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Functional and molecular heterogeneity of D2R
neurons along dorsal ventral axis in the striatum
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Action control is a key brain function determining the survival of animals in their environ-
ment. In mammals, neurons expressing dopamine D2 receptors (D2R) in the dorsal striatum
(DS) and the nucleus accumbens (Acb) jointly but differentially contribute to the fine reg-
ulation of movement. However, their region-specific molecular features are presently
unknown. By combining RNAseq of striatal D2R neurons and histological analyses, we
identified hundreds of novel region-specific molecular markers, which may serve as tools to
target selective subpopulations. As a proof of concept, we characterized the molecular
identity of a subcircuit defined by WFS1 neurons and evaluated multiple behavioral tasks after
its temporally-controlled deletion of D2R. Consequently, conditional D2R knockout mice
displayed a significant reduction in digging behavior and an exacerbated hyperlocomotor
response to amphetamine. Thus, targeted molecular analyses reveal an unforeseen hetero-
geneity in D2R-expressing striatal neuronal populations, underlying specific D2R's functional
features in the control of specific motor behaviors.
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he striatum is the gateway to the basal ganglia, an ensemble

of subcortical structures involved in motor planning and

action selection!. Striatal dysfunction has been associated
with multiple neurological and psychiatric disorders, including
Parkinson’s and Huntington’s disease, Tourette’s syndrome,
schizophrenia, autism, and addiction?3.

In the striatum, dopamine D2 receptors (D2R) have been
tightly linked to a wide variety of motor- and reward/aversion-
related behaviors. Pharmacological and genetic studies have
demonstrated a direct involvement of D2R neurons in a wide
range of functions including motor control*-%, aversive learning’,
addiction®, compulsive food-intake’, motivational aspects of
chronic pain!%, and risky decision-making!!. However, many of
these studies used optogenetic or chemogenetic approaches to
manipulate D2R neurons, but they did not assess the function of
D2R itself in these neurons. Imaging studies in humans and rats
have shown a significant reduction in striatal D2R availability in
subjects addicted to drugs such as cocaine, alcohol, heroin,
nicotine, and methamphetamine as well as in obesity!'2. However,
the widespread expression of striatal D2R—which are present in
indirect pathway striatal projection neurons (iSPNs), cholinergic
interneurons (CINs), and presynaptically in both dopaminergic
and glutamatergic afferents—have impeded the interpretation of
many pharmacological and behavioral experiments. Our under-
standing of the complexity of striatal D2R expression pattern and
its associated function has recently increased with a study
reporting a relative heterogeneity of iSPN subpopulations!3. In
addition, the majority of studies that aimed to uncover the role of
D2R, by using either global or conditional D2R knockout mice,
could not rule out developmental compensatory adaptations from
deleting D2R early in life, since their genetic approaches were not
temporally controlled.

Given that the rodent striatum is divided into two regions, the
dorsal striatum (DS) and the nucleus accumbens (Acb), which
have distinct input-output organization and play different roles
in behavior-!4, we first aimed to identify DS- and Acb-specific
molecular markers, which may serve as tools to assess the role of
D2R in striatal subpopulations in adult mice. Therefore, we
performed RNAseq in DS and Acb D2R neurons separately fol-
lowed by histological analyses and revealed hundreds of region-
specific markers. As a proof of concept, we focused on a cell
subpopulation, identified by the expression of Wolfram syndrome
1 (Wfs1), displaying a specific expression pattern within the Acb.
Following the characterization of the molecular identity of WFS1
neurons, we evaluated the behavioral effect of temporally con-
trolled deletion of D2R from this neuronal subpopulation (WfsI-
CreERT2:Drd2/oxP/loxP mjce hereafter named D2R-cKO). We
found that D2R-cKO mice displayed altered digging behavior and
an exacerbated hyperlocomotor response to amphetamine.
Together, our cell type- and region-specific high-throughput
analyses uncover previously unknown molecularly and func-
tionally defined subpopulations of D2R neurons and hence reveal
novel striatal subcircuits. As a proof of principle, the deletion of
D2R from one of these subpopulations identified, WFS1 SPNs,
revealed a novel D2R’s role in an innate behavior as well as in
response to a drug of abuse.

Results

Uncovering region-specific molecular markers of striatal D2R
neurons. To identify genes that are preferentially expressed in DS
and Acb D2R neurons, we generated D2-RiboTag mice!®, which
express the Cre-dependent ribosomal protein rpl22 tagged with
the hemagglutinin (HA) epitope exclusively in D2R cells (Fig. 1a,
b). HA expression —which was selective to iSPNs and CINs!®,
and homogeneously spread in both DS and Acb (Fig. la, b and

Supplementary Fig. 1la)— enabled the immunoprecipitation of
ribosome-bound associated mRNAs selectively from D2R cells.
To validate the specificity of the mouse line, we used quantitative
reverse transcription PCR (qQRT-PCR) to compare the relative
abundance of transcripts after HA-immunoprecipitation on
whole striatal extracts and the input fraction that contains tran-
scripts from all cell types (Supplementary Fig. 1b). As expected,
expression of iSPN markers (Drd2, Adora2, Penkl) was enriched
after HA-immunoprecipitation (Fig. 1b). By contrast, gene
expression of markers for direct pathway SPNs (dSPNs) (Drdl,
Pdyn, Tacl), astrocytes (Gfap), microglia (AifI), oligodendrocytes
(Cnp), as well as GABAergic interneuron-specific markers (Sst,
Calb2, Pvalb, Npy) were all decreased. No differences were
observed for Chat (only a fraction of CINs express D2R, see
below) and Th transcripts (Fig. 1b).

To assess the overlap of DS and Acb D2R translatome profiles,
we performed high-throughput RNAseq of tagged ribosome-
bound mRNAs following dissection of the two regions (Supple-
mentary Fig. 1a and Supplementary Data 1). Principal component
analysis (PCA) revealed that mRNAS’ origin (ribosome-bound vs
total inputs) represented the main source of variance (81%), while
the origin of mRNA (DS vs Acb) accounted for 12% of total
variation in the data (Supplementary Fig. 2a). PCA showed that
the three replicates of each condition clustered together. More-
over, DS and Acb groups as well as the input and pellet fractions
were all well separated between them. Heatmap of sample-to-
sample distances confirmed that data were highly reproducible
and biological samples had low variability (Supplementary
Fig. 2b). We first conducted parallel RNAseq of the inputs
(supernatant fraction containing mRNAs from all cell types)
and pellets (immunoprecipitation fraction containing tagged
ribosomes-bound mRNAs) to elucidate the genes that were
enriched in DS and Acb D2R cells (Fig. 1c—f and Supplementary
Data 2). Using an adjusted p value of < 0.05, our analysis
identified 6201 D2R Acb- and 6253 D2R DS-enriched protein-
coding genes compared with Acb and DS inputs, respectively
(Fig. 1c, e, Supplementary Fig. 3 and Supplementary Data 2).
Filtering these genes for a fold-change > 1.5, we narrowed down
this list of candidates to 2315 for the Acb and 2260 for the DS
(Fig. 1d, f and Supplementary Data 2). Comparison of our
analysis with previous results from single-cell RNAseq datal?
showed a match of ~80% of D2R-enriched mRNAs (Fig. 1g
and Supplementary Data 2). After filtering for redundancy, we
found that among the 6201 D2R Acb- and the 6253 D2R
DS-enriched genes, only 459 and 510 were exclusive to D2R cells
from Acb and DS, respectively, (Fig. 1h and Supplementary
Data 2). We then broadened our analysis, without prefiltering the
pellets with the inputs, to capture all genes with DS-Acb
differential expression—regardless of their expression profiles
outside of D2R neurons (Fig. 1i, j and Supplementary Data 2).
Hierarchical clustering of the top 50 differentially expressed genes
clearly separates the Acb and DS (Fig. 1i and Supplementary
Data 2). Particularly, we found 2797 and 3884 protein-coding
gene products more expressed in the Acb and the DS,
respectively, (Fig. 1i, j and Supplementary Data 2).

