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Hypersurface model-fields of definition for
smooth hypersurfaces and their twists

by

Eslam Badr (Cairo) and Francesc Bars (Barcelona)

1. Introduction. Let X0, . . . , Xn be a homogeneous coordinate system
for Pn

k
, the n-dimensional projective space over k. Given a smooth projective

variety V ⊂ Pn
k
, the group of birational transformations of V onto itself is

denoted by Bir(V ), the group of automorphisms of V (that is, the group
of biregular transformations of V onto itself) is Aut(V ), and we denote
by Lin(V ) the subgroup of automorphisms of V induced by projective lin-
ear transformations in Aut(Pn

k
) = PGLn+1(k), the general linear group of

(n+ 1)× (n+ 1) projective matrices.
Now, let V be a smooth hypersurface in Pn

k
, that is, an (n−1)-dimensional

smooth projective variety identified with a hypersurface model HV ,d,n repre-
sented by a single homogeneous polynomial equation, say F (X0, . . . , Xn) = 0
of some degree d over k without singularities (assume once and for all that
d ≥ 4). It is known that a smooth plane curve V of degree d ≥ 4 has finitely
many automorphisms, and moreover any automorphism is induced by a pro-
jective linear transformation of P2

k
, thus Aut(V ) = Lin(V ). Matsumura and

Monsky (1946) showed that, for n ≥ 3, Lin(V ) is a finite group and moreover
Aut(V ) = Lin(V ) except possiblywhen (n, d) = (3, 4) (see [6, Theorems 1, 2]).

Definition 1.1. A smooth projective variety V defined over a field k is
called a smooth L-hypersurface over k of degree d in Pn

k
and L is a hypersur-

face model-field of definition for V , where L/k is a field extension inside k,
if the base extension V ⊗k L is L-isomorphic to a non-singular hypersurface
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model HV⊗kL,d,n : FV⊗kL(X0, . . . , Xn) = 0 of degree d with coefficients in L.
For the special case L = k, V is simply called a smooth hypersurface over k.

Suppose that V is a smooth k-hypersurface over k of degree d ≥ 4 in Pn
k
.

Hence, by finiteness and linearity of Aut(V ⊗k k) for (n, d) 6= (3, 4), we find
that V := V ⊗k k has a linear series, which allows us to embed Υ : V ↪→ Pn

k
as a smooth hypersurface.

Lemma 1.2. The linear system Υ for n, d ≥ 3 such that (n, d) 6= (3, 4),
is unique up to PGLn+1(k)-conjugation.

Proof. Suppose thatHV ,d,n andH ′
V ,d,n

are two non-singular hypersurface

models for V in Pn
k
of degree d. Then, both models are k-isomorphic via an

isomorphism, say φ. The same argument in the proof of [6, Theorem 2] assures
that φ∗ maps hyperplane sections onHV ,d,n to hyperplane sections onH

′
V ,d,n

,
and so φ is induced by a linear transformation of Pn

k
(for n ≥ 4 such an invari-

ance property on hyperplane sections follows from a theorem of Grothendieck–
Lefschetz or following [6] a theorem of Severi–Lefschetz–Andreotti).

Thus, for (n, d) 6= (3, 4), we can always think about Aut(V ) as a finite
subgroup of PGLn+1(k), leaving invariant a fixed non-singular hypersurface
model HV ,d,n : FV (X0, . . . , Xn) = 0 of degree d coming from the embedding
Υ : V ↪→ Pn

k
over k. In other words, any other non-singular hypersurface

model over k is defined by an equation of the form

FP−1V (X0, . . . , Xn) := FV (P (X0, . . . , Xn)) = 0

for some P ∈ PGLn+1(k).
The aim of this paper is to make a study for fields of definition of

non-singular hypersurface models of a smooth k-hypersurface V over k, also
for its twists, by considering the embedding Aut(V ) ↪→ PGLn+1(k). We note
that if the smooth projective variety V , or any of its twists over k, is a smooth
hypersurface over k, then we have an embedding of Gal(k/k)-groups for its
automorphism group into PGLn+1(k). This approach leads to two natural
questions: first, given a smooth projective variety V defined over a field k and
admitting a non-singular k-hypersurface model, does it have a non-singular
hypersurface model over k; and secondly, if the answer is yes, does every twist
of V over k also have a non-singular hypersurface model over k? For both
questions the answer is No: in general, it does not. We obtain results for the
varieties for which the above questions always have an affirmative answer,
and we show different examples concerning the negative general answer.

