),(78, 〈w13〉),(138, 〈w2, w3〉),(174, 〈w2, w29〉),(174, 〈w3, w58〉),(182, 〈w2, w7〉),
(190, 〈w2, w19〉), (231, 〈w7, w11〉).

7 (105, 〈w3〉),(105, 〈w7〉),(105, 〈w15〉),(110, 〈w10〉),(174, 〈w2, w3〉),(190, 〈w2, w5〉),
(190, 〈w5, w38〉),(195, 〈w3, w5〉),(222, 〈w2, w37〉),(231, 〈w3, w7〉),(231, 〈w3, w11〉),
(238, 〈w2, w17〉),(238, 〈w7, w34〉),(238, 〈w17, w14〉).

8 (110, 〈w2〉),(110, 〈w5〉),(222, 〈w37, w6〉).
9 (222, 〈w2, w3〉),(238, 〈w2, w7〉).

(N = p1p2p3p4,WN )

2 (210, 〈w6, w10, w14〉)
3 (210, 〈w3, w5, w7〉),(210, 〈w2, w5, w7〉),(210, 〈w5, w7, w6〉),(210, 〈w2, w3, w35〉)

(210, 〈w5, w6, w14〉),(210, 〈w3, w10, w14〉)
4 (210, 〈w2, w3, w7〉),(210, 〈w2, w7, w15〉),(210, 〈w3, w5, w14〉),

(210, 〈w2, w5, w21〉),(210, 〈w2, w15, w21〉)
5 (210, 〈w2, w3, w5〉),(210, 〈w3, w7, w10〉),(210, 〈w7, w6, w10〉).

Table 2, Bielliptic modular curves X0(N)/WN
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Infinite quadratic points of X0(N)/WN

gWN
(N = p1p2,WN )

2 (33, 〈w3〉),(35, 〈w7〉),(38, 〈w2〉),(39, 〈w13〉), (57, 〈w3〉),(58, 〈w29〉),(87, 〈w29〉),(142, 〈w71〉).
3 (46, 〈w2〉),(51, 〈w3〉),(55, 〈w5〉),(57, 〈w19〉),(58, 〈w2〉),(65, 〈w5〉),(65, 〈w13〉),(77, 〈w7〉),

(82, 〈w41〉), (91, 〈w13〉),(95, 〈w19〉),(118, 〈w59〉), (123, 〈w41〉),(141, 〈w47〉).
4 (62, 〈w2〉),(69, 〈w3〉),(74, 〈w2〉),(74, 〈w37〉),(77, 〈w11〉),(82, 〈w2〉),(86, 〈w43〉),(91, 〈w7〉),

(119, 〈w17〉),(145, 〈w29〉).
5 (86, 〈w2〉), (87, 〈w3〉),(95, 〈w5〉),(111, 〈w3〉),(155, 〈w31〉).
6 (94, 〈w2〉),(111, 〈w37〉),(119, 〈w7〉),(143, 〈w13〉),(145, 〈w5〉),(159, 〈w53〉).
7 (118, 〈w2〉),(123, 〈w3〉),(143, 〈w11〉).
8 (141, 〈w3〉),(155, 〈w5〉).
9 (142, 〈w2〉),(159, 〈w3〉).

(N = p1p2p3,WN )

2 (30, 〈w2〉),(30, 〈w3〉),(30, 〈w10〉),(42, 〈w3〉),(42, 〈w6〉),(42, 〈w21〉),(66, 〈w11〉),(66, 〈w2, w3〉),
(66, 〈w3, w22〉),(66, 〈w6, w22〉), (70, 〈w35〉),(70, 〈w2, w5〉),(70, 〈w2, w7〉),(70, 〈w7, w10〉), (78, 〈w39〉),
(78, 〈w2, w13〉),(102, 〈w3, w17〉),(102, 〈w2, w57〉),(110, 〈w10, w22〉),(114, 〈w3, w38〉),(130, 〈w10, w26〉),
(138, 〈w3, w23〉),(138, 〈w23, w6〉),(190, 〈w5, w19〉).