Genes preferentially expressed in DS D2R neurons. To identify
molecular markers that are preferentially expressed in the DS, we
analyzed genes that showed a significant dorso-ventral expression
bias in our high-throughput analysis. We found 3884 protein-
coding genes preferentially expressed in the DS (Fig. 1i and
Supplementary Data 2). Some of these genes include Trnpl,
Lpcatd, Kctdl7, Trpc3, Ace, Dabip, Me2, Rgs4, Itga5, Coch,
Tbcld8, Gprl55, Rasd2, Rgs7bp, Slc24a2, Kcnk2, Ddit4l, and Cend2
among others (Fig. 2a). This enrichment was confirmed by
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qRT-PCR analysis performed following HA-immunoprecipitation
in different D2-RiboTag mice (Fig. 2b). Cross analysis of our data
with in situ hybridization (ISH) profiles from the Allen Brain Atlas
further validated the differential gene expression. Close inspection
of the distribution of genes more expressed in DS indicated that
expression patterns are highly heterogeneous and could be visually
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classified into different categories including widespread (Foxpl,
Pcp4, Camkk2, Itprl), lateral DS restricted (Ace, Me2, Rgs7bp,
Acvrll), medial DS restricted (Rbp4, Fos, Ntm, Ddit4l), sparse
(Cd4, Cit, B3gnt2), or patch/matrix (Calbl, Pdpl, Cdh8, Plxndl,
SepwI)!7 (Fig. 2c and Supplementary Fig. 4a). Differential
expression was also confirmed at the protein level for neurogranin
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Fig. 1 Translatome profile of DS and Acb D2R neurons using D2-Ribotag mice. a Coronal striatal section of D2-RiboTag mice stained with HA (cyan) and
DARPP-32 (orange), PV (parvalbumin), CR (calretinin), NPY (neuropeptide Y), or SOM (somatostatin). Note the selective HA expression in ~50% of SPNs
(DARPP-32-positive) corresponding to iSPNs and in CINs (arrowhead). b Drawing summarizing HA expression (cyan) among the distinct striatal cell types
and validation by gRT-PCR (AACT) of the enrichment of iSPN markers and de-enrichment of dSPNs, interneurons, and glial cells markers after HA-
immunoprecipitation on whole striatal extract (DS and Acb) compared with the input fraction (containing the mRNAs from all cellular types) (n = 4 mice/
group). Data are presented as mean values = SEM. ¢ Fold-change of protein-coding genes enriched in the Acb pellet fraction of D2-RiboTag mice. d Volcano
plot depicting protein-coding genes enriched in the Acb of D2R neurons. e Fold-change of protein-coding genes enriched in the DS pellet fraction of D2-
RiboTag mice. f Volcano plot depicting protein-coding genes enriched in the DS of D2R neurons. g Doughnut chart showing the overlap and distribution of
D2R-enriched genes found in our study among the 233 D2R-enriched genes identified in 13. h Volcano plot depicting protein-coding genes enriched in the
Acb (top panel) and in the DS (bottom panel) of D2R neurons after filtering the pellet fraction with the input fraction. i Heatmap of the top 50 genes most
significantly enriched either in DS (pink) or Acb (orange). Scaled expression values are color coded according to the legend. The dendrogram depicts
hierarchical clustering. j Volcano plot depicting protein-coding genes from the pellet fraction of D2R neurons that are enriched in the Acb (top panel) and in
the DS (bottom panel). DS dorsal striatum, LS lateral septum, Acb accumbens, Tu olfactory tubercules, aca anterior commissure, lv lateral ventricle.

(Nrgn), D2R, calbindin-D28k (CB), and dopamine- and cAMP-
regulated phosphoprotein, Mr 32 kDa (DARPP-32) (Fig. 2d).

Notably, our RNAseq approach was highly valuable to detect
differential expression levels of genes encoding proteins mainly
expressed presynaptically, such as Cnrl, the cannabinoid receptor
type 1 (CB1R). Western blot (WB) analysis of CBIR expression
only revealed a slight increase (~13%) in DS compared with Acb
(Fig. 2e), presumably due to the presence of CBIR in striatal
afferents and the fact that CBIR is mainly expressed in SPNs
terminals (Fig. 2f). In contrast, when analyzing the mRNA level
present in iSPNs, both RN Aseq and qRT-PCR revealed a 8.6- and
3.3-fold enrichment respectively of CBIR in DS compared with
Acb (Fig. 2g).

Our analysis also revealed a remarkable dorso-ventral expression
gradient of mitochondria-related genes. This bias is particularly
evident for genes encoding for mitochondria ribosomal proteins
(17 in DS vs 5 in Acb), mitochondrial transporters (19 in DS vs 4
in Acb), translocases (12 in DS vs 0 in Acb), and respiratory chain
complex (69 in DS vs 4 in Acb) (Fig. 2h and Supplementary
Data 3). Among the five complexes, bias expression was
particularly unbalanced since 26 out of 44 genes encoding for
proteins of the respiratory chain complex I (CI) are more actively
translated in the DS (Fig. 2h and Supplementary Data 3). This
bias is functionally relevant since the activity of CI measured in
total homogenate was higher in the DS compared with the Acb
(Fig. 2i). The citrate synthase (CS) activity, a validated biomarker
for mitochondrial density, was also slightly increased in the DS
(Fig. 2j), suggesting that mitochondria content might be higher
in the DS than in the Acb. However, the increased CI activity
was presumably not only due to a higher mitochondrial density
since the CI/CS ratio was still significantly increased in the DS
(Fig. 2k).

Genes preferentially expressed in Acb D2R neurons. Similar to
DS, our RNAseq analysis revealed 2797 protein-coding genes that
show a preferential expression in the Acb (Pegl0, Calcr, Cbin4,
Amotll, Gabrgl, Ntnl, Stard5, Lrrn3, Wfsl, Nts, Cartpt, Nnat,
Hapl, Trhr, Hpcal4, Gfral, DIkl, Fam126a) (Fig. 3a). All these
genes were confirmed by qRT-PCR in different D2-RiboTag mice
(Fig. 3b). Cross analysis with the ISH distribution patterns also
revealed that genes more expressed in Acb are widespread
(Slc35d3, Crym, Nnat) or preferentially distributed in distinct Acb
territories including the core (AcbC) (Cartpt, Hpcald, Col6al,
Zdbf2, Calcr, DIkl, Pegl0) as well as the medial (Hapl, Chn2,
Gprinl, Stard5, Lrrn3, Foxp2), ventral (Gprl01, Gfral, Cdh2,
Gpr26, Cpne6), lateral (Nts, Gpr83), or cone part (Trhr, Cpne2,
Lypdl, Carhspl, Dppl0) of the shell (AcbSh) (Fig. 3¢, d, g and
Supplementary Fig. 4b). The biased expression toward the Acb
was also confirmed at the protein level for Gatl, Gprinl, Foxp2,
Map2, Soxl1, and Hapl (Fig. 3d).