The paper is a generalization of our joint work [1] with Elisa Lorenzo
García, where the same problem was addressed, but for smooth hypersurfaces
in P2, that is, for smooth plane curve of degree d ≥ 4.
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2. Statements of the results. First, we study the minimal field L
where there exists a non-singular model over L for a smooth k-hypersur-
face V defined over k.

We show the following, which follows from [7].

Theorem 2.1. Let V be a smooth k-hypersurface over a perfect field k
of degree d ≥ 4 in Pn

k
such that (n, d) 6= (3, 4). Then V is not necessar-

ily a smooth hypersurface over k. However, it is so in any of the following
situations:

(i) if V has k-rational points, i.e. when V (k) 6= ∅,
(ii) if gcd(d, n+ 1) = 1,
(iii) if the (n+ 1)-torsion Br(k)[n+ 1] of the Brauer group Br(k) is trivial.

In general, V has a non-singular hypersurface model over a field extension
L/k of degree [L : k] |n + 1. Also, in the case of number fields k, we show
in §4.1 an example of a smooth k-hypersurface over k, which is not a smooth
hypersurface over k, but it does over a Galois field extension of degree n+1
over k.

Notation and conventions. We write Gal(L/k) for the Galois group of
the extension L/k, and we consider left actions. The Galois cohomology sets
of a Gal(L/k)-group G when L/k is Galois are denoted by Hi(Gal(L/k), G)
with i ∈ {0, 1} respectively. For the particular case L = k, we use Gk instead
of Gal(k/k) and H1(k,G) instead of H1(Gal(k/k), G).

Second, we assume that V is a smooth hypersurface over k. We obtain
the next theorem characterizing the twists of V , which are also smooth hy-
persurfaces over k. In particular, we prove the following.

Theorem 2.2. Let V be a smooth hypersurface over a perfect field k iden-
tified with a fixed non-singular hypersurface model HV,d,n : FV (X0, . . . , Xn)
= 0, where FV (X0, . . . , Xn) ∈ k[X0, . . . , Xn] with (n, d) 6= (3, 4). Then there
exists a natural map

Σ : H1(k,Aut(V ))→ H1(k,PGLn+1(k)),

defined by the inclusion Aut(HV,d,n ⊗k k) ⊆ PGLn+1(k) as Gk-groups. The
preimage Σ−1([Pnk ]) is formed by the set of all twists of V over k that
are smooth hypersurfaces over k, where [Pnk ] denotes the class of the triv-
ial Brauer–Severi variety of dimension n over k. Moreover, any such twist is
obtained through an automorphism of Pn

k
, that is, the twist is k-isomorphic

to

HFM−1V,d,n
: FM−1V (X0, . . . , Xn) := FV (M(X0, . . . , Xn)) ∈ k[X0, . . . , Xn],

for some M ∈ PGLn+1(k).



4 E. Badr and F. Bars

We can reinterpret the map Σ as the map sending a twist V ′ over k to
the Brauer–Severi variety B where it lives (cf. [7, Lemma 5]).

Then, we have assertions similar to those in Theorem 2.1.

Corollary 2.3. Let V be a smooth hypersurface over a perfect field k
of degree d ≥ 4 inside Pn

k
with (n, d) 6= (3, 4). The map Σ in Theorem 2.2 is

trivial if gcd(d, n + 1) = 1 or Br(k)[n + 1] is trivial. In particular, for such
situations, any twist V ′ for V over k is also a smooth hypersurface over k.

On the other hand, we construct in §4.4 a one-parameter familyHFa,d=2p,n,
for a ∈ k, of smooth hypersurfaces over a number field kd where p is an odd
prime integer, and we show that each member of the family has a twist over kd
that does not admit a hypersurface model over kd.

Finally, we study the twists for a smooth hypersurface V over k such that
Aut(V ) is a cyclic group.

Definition 2.4. Let V/k : FV (X0, . . . , Xn) = 0 be a smooth hypersur-
face over a perfect field k, where FV (X0, . . . , Xn) ∈ k[X0, . . . , Xn]. We call
a twist V ′ for V over k a diagonal twist if there exists an M ∈ PGLn+1(k)
and a diagonal matrix D ∈ PGLn+1(k) such that V ′ is k-isomorphic to

F(MD)−1V (X0, . . . , Xn) := FV (MD(X0, . . . , Xn)) = 0,

where F(MD)−1V (X0, . . . , Xn) ∈ k[X0, . . . , Xn].

We prove the following.