3 (70, 〈w14〉),(78, 〈w26〉),(78, 〈w2, w3〉),(78, 〈w6, w13)〉, (102, 〈w2, w17〉),(102, 〈w6, w34)〉,
(102, 〈w17, w6〉),(105, 〈w3, w5〉),(105, 〈w7, w15〉),(105, 〈w3, w7〉),(110, 〈w5, w22〉),(110, 〈w2, w11〉),
(114, 〈w2, w19〉),(114, 〈w6, w38〉),(114, 〈w2, w57〉),(130, 〈w2, w13〉),(130, 〈w2, w65)〉,(130, 〈w5, w26〉),
(138, 〈w2, w23〉),(165, 〈w11, w15〉),(174, 〈w3, w29〉),(174, 〈w2, w87〉),(182, 〈w14, w26〉),(190, 〈w10, w38),
(190, 〈w2, w95〉),(195, 〈w15, w39〉),(195, 〈w3, w65〉),(195, 〈w5, w39〉),(222, 〈w6, w74〉),(231, 〈w3, w77〉),
(238, 〈w7, w17〉), (238, 〈w14, w34〉),(238, 〈w2, w119〉).

4 (66, 〈w6〉),(70, 〈w10〉),(102, 〈w2, w3〉),(102, 〈w3, w34〉),(110, 〈w2, w5〉), (114, 〈w2, w3〉),
(114, 〈w3, w19〉),(114, 〈w6, w19〉),(130, 〈w13, w10〉),(130, 〈w2, w5〉),(130, 〈w5, w13〉),(138, 〈w2, w69〉),
(174, 〈w6, w58〉),(174, 〈w29, w6〉),(182, 〈w2, w91〉),(182, 〈w7, w26〉),(182, 〈w13, w14〉),(222, 〈w2, w111〉),
(231, 〈w21, w33〉),(231, 〈w7, w33),(231, 〈w11, w21〉).

5 (138, 〈w6, w46〉),(138, 〈w3, w46〉),(182, 〈w2, w13〉),(182, 〈w7, w13〉),(190, 〈w19, w10〉),(195, 〈w3, w13〉),
(195, 〈w5, w13〉), (195, 〈w13, w15〉),(222, 〈w3, w37〉),(222, 〈w3, w74〉).

6 (78, 〈w6〉),(138, 〈w2, w3〉),(174, 〈w2, w29〉),(174, 〈w3, w58〉),(182, 〈w2, w7〉),(190, 〈w2, w19〉),
(231, 〈w7, w11〉).

7 (174, 〈w2, w3〉),(190, 〈w2, w5〉),(190, 〈w5, w38〉),(195, 〈w3, w5〉),(222, 〈w2, w37〉), (231, 〈w3, w7〉),
(231, 〈w3, w11〉),(238, 〈w2, w17〉),(238, 〈w7, w34〉),(238, 〈w17, w14〉).

8 (222, 〈w37, w6〉).
9 (222, 〈w2, w3〉),(238, 〈w2, w7〉).

(N = p1p2p3p4,WN )

2 (210, 〈w6, w10, w14〉).
3 (210, 〈w3, w5, w7〉),(210, 〈w2, w5, w7〉),(210, 〈w5, w7, w6〉),(210, 〈w2, w3, w35〉)(210, 〈w5, w6, w14〉),

(210, 〈w3, w10, w14〉)
4 (210, 〈w2, w3, w7〉),(210, 〈w2, w7, w15〉),(210, 〈w3, w5, w14〉),(210, 〈w2, w5, w21〉),(210, 〈w2, w15, w21〉).
5 (210, 〈w2, w3, w5〉),(210, 〈w3, w7, w10〉),(210, 〈w7, w6, w10〉).

Table 3, Infinite quadratic poinst of X0(N)/WN
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From Theorem 1.1 in [Jeo18], we have that forN square-free, the curveX+
0 (N) = X0(N)/〈wN〉

is bielliptic if, and only if, N is in the following list

42,57,58,66,70,74,77,78,82,85,86,91,105,110,111,118,123,141,142,143,145,155,159 .

Table 4, Bielliptic curves X0(N)/〈wN〉

Table 2 provides all bielliptic curves X0(N)/W for all non trivial subgroups W of B(N) with
W 6= 〈wN〉, and Table 3 provides all quotient curves X0(N)/W with an infinite number of
quadratic points for all non-trivial subgroups W of B(N) with W 6= 〈wN〉 (the case W = 〈wN〉,
see [Jeo18, Theorem1.2]).
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