Interestingly, we noticed a preferential Acb expression of many
imprinted genes, which are those genes whose expression occurs
from only one allele and represent < 1% of all genes. Among the
90 imprinted genes detected in the striatum, half of them were
differentially expressed between the two regions, with 42 genes
more expressed in the Acb and only 19 in the DS (Fig. 3e and
Supplementary Data 3). The biased Acb expression of two
paternally imprinted genes, Pegl0 and Nnat, were confirmed by
WB (Fig. 3a, b, f). Strikingly, ISHs revealed distinct localization
patterns within the Acb (Fig. 3d, g and Supplementary Fig. 4b), as
well as different expression levels compared with other brain
regions. For instance, Calcr, Dlk1, Zdbf2, and Pegl0 are almost
exclusively expressed in the Acb compared with surrounding
structures (Fig. 3d, g and Supplementary Fig. 4b), while Cntn3,
Gnas, and Nap1l5 expression is rather widely distributed. Of note,
several imprinted genes such as DikI, Calcr, Zdbf2, and Pegl0
show a rather selective expression in the AcbSh cone and ventral
part of the AcbC (Fig. 3¢, g).

We also found transcripts of the imprinted gene Th in Acb
D2R neurons (Fig. 3e). Although a low number of reads suggests
that Th is probably weakly expressed (Supplementary Data 2),
scattered expression was detected by ISH in the Acb (Fig. 3h).
This pattern matches with the enriched GFP staining observed in
the bundle-shaped area of the caudomedial AcbSh in Th-eGFP
mice (Fig. 3i). Consistent with our RNAseq data, we found that
half of the TH neurons also express DARPP-32 in both AcbC and
AcbSh (Fig. 3j, k). A minor proportion of cells was also positive
for calretinin (CR) but not for NPY or ChAT (Fig. 31, m). These
results suggest that in addition to GABAergic interneurons, some
iSPNs also express TH, thereby defining a novel subpopulation of
D2R-TH-SPNs.

Heterogeneity of DS and Acb CINs. Our RNAseq and qRT-PCR
analyses also revealed several CINs-enriched genes, including
classical CINs markers (Chat, AChE, Slc18a3, Slc17a8) as well as
markers previously found by the bacTRAP approach!® (Ufspl,
Ecell, Bves, Crabp2, Ntrkl). Finally, several additional CINs-
enriched genes were also identified (Slc10a4'®, Kctd6, S100a10,
Tacr1?9, Tacr3) (Supplementary Fig. 5a, b). The expression of all
these DS-enriched genes was confirmed by qRT-PCR in different
D2-RiboTag mice (Supplementary Fig. 5a, b). Enrichment for
VGLuT3, TrkA, and NKIR was also confirmed by triple
immunofluorescence (IF) analysis in D2-eGFP mice with either
VAChAT or ChAT (Supplementary Fig. 5c-e). Because CINs are
differentially distributed across the mouse striatum?! (Supple-
mentary Fig. 5¢), we determined the percentage of ChAT/HA-
positive cells in the DS and Acb (Supplementary Fig. 5f, g). Our
analysis revealed a gradual decrease in the fraction of ChAT/HA
colabeled cells ranging from 100% co-expression in the DS
(360 HA™T neurons out of 360 ChAT™ cells) to 88% in the AcbC
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(83 HA™ neurons out of 94 ChAT™ cells) and only 38% in the
AcbSh (36 HAT neurons out of 95 ChAT™ cells) (Supplementary
Fig. 5f, g). This observation could explain why CINs-enriched
genes were preferentially found in the in DS and the lack of
ChAT enrichment after HA-immunoprecipitation from whole
striatum extract (Fig. 1c). Our cross analysis with recent results
obtained by single-cell RNAseq analysis*? confirmed that ~83%
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of their CINs-enriched genes were also found in a population of
D2R CINs (Supplementary Fig. 5h and Supplementary Data 4).
Interestingly, although less represented, Acb D2R CINs-enriched
genes can also be identified (Supplementary Fig. 5h and Sup-
plementary Data 4). Thus, similar to the heterogeneity of iSPNs,
these results indicate that numerous CINs subpopulations
may exist.
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Fig. 2 Identification of genes from D2R cells that have a preferential expression in the DS. Fold-change and AACT of DS-enriched genes found by
RNAseq (a) and confirmed by gRT-PCR (b). Different cohorts of D2-RiboTag mice were used for both techniques. ¢ ISH coronal sections from Allen Brain
Atlas of region-specific DS-enriched genes. d Enrichment of Nrgn (t;; = 8.106, p = 0.000003, two-sided t test, n =7 mice/group), D2R (t;; =4.24, p=
0.00M, two-sided t test, n =7 mice/group), CB, and DARPP-32 in the DS confirmed by WB and IF analyses (n =3 mice/group). e WB and quantification of
CB1R in DS and Acb (t;, =2.222, p = 0.0463, two-sided t test, n =7 mice/group). f CBIR staining in the DS and its output structures (n =4 mice/group).
g RNAseq fold-change and AACT of gRT-PCR of Cnrl. h Doughnut chart showing the distribution of the DS D2R-enriched genes (69) belonging to the
respiratory chain complex | (C,, 26), Il (Cy, 2), Il (Cyy;, 6), IV (C}y, 11) and complex V (Cy, 12) and to the respiratory chain complex assembly factors (Cs,
12). i Enzymatic activity of complex | (CI) in Acb or DS (t4; =5.791, p=0.000013, two-sided t test, n =22 mice/Acb and n = 21 mice/DS). j Enzymatic
activity of citrate synthase (CS) in Acb or DS (t39 = 2.706, p = 0.0101, two-sided t test, n = 21 mice/Acb and n = 20 mice/DS). k Ratio CI/CS in Acb or DS
(t3g = 3.109, p = 0.0035, two-sided t test, n =21 mice/Acb and n =19 mice/DS). All data are presented as mean values + SEM. DS dorsal striatum, Cx
cortex, LS lateral septum, Acb accumbens, AcbC accumbens core, AcbSh accumbens shell, GPe external globus pallidus, Hc hippocampus, Ep
entopeduncular nucleus, BIA basolateral amygdala, SNr substantia nigra part reticulata, Tu olfactory tubercules, aca anterior commissure, Iv lateral

ventricle, cc corpus callosum.

Systematic molecular classification of DS and Acb D2R neu-
rons. In order to provide further information about molecular
expression biases between the DS and the Acb, we implemented a
classification by sorting genes of interest according to neuro-
transmitter systems based on the publicly available IUPHAR/BPS
database (www.guidetopharmacology.org). Thus, genes encoding
receptors, transporters, and enzymes involved in neuro-
transmitter turnover were categorized as Acb-enriched (orange),
DS-enriched (pink), not enriched (gray), or not expressed (black)
and organized for various neurotransmitters systems including 5-
HT, catecholamines, GABA, glutamate acetylcholine, and endo-
cannabinoid (Supplementary Fig. 6a—p). This representation,
which allows a rapid overview of the regional enrichment of genes
in D2R neurons, revealed overwhelming differences between the
DS and Acb. A bias toward the Acb is particularly evident in
expression of 5-HTRs (Htrla, Htr2a, Htr2c, Htr4, and Htr7)
(Supplementary Fig. 6a-d) and for GABAa receptor subunits
(Supplementary Fig. 6h-j).