Theorem 2.5 (Diagonal twists). Let V/k : FV (X0, . . . , Xn) = 0 be a
smooth hypersurface over a perfect field k of degree d ≥ 4 with (n, d) 6= (3, 4).
Assume that Aut(V ⊗k k) ↪→ PGLn+1(k), given by the linear system, is a
non-trivial cyclic group of order m generated by ψ = diag(1, ζa1m , . . . , ζ

an
m )

for some ai ∈ N, where ζm denotes a fixed primitive mth root of unity and
m is coprime to the characteristic of k. Then all the twists in Twistk(V ) are
diagonal over k given by a non-singular polynomial equation

FD−1V (X0, . . . , Xn) = 0

where FD−1V (X0, . . . , Xn) ∈ k[X0, . . . , Xn] and D is a diagonal matrix in
PGLn+1(k). In particular, the map Σ in Theorem 2.2 is trivial.

Remark 2.6. Let V/k be a smooth hypersurface over a perfect field k of
characteristic p ≥ 0, and identify it with a non-singular hypersurface model
HV,d,n : FV (X0, . . . , Xn) = 0 over k with d ≥ 4 and (n, d) 6= (3, 4). Sup-
pose also that Aut(HV,d,n ⊗k k) ⊆ PGLn+1(k) is a cyclic group of order n,
generated by a matrix ψ whose conjugacy class in PGLn+1(k) does not con-
tain elements of diagonal shapes. Then the twists of V over k whose image
under Σ is trivial (i.e., the ones that are smooth hypersurfaces over k) are
expected not to be represented by diagonal twists. For example, for n = 2
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in [1], we provide a smooth plane curve with a cyclic non-diagonal auto-
morphism group in the above sense, where not all of its twists are diagonal.
Constructing such examples in higher-dimensional Pn requires knowledge
of the structure of automorphism groups and also the twisting theory for
smooth hypersurfaces living there.

3. Brauer–Severi varieties and central simple algebras. Let U be
a quasi-projective variety defined over a perfect field k. A twist for U is a
variety U ′ defined over k that is isomorphic over k to U , but not necessarily
over k. A twist U ′ is called trivial if U and U ′ are k-isomorphic. The set of all
twists of U modulo k-isomorphisms is denoted by Twistk(U). It is well known
that the set Twistk(U) is in one-to-one correspondence with the first Galois
cohomology set H1(k,Aut(U ⊗k k)) given by [U ′] 7→ ξ : τ 7→ ξτ := φ ◦ τφ−1

for τ ∈ Gk, where φ : U ′ ⊗k k → U ⊗k k is a fixed k-isomorphism (see [9,
Chap. III]).

Brauer–Severi varieties. A Brauer–Severi variety B of dimension n
over a perfect field k is a twist of the n-dimensional projective space Pnk
over k. A field extension L/k is said to be a splitting field of B if B⊗kL ' PnL,
and we say that L/k splits B or that B splits over L.

In particular, we obtain

Corollary 3.1. The set Twistk(Pnk) is in bijection with H1(k,Aut(Pn
k
))

= H1(k,PGLn+1(k)).

Moreover, we have

Theorem 3.2 (Severi, Châtelet, Lichtenbaum). Let B be a Brauer–Severi
variety of dimension n over a perfect field k. Then there exists a field ex-
tension L/k of degree [L : k] |n+ 1 such that L splits B. Moreover, B splits
over k if it has k-rational points or contains a hypersurface of degree rela-
tively prime with n+ 1.

Proof. The result is due to Severi (cf. [8, X, §6, Exercise 1] in the original
French edition), Châtelet (cf. his PhD thesis [2]), and Lichtenbaum (cf. [4,
Theorem 5.4.10]). One can also read the proof of [7, Theorem 5].

We deduce from [7, Lemma 4] the following.

Theorem 3.3 (Roé–Xarles). Let V be a smooth projective variety over a
perfect field k. Suppose that, for some fixed n ≥ 2, there is a unique (modulo
automorphisms) n-dimensional linear series over k invariant under the Gk-
action, giving a morphism h : V ⊗k k → Pn

k
. Then there exists a Brauer–

Severi variety B of dimension n defined over k, together with a k-morphism
g : V ↪→ B, such that g ⊗k k : V ⊗k k → Pn

k
is equal to h.
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Central simple algebras. A central simple algebra over a field k is
a finite-dimensional associative algebra over k which is simple, i.e. it con-
tains no non-trivial (two-sided) ideal and the multiplication operation is not
uniformly zero, and for which the center is exactly k.

A field extension L/k is said to be a splitting field of a central simple
algebra A over k if A ⊗k L ' Mn(L) for some n, and we say that L/k
splits A.

Example 3.4 (Cyclic algebras). Let L/k be a cyclic extension of degree
n + 1 with Gal(L/k) = 〈σ〉. Then an element of H1(Gal(L/k),PGLn+1(L))
represented by a 1-cocycle f : Gal(L/k)→ PGLn+1(L) is completely deter-
mined by the value of f(σ), which is subject to

f(σ) · σ(f(σ)) · σ2
(f(σ)) · . . . · σn

(f(σ)) = 1.

For instance, let a ∈ k∗ and consider the matrices

Ca :=



0 0 . . . 0 a

1 0 . . . 0 0

0 1 . . . 0 0
...
0 0 . . . 1 0


, Da :=



0 1 0 . . . 0 0

0 0 1 . . . 0 0

0 0 0 . . . 0 0
...

...
0 0 . . . . . . 0 1

a 0 . . . . . . 0 0


.

Define a 1-cocycle f by setting f(σ) = Ca modL∗. Hence

f(σ) · σ(f(σ)) · σ2
(f(σ)) · . . . · σn

(f(σ)) = Cn+1
a modL∗ = I modL∗,

where I is the identity matrix. According to [11, Theorem 5.4], we can asso-
ciate to this 1-cocycle a central simple algebra A over k of dimension (n+1)2

that splits over L, by considering the set of matricesM ∈Mn+1(L) satisfying
Ca

σM C−1a =M . One finds that I, Ca, . . . , Cna ∈ A as well as

Sb := diag(b, σ(b), . . . , σn(b)) for b ∈ L.

Therefore,
⊕
SbC

i
a is a k-subalgebra of the correct dimension (n+ 1)2, and

corresponds to the algebra A defined by the 1-cocycle f . This kind of k-
algebras is also known as the cyclic algebra (χ, a) associated to a ∈ k∗ and
the character χ : Gal(L/k) '→Z/(n+1)Z defined by χ(σ) = −1mod (n+1).

In the above computations, we may replace Ca with Da and we get
symmetrically the cyclic algebra (χ, a) associated to a ∈ k∗ and the character
χ : Gal(L/k) '→Z/(n+1)Z sending σ to 1 mod (n+1), since CaSb = σ−1

SbCa
is changed to DaSb =

σSbDa.
For complete details, we refer to [11, Example 5.5].
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Theorem 3.5 (J. H. Maclagan-Wedderburn, R. Brauer). Given a central
simple algebra A over k, there exists a unique (up to isomorphism) division
algebra D with center k and a positive integer n such that A is isomorphic
to Mn(D). Consequently, the dimension dimk(A) of A over k is always a
square.

Theorem 3.5 gives a strict relation between central simple algebras and
division algebras, and suggests the introduction of the following equivalence
relation: Two central simple algebras A1 and A2 over the same field k are
equivalent if there are positive integers m, n such that Mm(A1) 'Mn(A2).
Equivalently, A1 and A2 are equivalent if A1 and A2 are (up to isomorphism)
matrix algebras over a division algebra.

Definition 3.6. The set of all Brauer equivalence classes of central
simple algebras over k equipped with the tensor product of k-algebras is
an abelian group (cf. [4, Proposition 2.4.8]), known as the Brauer group
of k and denoted by Br(k). The period of a central simple algebra over k is
defined to be its order as an element of the Brauer group. The m-torsion
Br(k)[m] of the Brauer group Br(k) is the set of all elements of Br(k) of
order dividing m.

Recall that each Brauer equivalence class contains a unique (up to iso-
morphism) division algebra. Define the index of a central simple algebra to
be the degree of the division algebra D that is Brauer equivalent to it, i.e.
the square root of the dimension of D over k.

In particular we have

Corollary 3.7 (cf. [3]). The period of a central simple algebra over k
divides its index, and hence is finite.

Interplay. In the literature we find several approaches to the connection
between central simple algebras and Brauer–Severi varieties; first, the con-
nection between quaternion algebras and plane conics observed by E. Witt
in [13]. In its general form, we mention for example the most elementary one
promoted by J.-P. Serre in his books [8, 9]. The main observation is that
central simple algebras of dimension (n + 1)2 over a perfect field k as well
as n-dimensional Brauer–Severi varieties over k can both be described by
classes in one and the same cohomology set H1(k,PGLn+1(k)).