Remarkable region-specific differences were also found in the
catecholaminergic system. For example, the gene encoding D2R is
highly enriched in the DS (Supplementary Fig. 6f), supporting the
bias shown earlier by WB and IF (Fig. 2d). However, these
protein-level analyses also included D2R from cortico- and
thalamostriatal, and dopaminergic terminals, and were not
exclusive from iSPNs and CINs as in our RNA-based approach.
Preferential expression of Drd5 was also observed in the DS most
likely corresponding to that found for CINs2? (Supplementary
Fig. 6f and Supplementary Data 4). Our approach also revealed
enrichment of Drdl and Drd3 mRNAs in the Acb (Supplemen-
tary Fig. 6f), indicating that these DA receptors might also be
present in D2R neurons, as supported by the significant number
of GFP/RFP-positive cells found in AcbSh of D2-eGFP/DI-
tdTomato mice (Supplementary Fig. 6g). This enrichment of Drd1
transcripts in Acb D2R neurons provides additional evidence for
a higher proportion of DIR/D2R neurons in the Acb?4-28,

Similar classification was performed for voltage-gated ion
channels including calcium, sodium, and potassium channels, which
comprise inwardly rectifying potassium channels, voltage-gated
potassium channels, two-P potassium channels, calcium-activated
potassium channels, and accessory subunits (Supplementary
Fig. 7a-g). Future studies may demonstrate a relationship between
the intrinsic electrophysiological properties of D2R subpopulations
and channel expression levels. Finally, Gene Ontology (GO) analysis
revealed an important dichotomy between genes more expressed in
DS and Acb that might underlie diversity in the biological functions
of DS and Acb D2R neurons (Supplementary Data 5-7).

Characterization of Acb WFS1 neurons. To illustrate how the
identification of hundreds of novel region-specific molecular
markers may serve as tools to parse the role of D2R in selective

striatal subpopulations, we focused as a proof of concept on Acb
WESI neurons. We selected this cell subpopulation based on the
availability of genetic tools and because the WfsI gene displayed
one of the most segregated expression patterns between the DS
and Acb. Both ISH and IF analyses revealed a prominent
expression in the Acb, especially in the AcbC and intermediate
AcbSh, while weaker in the lateral and medial AcbSh (Fig. 4a, b).
To gain insight into the molecular identity of this subpopulation,
we generated WfsI-Ribotag mice (Fig. 4c) and performed
RNAseq of the tagged ribosome-bound mRNAs and the input
fractions of the Acb. The specificity of the approach was vali-
dated since WfsI mRNA was enriched in the pellet fraction,
while transcripts of markers of astrocytes (Gjb6, Kncj10, Slcla2),
oligodendrocytes (Olig2, Cnp, Clenll), microglia (Aifl, Itgam,
Tmem119), and vascular cells (Flt1, Gata2, Sox18) were depleted
(Fig. 4d). Our analysis (p < 0.05) identified 5885 protein-coding
genes enriched in WFS1 neurons (Fig. 4e, f and Supplementary
Data 8).

We next examined the presence of markers of specific striatal cell
types within the WFS1 subpopulation. Among the genes enriched
in WEFS] neurons, we found transcripts expressed in SPNs
(PpplIrlb, Bcll1b, Gpr88, Rgs9), including both dSPNs (Drd1, Pdyn,
Tacl, Chrm4) and iSPNs (Drd2, Adora2a, Penk, Gpr6) (Fig. 4g and
Supplementary Data 8). These results were confirmed after
analyzing the distribution of WES1 in both DIR- and D2R-SPNs
(Fig. 4h, i). While WFSI appears to be particularly enriched in D1R
AcbC and AcbSh neurons (Fig. 4h, 1), it is also expressed by Acb
D2R neurons (Fig. 4g—j). By contrast, no expression of WfsI was
detected in CINSs or other types of interneurons (Fig. 4k-m). Since
the Acb subcircuitry defined by WES1 cells has never been
investigated, we next assessed the projection patterns of WFS1
neurons in known target structures of the Acb. To do this, the
Cre-inducible viral vector AAV2/5-hSyn-DIO-rM3D(Gs)-mCherry
was injected into the Acb (injection covering the AcbC and AcbSh
lateral) of WfsI-CreERT2 mice and RFP (mCherry) immunor-
eactivity was analyzed in Acb output structures (Fig. 4n, o).
RFP staining was found in the ventral pallidum (VP) and SN/
VTA identified with enkephalin and TH labeling, respectively,
(Fig. 40).

As revealed by PCA, the enriched transcripts found in Acb
D2R neurons markedly differed from the WFS1 subpopulation
(Supplementary Fig. 2). We therefore compared the highest
differentially expressed genes in Acb WEFS1- and D2R-positive
neurons (Fig. 5). This analysis revealed that only 443 out of the
5885 were selectively enriched in WFS1 neurons (Fig. 5a and
Supplementary Data 9). Conversely, 758 out of the 6201 enriched
genes found in Acb D2R neurons were absent from the genes
enriched in WEFS1 neurons (Fig. 5b and Supplementary Data 9).
When taking into account only the enriched transcripts from
Acb D2R neurons after filtering the pellet with the input fraction,
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253 out of the 459 transcripts enriched in D2R cells were also
present in WEFSI cells, and only 206 were exclusive of D2R cells
(Fig. 5c¢ and Supplementary Data 9). A nonfiltered analysis
revealed that 2779 and 2447 protein-coding genes were found to
be enriched in Acb WFS1- and D2R-positive neurons, respec-
tively, (Fig. 5d and Supplementary Data 9). A classification based
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on neurotransmitter systems as well as GO analysis suggested
major differences between Acb WEFS1 and D2R neurons
(Supplementary Figs. 8 and 9 and Supplementary Data 9).
Indeed, a bias toward the Acb D2R neurons is particularly evident
for subunits of voltage-gated calcium channels, sodium channels,
and voltage-gated potassium channels (Supplementary Fig. 9a, b,
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Fig. 3 Identification of genes from D2R cells that have a preferential expression in the Acb. Fold-change and AACT of Acb-enriched genes found by
RNAseq (a) and confirmed by gRT-PCR (b). Different cohorts of D2-RiboTag mice were used for both techniques. ¢ ISH coronal sections from Allen Brain
Atlas of region-specific Acb-enriched genes. d Enrichment of Gat1 (t;, = 2.316, p = 0.0390, two-sided t test, n =7 mice/group), Gprinl (t;, =5.252, p=
0.0002, two-sided t test, n =7 mice/group), Sox1 (t;; = 7.894, p = 0.000004, two-sided t test, n =7 mice/group), Foxp2 (t;, = 4.533, p = 0.0007, two-
sided t test, n=7 mice/group), MAP2 (t;; =2.892, p = 0.0135, two-sided t test, n =7 mice/group), and Hap1 (t;; =12.98, p = 0.00000002, two-sided
t test, n =7 mice/group) in the Acb confirmed by WB and IF analyses (n =3 mice/group). All data are presented as mean values + SEM. e Fold-change of
statistically significant imprinted genes found by RNAseq after HA-immunoprecipitation in D2-RiboTag mice. f WB and quantification of Pegl10 (t;, = 2.183,
p = 0.0496, two-sided t test, n =7 mice/group) and Nnat (t;; =3.97, p=0.0019, two-sided t test, n =7 mice/group) in Acb and DS. All data are
presented as mean values £ SEM. g ISH of imprinted genes from the Allen Brain Atlas and coronal section of DIkl immunostaining (n = 3 mice/group). h Th
ISH from the Allen Brain Atlas. i Coronal section of GFP staining in Th-eGFP mice (n =3 mice/group). j, k Double IF for GFP and DARPP-32 and
quantification of GFP/DARPP-32 cells in the Acb of Th-eGFP mice (n =3 mice/group). I, m Double IF for GFP and CR, NPY, and ChAT and quantification of
co-expressing cells in the Acb of Th-eGFP mice (n =3 mice/group). DS dorsal striatum, Cx cortex, Acb accumbens, AcbC accumbens core, AcbSh
accumbens shell, ICjM island of Calleja, Tu olfactory tubercules, aca anterior commissure, Iv lateral ventricle, cc corpus callosum.

d) while subunits of inwardly rectifying potassium channels are
more expressed in Acb WFSI neurons (Supplementary Fig. 9c).
GO analysis indicated that enriched transcripts from Acb WES1
neurons are mostly related to the extracellular matrix including
cell-adhesion molecules (Fig. 5e, f and Supplementary Data 9).
Finally, we cross-analyzed our results with recent single-cell
RNAseq study defining new D2R- and D1R-SPNs subpopula-
tions!3. Among the 61 gene products defining the D2R-Htr7-
SPNs subpopulation, 30 were found to be also enriched in Acb
D2R neurons in our dataset (Fig. 5g and Supplementary Data 10).
Such analysis also confirmed that WFS1 neurons are enriched in
gene products classifying DIR-SPNs and some of their discrete
subpopulations (Fig. 5h and Supplementary Data 10).