4. Proofs of the results

4.1. A smooth k-hypersurface without a non-singular hypersur-
face model over k. Fix an algebraic closure Q of Q, and let k ⊂ Q be a
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number field. Suppose that

f(t) = tn+1 + λnt
n + · · ·+ λ1t+ (−1)n+1λ0 =

n∏
i=0

(t− ai) ∈ k[t]

is an irreducible polynomial of degree n + 1 ≥ 3 over k[t] whose splitting
field kf over k satisfies Gal(kf/k) ∼= Z/(n + 1)Z. Such a polynomial exists
since the inverse Galois problem for the cyclic group Z/(n+ 1)Z is solvable
(recall that any solvable group is realizable as a Galois group over a number
field by the contribution of Shafarevich in 1954). Fix a generator

σ : a0 → a1 → a2 → · · · → an−1 → an → a0

for the Galois group Gal(kf/k). Take a positive integer d not relatively prime
to n + 1 such that the following holds: there exists β ∈ k∗ which is not a
norm in kf and λn+1

0 βd =
∏n
i=0 σ

i(α), equivalently βd = Nkf/k(α/λ0), for
some α ∈ k∗f \ k∗. Next, we define a smooth hypersurface over kf by the
equation

Hf,α,d,n : λ0X
d
0 +

n∑
i=1

(
1

λi−10

i−1∏
j=0

σj(α)

)
Xd
i = 0

of degree d ≥ 4 such that (n, d) 6= (3, 4). The matrix

φσ :=



0 0 . . . 0 β

1 0 . . . 0 0

0 1 . . . 0 0
...
0 0 . . . 1 0


defines an isomorphism φσ = Cβ : σHf,α,d,n → Hf,α,d, which satisfies
Weil’s condition of descent [12] (φσn+1 = φn+1

σ = 1). We therefore find
that the variety is defined over k, and that there exists an isomorphism
ϕ0 : Vk → Hf,α,d,n where Vk is a rational model such that ψσ = φ−1σ =
ϕ0 ◦ σϕ−10 ∈ PGLn+1(k). The formula ψτ := ϕ0 ◦ τϕ−10 defines an element
of H1(Gal(kf/k),PGLn+1(kf )), corresponding to a cyclic algebra which is
non-trivial because β is not a norm of an element of kf (cf. [5, §2.1]). Conse-
quently, ϕ0 is not given by an element of PGLn+1(kf ), or even PGLn+1(kf ),
since its cohomology class after applying the inflation map is not trivial.
Therefore, the variety Vk is not a smooth hypersurface over k (otherwise, Vk
is identified via a k-isomorphism ψ0 with a non-singular hypersurface model
defined over k. Thus, by [6, Theorems 1, 2], the cohomology class [ϕ0 ◦ ψ0]
is represented by an M ∈ PGLn+1(kf ), which it is not since [ϕ0] 6= 1). As a
concrete example, we specify the above construction in P2, P3 and P4.
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(1) In P2: take k = Q and consider the irreducible polynomial f(t) =
t3 + 12t2 − 64 over k (thus λ0 = 64). As we can check with SAGE [10], the
discriminant of the field kf is a power of 3, and the prime 2 becomes inert
in kf , hence is not a norm in kf . Consequently, we can assume, for example,
that d = 9m− 12, β = 2 and α = a08

m with m ≥ 2 an integer.
(2) In P3: take k = Q and consider the irreducible polynomial f(t) =

t4+ t3+2t2− 4t+3 over k (thus λ0 = 3). Then kf is a cyclic extension of Q
with Galois group isomorphic to Z/4Z (we can think of it inside Q(ζ13)),
moreover, λ0 = 3 splits completely in kf , so it may be a norm. In the ring
of integers Okf of kf , β = 17 = p1p2, where p1 and p2 are certain prime
ideals of Okf , also one of the generators of p1 as a fractional ideal, say γ,
belongs to kf \Q. It is easy to check that Nkf/Q(γ) = 172, and we can choose
α := 3 · 17mγ ∈ kf \Q with m ≥ 1, giving degrees d = 4m+ 2 (using Sage:

K.<a>=NumberField(x^4+x^3+2*x^2-4*x+3);
K.ideal(17).factor();
>(Fractional ideal(1/3*a^3-1/3*a+3))

*(Fractional ideal(1/3*a^3-1/3*a-6));

suggests taking γ = 1
3a

3 − 1
3a+ 3).

(3) In P4: the polynomial f(t) = t5− t4− 4t3 +3t2 +3t− 1 is irreducible
over Q. Its splitting field Qf is cyclic over Q of degree 5 (we can think
Qf = Q(cos(2π/11)) ⊆ Q(ζ11)). In the ring of integers OQf

, the torsion
units are ±1, and the roots ai of f are units in OQf

. Suppose that m > 1 is
an integer satisfying gcd(m,n + 1 = 5) = 1 and gcd(ϕ(m), 5) = 1, where ϕ
is the Euler function. Now, take d = 5m and k = Q(ζd) with ζd a fixed dth
primitive root of unity inside Q. Note that f(t) is irreducible over k = Q(ζd),
since k∩Qf = Q. Also, kf does not contain torsion roots of unity other than
〈ζd〉, therefore ζd is not a norm from kf to k. In particular, we can set β = ζd
and α = a0.

Corollary 4.1. Let V be a smooth k-hypersurface over a perfect field k
of degree d ≥ 4 in Pn

k
such that (n, d) 6= (3, 4). Then V is not necessarily a

smooth hypersurface over k.

4.2. Minimal fields of definition for non-singular hypersurface
models. In this subsection, V is a smooth k-hypersurface of degree d ≥ 4
in Pn

k
with n ≥ 2 and (n, d) 6= (3, 4). Accordingly, V := V ⊗k k has an

n-dimensional linear series over k that allows us to embed Υ : V ↪→ Pn
k

as a non-singular hypersurface, and such a linear series is unique modulo
conjugation in PGLn+1(k).

We first show
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Proposition 4.2. Let V be a smooth k-hypersurface over k of degree
d ≥ 4 in Pn

k
, where n ≥ 2 and (n, d) 6= (3, 4). There exists a non-singular

hypersurface model over a field extension L/k of degree [L : k] |n+ 1.

Proof. We know from [7, Lemma 4] that the set of k-morphisms (modulo
automorphisms) to some n-dimensional Brauer–Severi variety over k are in
bijection with the base-point free n-dimensional linear series over k which are
invariant under the Gk-action. Consequently, we may apply Theorem 3.3 to
obtain a k-morphism g : V ↪→ B to a Brauer–Severi variety B of dimension n
over k such that g ⊗k k : V ↪→ Pn

k
equals to Υ . Moreover, by [7, Theorem

13(5)], there exists a field extension L/k of index [L : k] |n+ 1 that splits B
(this means that B⊗k L is L-isomorphic to PnL). Hence, we reduce to an em-
bedding of V ⊗k L into PnL as the smooth variety g(V )⊗k L. By assumption,
g(V ) ⊗k k is a hypersurface inside Pn

k
; then so does g(V ) ⊗k L ⊂ Pn

L
. Con-

sequently, g(V )⊗k L has dimension n− 1 and therefore it is a non-singular
hypersurface model for V ⊗k L over L.

Second, we show

Proposition 4.3.Let V be a smooth k-hypersurface over k of degree d≥4
in Pn

k
, where n ≥ 2 and (n, d) 6= (3, 4). Then V is a smooth hypersurface

over k if V (k) 6= ∅, gcd(d, n+ 1) = 1, or Br(k)[n+ 1] is trivial.

Proof. Using [7, Theorems 13(1),(2)], we find that the base field k splits B
when V (k) 6= ∅ or gcd(d, n + 1) = 1. On the other hand, let [A] be the
image of B in the Brauer group Br(k) (in particular, B splits over a field
extension L/k if and only if A does over L/k). Due to Châtelet’s thesis [2,
Chapter IV.1], the division algebra associated to A has dimension dividing
n+ 1. That is, B corresponds to an element of the (n+ 1)-torsion of Br(k),
since the order of a central simple algebra as an element of Br(k) divides its
index, which is the square root of the dimension of the associated division
algebra (see Corollary 3.7). Therefore, B also splits over k if Br(k)[n+ 1] is
trivial, being associated to a trivial central simple algebra over k.

By the above discussion, we can see that our variety V lives inside a
trivial Brauer–Severi variety in any of the prescribed situations. This in turn
gives a non-singular hypersurface model over k, and we conclude.

Corollary 4.4. Let V be a smooth k-hypersurface over k of degree d ≥ 4
in Pn

k
, where n ≥ 2 and (n, d) 6= (3, 4). Then V is a smooth hypersurface

over k if

(i) k is an algebraically closed field;
(ii) k is a finite field;
(iii) k is the function field of an algebraic curve over an algebraically closed

field;
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(iv) k is an algebraic extension of Q, containing all roots of unity; or
(v) k = R and n+ 1 odd.