D2R from WES1 neurons control digging behavior. To parse
the role of D2R in WFS1 neurons, we generated temporally
controlled conditional Drd2 knock-out mice (D2R-cKO) by
crossing the tamoxifen-inducible Wfsi-CreERT2 BAC trans-
genic mouse line with the Drd2!0xP/loxP Jine, Three weeks after
tamoxifen treatment, the efficiency of Drd2 ablation was con-
firmed by ISH using Basescope assay (Fig. 6a). D2R expression
analyzed by WB and IF also confirmed that D2R levels were
reduced by ~32% in the Acb of D2R-cKO mice (Fig. 6b, c¢) and
that deletion of Drd2 was restricted to the Acb since no differ-
ences in D2R expression were found in the DS between genotypes
(Fig. 6b, c). The ~70% preserved D2R expression in the Acb of
D2R-cKO mice presumably corresponds to the presynaptic D2R
present in dopaminergic and glutamatergic afferents (including
both cortico- and thalamostriatal inputs) as well as the post-
synaptic D2R expressed in ~50% of Acb iSPNs that do not
express Wfsl (see Fig. 4h, i).

We first tested whether temporally inducible deletion of Drd2
in a restricted Acb subcircuit impacted locomotor responses. No
differences in total distance traveled or movement speed were
found in an open field arena between D2R-cKO and control
littermates (Fig. 6d). Similar results were found in horizontal and
vertical locomotor activity measured in a circular corridor
(Fig. 6e, f). D2R-cKO also displayed similar motor performance
on the rotarod as compared with control mice (Fig. 6g). No
alterations in anxiety-like and depressive-like behaviors were
observed in the elevated plus maze and tail suspension test,
respectively, (Supplementary Fig. 10a, b). Moreover, no deficits in
working memory or perseverative behavior were found in the
spontaneous alternation task (Supplementary Fig. 10c). Intrigu-
ingly, D2R-cKO mice exhibited a pronounced impairment in the
marble burying test, hiding less than half of the marbles
compared with control littermates (Fig. 6h, Supplementary
Videos 1 and 2). This phenotype was not due to an effect of
novelty because similar results were found by repeating the test
the following day, when marbles were already familiar to mice

(Fig. 6h). In addition, no differences were found in the novel
object exploration task (Supplementary Fig. 10d) or in the time
mice spent exploring the object and stranger in the three-
chamber test (Supplementary Fig. 10e, f). Since the phenotype
observed in marble burying cannot be explained by alterations in
locomotion (Fig. 6d-f), anxiety (Supplementary Fig. 10a), a lack
of novelty-seeking behavior (Supplementary Fig. 10d), or an effect
of marbles-induced anxiety (Fig. 6h, day 2), we hypothesized that
an alteration of innate behaviors such as digging could account
for the decrease of marbles buried. Indeed, D2R-cKO mice spent
significantly less time digging than control mice (Fig. 6i), despite
having a similar latency to start digging and a total number of
digging bouts (Supplementary Fig. 10g). Importantly, D2R-cKO
mice displayed similar goal-directed digging toward standard or
palatable food than control mice (Supplementary Fig. 10h).
Finally, this phenotype is not a consequence of a decrease in
repetitive behaviors since no differences in grooming behavior
(Supplementary Fig. 10i) or in repetitive motor routines®®
(Fig. 6g) were observed between genotypes.

In addition to the role of D2R from WEFS1-expressing cells in
digging behavior, we sought to assess whether the whole WFS1-
positive subcircuit (including both dSPNs and iSPNs) partici-
pated in this innate behavior. To do so, we chemogenetically
activated Acb WEFS1 neurons by bilaterally injecting the Cre-
inducible viral vector AAV-hSyn-DIO-rM3D(Gq)-mCherry
into the Acb of Wfs1-CreERT2 mice and systemically injecting
its ligand CNO (1 mg/kg). No differences were found between
CNO- and vehicle-treated mice in digging behavior, locomotor
activity, perseverative behavior, working memory, novel object
exploration, or grooming behavior (Supplementary Fig. 11).
The lack of effect in digging behavior after the activation of Acb
WEFS1 neurons, compared with the key role that D2R have in
the same subpopulation, could be explained by the simulta-
neous activation of both direct and indirect pathways that might
have opposite roles.

Deletion of D2R from WFS1 neurons enhances the response to
amphetamine. Next, we assessed the contribution of D2R from
WESI neurons in response to pharmacological stimulations.
Since D2R is the main receptor targeted by antipsychotic drugs,
we first evaluated the cataleptic response induced by the typical
antipsychotic haloperidol in D2R-cKO mice. In contrast to the
blunted haloperidol-induced catalepsy observed in mice lacking
the D2L isoform3%3!—which is mainly expressed at postsynaptic
sites—or bearing a selective deletion of D2R in CINs?2, similar
cataleptic responses were observed in D2R-cKO mice and control
littermates (Fig. 6j). These results indicate that the catalepsy
induced by haloperidol does not require D2R in the WFSI neu-
ronal population.
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We then stimulated D2R indirectly by boosting striatal DA
levels using the psychostimulant amphetamine. After a 3-day
habituation with saline injections in a circular corridor, mice
received a single injection of amphetamine (2.5 mg/kg), which
elicited a robust increase in locomotion in control mice (Fig. 6k).
Interestingly, the amphetamine-induced locomotor response was
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significantly higher in D2R-cKO mice (Fig. 6k), suggesting that
D2R in WEFSI neurons negatively control the effects of
amphetamine on locomotion. On the other hand, behavioral
sensitization was comparable between genotypes as determined
by similar slopes and ratios between day 1 and 12 of
amphetamine treatment (Fig. 6l). Finally, similar hyperlocomotor
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Fig. 4 Anatomical characterization of Acb WFS1 neurons. a Single-molecular fluorescent in situ hybridization for WfsT mRNAs in the striatum. b Coronal

section with Wfs1 immunostaining (n =3 mice/group). ¢ Coronal section with HA immunostaining from Wfsi-RiboTag mice (n =4 mice/group).

d Validation by RNAseq of the de-enrichment of markers for astrocytes, microglia, oligodendrocytes, and vascular cells, and the enrichment of GABAergic

cells markers after HA-immunoprecipitation on Acb extracts compared with the input fraction (containing the mRNAs from all cellular types). e Fold-

change of protein-coding genes enriched in the Acb pellet fraction of Wfs1-RiboTag mice. f Volcano plot depicting protein-coding genes enriched in the Acb
of Wfs1 neurons. g Fold-change of SPNs, dSPNs, and iSPNs markers from the Acb pellet fraction of Wfs1-RiboTag mice. h Double IF for GFP and Wfs1in D2-

and D7-eGFP mice (n =3 mice/group). i Quantification of GFP/Wfs1 cells in the Acb of D2- and D71-eGFP mice. j Single-molecular fluorescent in situ