Proof. In the following cases, every division algebra over a field k is k
itself, so that the Brauer group Br(k) is trivial:

• k is an algebraically closed field (cf. [11, Example 4.2]).
• k is a finite field (Wedderburn’s Little Theorem, cf. [8, p. 162]).
• k is the function field of an algebraic curve over an algebraically closed

field (Tsen’s Theorem, cf. [4, Theorem 6.2.8]). More generally, the Brauer
group vanishes for any quasi-algebraically closed field.
• k is an algebraic extension ofQ, containing all roots of unity (cf. [8, p. 162]).

Finally, there are just two non-isomorphic real division algebras with cen-
ter R: R itself and the quaternion algebra H. Since H⊗H 'M4(R), the class
of H has order two in the Brauer group. That is, the Brauer group Br(R) is
the cyclic group of order two and then, for n+1 odd, Br(R)[n+1] does not
contain non-trivial elements of order dividing n+ 1.

Now, the result is an immediate consequence of Proposition 4.3.

4.3. Twists which are smooth hypersurfaces over the base field k.
Now, assume that V is a smooth hypersurface over k, in particular V is k-iso-
morphic to a non-singular hypersurface model of degree d ≥ 4 of the form

HFV ,d,n : FV (X0, . . . , Xn) := FM−1V (X0, . . . , Xn)

= FV (M(X0, . . . , Xn)) ∈ k[X0, . . . , Xn]

for some M ∈ PGLn+1(k) with n ≥ 2 and (n, d) 6= (3, 4). Since we have
Aut(HFV ,d,n ⊗k k) ⊂ PGLn+1(k) as Gk-groups, Aut(V ) is naturally embed-
ded into PGLn+1(k) as Gk-groups, and we get a well-defined map

Σ : Twistk(V ) = H1(k,Aut(V ))→ H1(k,PGLn+1(k)).

Proof of Theorem 2.2 and Corollary 2.3. Let [Pnk ] denote the class of the
trivial Brauer–Severi variety in Twistk(Pnk) = H1(k,PGLn+1(k)). If a twist
V ′/k is k-isomorphic to a non-singular hypersurface model FV ′(X0, . . . , Xn)
= 0 over k, then FV ′(X0, . . . , Xn) = 0 and FV (X0, . . . , Xn) = 0 are isomor-
phic through some M ′ ∈ PGLn+1(k) by [6, Theorem 1, 2] when n ≥ 3 and it
is well known when n = 2 in the case of plane curves of degree ≥ 4. Hence,
the corresponding 1-cocycle σ 7→M ′ ◦ σ(M ′)−1 ∈ Aut(HFV ,d,n⊗k k) is triv-
ial in H1(k,PGLn+1(k)), being cohomologous to the trivial 1-cocycle. Con-
versely, if Σ([V ′]) is trivial (that is, V ′/k lives inside a trivial Brauer–Severi
variety of dimension n over k), then it must be given by a k-isomorphism
ϕ : {FV (X0, . . . , Xn) = 0} → V ′ induced by some M̃ ∈ PGLn+1(k), i.e. V ′
is k-isomorphic to F(M̃)−1V (X0, . . . , Xn) = 0. This would give a non-singular
hypersurface model over k for V ′.
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In general, any twist V ′ for V over k is again a smooth k-hypersurface
over k in Pn

k
of degree d. It only remains to apply Theorem 2.1 for V ′ to

conclude that V ′ is a smooth hypersurface over k if gcd(d, n + 1) = 1 or if
Br(k)[n+1] is trivial. In particular, Σ is the trivial map in both cases, which
was to be shown.

4.4. A smooth hypersurface over a number field k, having a
twist which is not a smooth hypersurface over k. Let p be an odd
prime number and fix ζp, a primitive pth root of unity inside Q. Assume
that HF,d,n : F (X0, . . . , Xn) = 0 ⊂ Pn

k
is a smooth hypersurface of degree

d = 2p, not relatively prime to n+1, defined over the number field k = Q(ζp).
Suppose further that the projective matrix

φ :=



0 0 . . . 0 ζp

1 0 . . . 0 0

0 1 . . . 0 0
...
0 0 . . . 1 0


induces an automorphism of HF,d=2p,n ⊗k k. For example, consider the fol-
lowing family parametrized by a ∈ k:

HFa,d=2p,n : Fa(X0, . . . , Xn) =

n∑
i=0

Xd
i +

n−1∑
i=0

aXp
i

n∑
j=i+1

Xp
j = 0.

If m ∈ k∗ \ (k∗)p, then xp −m is irreducible in k[x] by a theorem of Abel,
the Galois field extension Lm = k( p

√
m) has Galois group Gal(L/k) = 〈σ〉 '

Z/pZ, where σ( p
√
m) = ζp p

√
m. Define the 1-cocycle by

ξ : σ 7→ φ ∈ H1(Gal(Lm/k),PGLn+1(Lm)).

Since no new primitive root of unity appears in Lm other than ζp, ζp is
not a norm in Lm, [ξ] is non-trivial in H1(Gal(Lm/k),PGLn+1(Lm)) by [5,
§1.1], and hence the image of ξ in H1(k,PGLn+1(k)), which coincides with
the inflation of σ 7→ φ, is not trivial. Consequently, it corresponds to a
twist V ′ for HFa,d,n over k living inside a non-trivial Brauer–Severi variety
of dimension n over k (that is, Σ([V ′]) 6= [Pnk ]).

4.5. Diagonal twists. Let V/k : FV (X0, . . . , Xn) = 0 be a smooth
hypersurface over a perfect field k. Assume that Aut(V ⊗k k) ↪→ PGLn+1(k)
is a non-trivial cyclic group of order m (relatively prime to the characteristic
of k), generated by ψ = diag(1, ζa1m , . . . , ζ

an
m ) for some ai ∈ N, where ζm is a

fixed primitive mth root of unity in k.
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Proof of Theorems 2.5 and 2.6. It suffices to notice that the embedding
Aut(V ⊗k k) ↪→ PGLn+1(k) factors through GLn+1(k). Thus the map Σ in
Theorem 2.2 factors as follows:

Σ : H1(k,Aut(V ⊗k k))→ H1(k,GLn+1(k))→ H1(k,PGLn+1(k)).

Moreover, H1(k,GLn+1(k)) = 1 by Hilbert’s 90th Theorem, so the map
Σ is trivial. By Theorem 2.2, any twist has a non-singular plane model of
the form FP−1V (X0, . . . , Xn) = 0 over k, for some P ∈ PGLn+1(k). Since
P ◦ σ(P−1) ∈ Aut(V ⊗k k) = 〈diag(1, ζa1m , . . . , ζanm )〉 for any σ ∈ Gk, we
have σP = P ◦ diag(1, v1, . . . , vn) for some mth roots of unity vi. Writing
P = (ai,j), one easily deduces that σ(ai,j) = vjai,j for all i, j. Hence, for
any fixed integer j, we have σ(ai,j)a−1i,j = σ(ai′,j)a

−1
i′,j . That is, ai,ja−1i′,j is

Gk-invariant, which in turn gives ai,j = miai′,j for some mi ∈ k. In par-
ticular, P reduces to MD for some diagonal projective (n + 1) × (n + 1)
matrix D and M ∈ PGLn+1(k). This proves that all the twists are diagonal.
However, the non-singular hypersurface model F(MD)−1V (X0, . . . , Xn) = 0
over k is k-isomorphic throughM to FD−1V (X0, . . . , Xn) = 0. Consequently,
FD−1V (X0, . . . , Xn) = 0 defines a non-singular hypersurface model over k
for the twist.
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Abstract (will appear on the journal’s web site only)
Given a smooth projective variety of dimension n− 1 ≥ 1 defined over a

perfect field k that admits a non-singular hypersurface model in Pn
k
over k, a

fixed algebraic closure of k, it does not necessarily have a non-singular hyper-
surface model defined over the base field k. We first show an example of such
phenomenon: a variety defined over k admitting non-singular hypersurface
models but none defined over k. We also determine under which conditions
a non-singular hypersurface model over k may exist. Now, even assuming
that such a smooth hypersurface model exists, we wonder about the exis-
tence of non-singular hypersurface models over k for its twists. We introduce
a criterion to characterize twists possessing such models and we also show
an example of a twist not admitting any non-singular hypersurface model
over k, i.e. for any n ≥ 2, there is a smooth projective variety of dimension
n − 1 over k which is a twist of a smooth hypersurface variety over k, but
itself does not admit any non-singular hypersurface model over k. Finally,
we obtain a theoretical result to describe all the twists of smooth hypersur-
faces with cyclic automorphism group having a model defined over k whose
automorphism group is generated by a diagonal matrix.

The particular case n = 2 for smooth plane curves was studied by the
authors jointly with E. Lorenzo García in [Math. Comp. 88 (2019)], and we
deal here with the problem in higher dimensions.
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