hybridization for WfsT (orange) and Drd2 (cyan) mRNAs in the striatum. k Fold-change of CINs markers de-enriched in the Acb pellet fraction of WfsT-
RiboTag mice. | Double IF of ChAT (orange) and HA (cyan) in the Acb of Wfs1-RiboTag mice. m Fold-change of striatal interneuron markers de-enriched in
the pellet fraction of WfsT-RiboTag mice. n Schematic of Cre-dependent AAV-mCherry Acb injection in Wfs1-CreERT2 mice and visualization of the mCherry
expression (gold color) at the injection site as well as (0) in output structures identified by co-staining with ENK (ventral pallidum, VB) and TH (substantia
nigra pars compacta, SNc, and ventral tegmental area, VTA). DS dorsal striatum, Cx cortex, Acb accumbens, AcbC accumbens core, AcbSh accumbens

shell, ICjM island of Calleja, Tu olfactory tubercules, aca anterior commissure, lv lateral ventricle, cc corpus callosum.
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Fig. 5 Molecular characterization of Acb WFS1 neurons. a Volcano plot depicting protein-coding genes selectively enriched in the Acb of WFS1 neurons.
Volcano plot depicting protein-coding genes selectively enriched in the Acb of D2R neurons without (b) or after filtering the pellet fraction with the input
fraction (¢) compared with Acb Wfs1 neurons. d Fold-change of markers enriched from the Acb pellet fraction of Wfs1-RiboTag mice vs D2-RiboTag mice.
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Fig. 6 Temporal deletion of Drd2 from WFS1 neurons alters digging behavior and amphetamine effects. a Double ISH of Drd2 (blue) and Wfs1
(magenta) in the striatum of control and D2R-cKO mice. b WB (top) and quantification (bottom) of D2R in control (ct) and D2R-cKO in Acb (t;o = 2.542,
p=0.0293, two-sided t test, n =6 mice/group) and DS (t;; = 0.7706, p = 0.4588, two-sided t test, n = 6 mice/group). ¢ Coronal section of D2R staining
in D2R-cKO and ct. d Representative track traces (left), total distance traveled over 30 min (middle) (t;3 =1.51, p = 0.1549, two-sided t test, n=7 ct and
n =8 D2-cKO), and average speed (right) (t;4 =1.563, p = 0.1405, two-sided t test, n = 8 mice/genotype). Horizontal (e: t,g = 0.8209, p = 0.4186, two-
sided t test, n =14 ct and n =16 D2R-cKO) and vertical (f: t,g = 0.709, p = 0.4842, two-sided t test, n =14 ct and n =16 D2R-cKO) activity over 30 min in
a circular corridor. g Accelerating rotarod performance of D2R-cKO and ct. Time to fall off is represented among the six trials at 4-40 rpm (time: Fs, 75y =
16.47, p <0.0001; genotype: F 15y = 0.7803, p = 0.3910; interaction: Fs, 75y =1.314, p=0.2672, two-way ANOVA repeated measures) and the six
following trials at 8-80 rpm (time: F(s, 75y = 3.761, p = 0.0043; genotype: F 15y = 0.5911, p = 0.4539; interaction: Fs, 75y = 0.7171, p = 0.6126, two-way
ANOVA repeated measures) (three trials/day for 4 days, n =16 mice/genotype). h Representative pictures and number of marbles buried after 20 min for
each genotype on day 1 (t45 = 6.984, p =1.07E—08, two-sided t test, n = 23 ct and n = 24 D2R-cKO) and 24 h later (day 2) (t,o = 4.154, p = 0.0003, two-
sided t test, n =15 ct and n =16 D2R-cKO). i Total duration of digging behavior over 3 min (t,7 = 3.913, p = 0.0006, two-sided t test, n=14 ct and n =15
D2R-cKO). j Total catalepsy time 60 min after haloperidol administration (1.5 mg/kg) (t;4 = 0.9354, p = 0.3654, two-sided t test, n =8 mice/genotype).
k Horizontal activity over 30 min of habituation and over 120 min after amphetamine administration (2.5 mg/kg) (time: F(a9, 435y = 38.31, p<0.0007;
genotype: F; 15y =14.43, p=0.0017; interaction: F9, 435y =5.260, p < 0.0001, two-way ANOVA repeated measures; t;5 =3.799, p = 0.0017, two-sided
t test, n =9 ct and n = 8 D2R-cKO) in a circular corridor. | Total locomotor activity over 10 min after amphetamine administration (2.5 mg/kg) on day 1and
after a challenge injection one week after a 5-day repeated treatment (day 12) and ratio day 12/day 1 (t;5 = 1.076, p = 0.2989, two-sided t test, n =9 ct and
n=8 D2R-cKO). All data are presented as mean values + SEM. DS dorsal striatum, Acb accumbens, AcbC accumbens core, aca anterior commissure, lv
lateral ventricle.
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responses were observed in both genotypes after a single injection
of the NMDA receptor antagonist, MK801 (0.3 mg/kg) (Supple-
mentary Fig. 10j), suggesting that Drd2 ablation from WES1 sub-
population does not affect the glutamate contribution within the
corticostriatal loop.

Together, these results show a role of D2R in WES1 neurons in
the acute locomotor effects induced by amphetamine but not in
behavioral sensitization.

Discussion

D2R play a crucial role in DA-mediated motor control and
represents an important target to treat disorders (e.g., schizo-
phrenia) in which DA signaling is altered. However, given the
widespread expression of striatal D2R, the precise function of
D2R in relation to their neuroanatomical locations within the
striatum remains unclear. Here, based on our translatome ana-
lysis of D2R neurons, we have identified a specific group of
striatal neurons in which Drd2 ablation alters a specific type
of behavior. Our results provide a proof of concept of the interest
of identifying specific SPN subpopulations to better dissect the
actions of DA on its target neurons.

The present work clearly supports the existence of the mole-
cular heterogeneity of striatal D2R neurons. Importantly, our
study reveals that this high level of diversity cannot be appre-
hended without taking into account the anatomical localization of
those neurons throughout the dorso-ventral axis of the striatum.
Indeed, our cross analysis indicated that expression patterns of
enriched genes are highly heterogeneous within the DS, the AcbC,
and the AcbSh. Although we focused here on the comparison of
mRNAs of DS and Acb D2R neurons, similar expression patterns
most likely exist for DIR-positive cells. Indeed, in a recent single-
cell RNAseq study showing heterogeneity of SPNs subpopula-
tions!3, neither whole-transcriptome PCA nor t-distributed sto-
chastic neighbor embedding separated dSPNs from iSPNs within
the neuronal cluster, suggesting that they share similar gene
expression patterns. In line with this observation, we found that
the biased dorso-ventral expression pattern of the WfsI gene
toward the Acb was found in both dSPNs and iSPNs.

Our data demonstrate the existence of a molecular complexity
that goes beyond the classical DIR/D2R dichotomy3334, as iSPNs
actually consist of several neuronal subpopulations with func-
tional heterogeneity. In this regard, a recent study unveiled that
D2R from the AcbSh have a higher sensitivity for DA than those
from the DS. This difference has been attributed to postsynaptic
signaling molecules that differ between the two regions®. In
support of this hypothesis, our study revealed significant differ-
ences in expression of genes encoding for postsynaptic molecules
that belong to G protein signaling and RGS family, which could
account for the region-dependent D2R sensitivity to DA. Like-
wise, the present study further supports the existence of mole-
cular heterogeneity among CINs. The biased expression of D2R
toward DS CINs may explain why D2R-dependent hyperpolar-
ization of CINs was preferentially observed in DS but not in
AcbSh32:36,

Using Th-eGFP mice, previous studies identified distinct classes
of TH-positive cells in the striatum3”. Despite the expression of
VMAT1, TH neurons did not release DA and were clearly cate-
gorized as GABAergic interneurons3’-38. However, our analysis
revealed that a high proportion of TH cells co-expressed DARPP-
32, indicating that at least a fraction of TH neurons within the
Acb corresponds to D2R neurons. Our cross analysis strongly
suggests that TH/DARPP-32 neurons located in the AcbSh may
correspond to the recently identified D2R-Htr7-SPNs sub-
population!3, whose electrophysiological and morphological
patterns as well as synaptic connectivity remain to be established.

Finally, our systematic gene classifications, GO analysis, and
associated functional assays reveal distinct biological functions of
D2R subpopulations in relation with their regional expression.
Indeed, the predominant expression of mitochondria-related
genes in D2R neurons from the DS is accompanied by an
increased activity of CI. Such imbalanced mitochondrial activity
and content could render DS iSPNs more vulnerable to oxidative
stress in Huntington’s disease, possibly explaining why they
degenerate earlier than dSPNs and why the neuronal loss pro-
ceeds from dorsal to ventral striatum3°.

Our study unveils the role of DA in digging behavior via a
mechanism that requires D2R in WFS1 neurons. Digging is an
evolutionarily conserved trait used in many species to seek or
hoard food, to create a refuge from cold or predators, or a nest for
the young. These actions require both a motor component and a
motivational value, two traits controlled by the Acb. In this line,
our results point to a prominent role of D2R located in a sub-
population of the Acb in the control of digging behavior. Since
Acb D2R neurons project to the VP, the Acb-VP subcircuit
formed by WES1 neurons is likely to be the one involved in DA-
controlled digging. Importantly, decreased digging behavior is the
only motor phenotype observed in D2R-cKO mice under basal
conditions. In contrast to full D2R-KO mice*?#! and lacking D2R
in all iSPNs or in the Acb>, no hypolocomotion or altered rotarod
performance were observed in our D2R-cKO mice. Haloperidol-
induced catalepsy was dampened in mice lacking the D2L
isoform3®3! or lacking D2R selectively from CINs32 but remained
unaltered in our D2R-cKO mice. Our study also reveals that
boosting DA levels by the use of amphetamine induced a higher
locomotor hyperactivity in D2R-cKO than in control littermates.
This contrasts with the blunted response to cocaine—another
psychostimulant that also increases DA levels—observed in SPNs
D2R-KO mice*?, in mice lacking the D2L isoform3!, and in
Drd2loxP/loxP mjce injected with a viral vector expressing Cre
recombinase in the Acb*3. The number of neurons bearing D2R
ablation (DS and Acb) or possible developmental effects pre-
sumably account for these differences. Although the latter study
targeted D2R deletion in the Acb during adulthood, the viral
approach was not cell type-specific, hence leading to the knock-
down of D2R in all D2R-expressing cells (D2R-SPNs, D1R/D2R-
SPNs, and CINs) located within the Acb. In contrast, in our study
D2R were ablated only from a specific iSPN subpopulation
including a limited number of cells in the AcbC and intermediate
AcbSh. Therefore, these opposing effects suggest that Acb D2R
have different roles in response to drugs of abuse depending on
the subcircuit in which they are located.

Collectively, here we identified novel region-specific and
genetically defined D2R cell subpopulations, which will likely be
useful for delineating and studying discrete striatal subcircuitry.
Manipulation of D2R from one subcircuit, WFS1-positive neu-
rons, produces a highly specific behavioral phenotype, and sug-
gests a selective role for D2R in these neurons in the control of
digging behavior and amphetamine-induced hyperlocomotion.
Therefore, our approach opens the way for parsing the behavioral
role of D2R in specific, well-defined groups of striatal neurons.

Materials and methods

Animals. The different mouse lines used in the present study are listed in the
resource table (Supplementary Information). Homozygous RiboTag female mice
were crossed with D2R-Cre heterozygous male and Wfs1-CreERT2 heterozygous
male mice to generate D2-RiboTag and WfsI-RiboTag, respectively. To delete Drd2
from WEFS1 neurons, heterozygous WfsI-CreERT2 mice were crossed with
homozygous Drd2/oxP/1oxP mice. First-generation animals expressing Cre under
Wfs1 promoter were crossed a second time with homozygous Drd2!oxP/loxP mice to
generate the tamoxifen-inducible Drd2 ablation specifically in WESI neurons
(D2R-cKO). For all behavioral experiments, male and female homozygous
Drd2loxP/loxP mice expressing CreERT2 under WfsI regulatory sequence were
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compared with controls (Cre-negative). Mice were housed under standardized
conditions with a 12 h light/dark cycle, stable temperature (22 + 2 °C), controlled
humidity (55 + 10%), and food and water ad libitum. Housing and experimental
procedures were approved by the French Agriculture and Forestry Ministry (A34-
172-13). Experiments were performed in accordance with the animal welfare
guidelines 2010/63/EC of the European Communities Council Directive regarding
the care and use of animals for experimental procedures.

Drugs and treatments. (5R,10S)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]
cyclohepten-5,10-imine hydrogen maleate ((4)-MK801, 0.3 mg/kg) and haloper-
idol (0.5 mg/kg) were purchased from Tocris Bioscience, and D-amphetamine
hemisulfate salt (2.5 mg/kg), clozapine N-oxide (CNO, 1 mg/kg), and tamoxifen
(100 mg/kg) from Sigma-Aldrich. All drugs were administered intraperitoneally in
a volume of 10 ml/kg and dissolved in 0.9% (w/v) NaCl (saline), except CNO that
was dissolved in 0.1% DMSO and tamoxifen that was dissolved in sunflower oil/
ethanol (10:1) to a final concentration of 10 mg/ml.

Tissue collection. Mice were killed by cervical dislocation and the heads were
immersed in liquid nitrogen for 4 s. The brains were then removed and sectioned
on an aluminum block on ice. The whole striatum was extracted as previously
described*4. The Acb was isolated from a ~1-mm thick coronal section located
between 1.94 and 0.86 mm anterior to bregma and the DS between 0.86 and
0.14 mm anterior to bregma as previously described*> (Supplementary Fig. 1a).

Western blot. The DS and the Acb were sonicated in 200 pl of 10% sodium
dodecyl sulfate and boiled at 100 °C for 10 min. Protein quantification and WBs
were performed as described®’. The antibodies used are summarized in a Sup-
plementary resource table. When necessary, membranes were stripped in buffer
containing 100 mM glycine (pH 2.5), 200 mM NaCl, 0.1% Tween 20, and f-
mercaptoethanol for 45 min, followed by extensive washing in 100 mM NaCl,

10 mM Tris, and 0.1% Tween 20 (pH 7.4). For quantitative purposes, the optical
density values of each antibody were normalized to B-actin values from the same
sample. Acb values were referred as 100% as control group and DS values were
represented with respect to Acb. In all blots, quantified data are shown as the
mean + SEM (n =7 mice/brain subregion) (Supplementary Fig. 12).

Immunofluorescence. Tissue preparation and IF were performed as described®°.
Primary antibodies used are listed in the resource table (Supplementary Infor-
mation). Three slices per mouse were used in all IF analyses (1 = 3-4 mice/
staining).

In situ hybridization. Staining for WfsI and Drd2 mRNAs was performed using
single molecule fluorescent ISH (smFISH). Brains from two C57Bl/6] 8-week-old
male mice were rapidly extracted and snap-frozen on dry ice and stored at —80 °C
until use. Ventral striatum coronal sections (14 pm) were collected directly onto
Superfrost Plus slides (Fisherbrand). RNAscope Fluorescent Multiplex labeling kit
(ACDBio Cat No. 320850) was used to perform the smFISH assay according to the
manufacturer’s recommendations. Probes used for staining are mm-Wfs1-C2
(ACDBio Cat No. 500871-C2) and mm-Drd2-C3 (ACDBio Cat No. 406501-C3).
After incubation with fluorescent-labeled probes, slides were counterstained with
DAPI and mounted with ProLong Diamond Antifade mounting medium (Thermo
Fisher Scientific, P36961). Fluorescent images were captured using sequential laser
scanning confocal microscopy (Leica SP8). Basescope Duplex Assay was used for
the simultaneous visualization of WfsI mRNA and the selective detection of exon 2
of Drd2 mRNA. BaseScope assay was performed and assisted following guidelines
(BaseScope™ Detection Reagent Kit-RED User Manual) provided by the supplier
(ACDBio Cat No. 323810). Probes used for staining are BA-Mm-WFS1-4E]J-C2
(ACDBIo Cat No. 724201-C2) and BA-Mm-Drd2-4zz-st1 (ACDBio custom made
No. 724211). Slides were counterstained with hematoxylin and images were cap-
tured using brightfield microscope.

Polyribosome immunoprecipitation. HA-tagged-ribosome immunoprecipitation
was performed as described previously*® in the whole striatum, DS, and Acb of D2-
RiboTag mice and in Acb of WfsI-RiboTag mice. Total RNA was extracted from
ribosome-mRNA complexes using RNeasy Microkit (Qiagen) followed by in-
column DNAse treatment to remove genomic DNA contamination. Quality and
quantity of RNA samples were both assessed using Agilent Bioanalyzer 2100
(Agilent Technologies). Three biological replicates, each one composed of a pool of
3-4 mice, were used for RNAseq analysis.

cDNA synthesis and quantitative real-time PCR. After HA-tagged-ribosome
immunoprecipitation in a different cohort of D2-RiboTag mice than those used for
RNAseq, synthesis of cDNA and qRT-PCR were performed as previously descri-
bed*® (n =5 mice/brain subregion). Results are presented as linearized Cp-values
normalized to housekeeping genes B-actin or Hprt2 and the AACP method was
used to give the fold-change. Primer sequences are indicated in the resource table
(Supplementary Information).

Stranded mRNA library preparation and sequencing. The libraries from the
mouse total RNA were prepared using the TruSeq” Stranded mRNA LT Sample
Prep Kit (Illumina, Inc., Rev.E, October 2013) according to the manufacturer’s
protocol. Briefly, 0.25 pg of total RNA was used for poly-A-based mRNA enrich-
ment with oligo-dT magnetic beads. The mRNA was fragmented (resulting RNA
fragment size was 80-250 nt, with the major peak at 130 nt) and the first strand
cDNA synthesis was done by random hexamers and reverse transcriptase. The
second strand cDNA synthesis was performed in the presence of dUTP instead of
dTTP, this allowed to achieve the strand specificity. The blunt-ended double
stranded cDNA was 3’ adenylated and Illumina platform compatible adaptors with
unique dual indexes and unique molecular identifiers (Integrated DNA Technol-
ogies) were ligated. The ligation product was enriched with 15 PCR cycles and the
final library was validated on an Agilent 2100 Bioanalyzer with the DNA 7500
assay. Each library was sequenced on HiSeq4000 (Illumina) in a fraction of a HiSeq
4000 PE Cluster kit sequencing flow cell lane, following the manufacturer’s pro-
tocol for dual indexing. Image analysis, base calling and quality scoring of the run
were processed using the manufacturer’s software Real Time Analysis (RTA 2.7.7)
and followed by generation of FASTQ sequence files.

Bioinformatic analysis. RNAseq reads were mapped against the mouse reference
genome (GRCm38) using STAR version 2.5.3a%” with ENCODE parameters for
long RNA. Annotated genes (gencode version M21) were quantified using RSEM
version 1.3.0 with default parameters*s. PCA was done using the top 500 most
variable genes with the “prcomp” R function and “ggplot2” R library after the
regularized log (rlog) transformation of the counts. Differential expression analysis
was performed with DESeq2 version 1.18.14° with a prefiltering on lowly expressed
genes (at least ten normalized reads for each sample in one group). Differentially
expressed genes were considered those with FDR <0.05 and absolute shrunken
fold-change > 1.5. Heatmaps with the top 50 differentially expressed genes were
performed with the pheatmap R package>® with the scaled rlog counts. Functional
enrichment analysis of the differentially expressed genes was performed with
Gprofiler!.

Mitochondria assays. DS and Acb were dissected and stored at —80 °C until
further use. Tissue (n = 20-22/brain area) was homogenized and processed as
previously described®? in order to measure CI (EC 1.6.5.3) and CS (E.C. 2.3.3.1).
Assay measurements were performed in duplicate.

Stereotaxic injections. Surgeries were performed on 7-week-old Wfs1-CreERT2
mice. Mice were anesthetized with a mixture of ketamine (Imalgene 500, 50 mg/ml,
Merial), 0.9% NaCl solution (weight/vol), and xylazine (Rompun 2%, 20 mg/ml,
Bayer) (2:2:1, i.p., 0.15ml/30 g) and mounted on a stereotaxic apparatus. The
microinjection needle was connected to a 10 ul Hamilton syringe and filled with
adeno-associated virus (AAV) containing Gs-DREADD (pAAV-hSyn-DIO-rM3D
(Gs)-mCherry) for tracing studies and Gq-DREADD (pAAV-hSyn-DIO-hM3D
(Gq)-mCherry) for chemogenetic studies (Penn Vector Core facility). A total
volume of 0.5 pl was injected bilaterally into the Acb (A/P = 1.54 mm; M/L =
+1.3 mm; DV = —4.7 mm from bregma) over 10 min and the needle was left in
place for an additional 5min to allow for diffusion of viral particles away from
injection site. Mice were allowed to recover for 2 weeks, then treated for 3 days with
tamoxifen (100 mg/kg), and either perfused 3 weeks later for tracing studies or
treated with clozapine N-oxide (CNO) (1 mg/kg) and tested 30 min later for
chemogenetic studies.

Behavioral assays. D2R-cKO mice and control littermates (7-8 weeks old) were
all treated 3 weeks prior to testing with tamoxifen (100 mg/kg) for 3 consecutive
days. Wfs1-CreERT2 mice (8-16 weeks old) were treated with vehicle or CNO
30 min before testing. Mice were also handled for 3 days prior to testing for
habituation. Since there was no evidence of sex differences in our behavioral
measurements, data from male and female mice were pooled. All experiments
were blinded to genotype during behavioral testing.

Locomotor activity. Spontaneous exploratory behavior was measured in an open
field (white plastic box, 35 cm width x 45 cm length x 25 cm height) for 30 min.
Videos were analyzed using Noldus Ethovision software, and total distance traveled
and average speed were calculated. Horizontal and vertical activity was measured in
a circular corridor (Imetronic, Pessac, France) for 30 min. Counts for horizontal
activity were incremented by consecutive interruption of two adjacent beams
placed at a height of 1 cm per 90° sector of the corridor (mice moving through 1/4
of the circular corridor) and counts for vertical activity (rearings) corresponding to
interruption of beams placed at a height of 7.5 cm along the corridor (mice
stretching upward) were used as an additional measure for exploratory activity. For
amphetamine administration, mice were first habituated for 3 consecutive days in
the same circular corridor used to measure locomotor activity. In this habituation
phase, mice were placed in the activity box for 30 min, received a saline injection,
and returned in the box for 2 h. On day 4, mice underwent the same procedure
except that amphetamine (2.5 mg/kg) was administered instead of saline. For
sensitization studies, mice received amphetamine repeatedly for 5 consecutive days,
followed a 7-day withdrawal period, and on day 12 received a challenge injection of
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amphetamine (2.5 mg/kg). Locomotor activity was measured as on day 4. For
MKS801 administration, mice were habituated for 30 min before MK801 treatment
(0.3 mg/kg).

Marble burying test. Marble burying test was performed as previously described>3
except the duration of the test that was 20 min.

Digging test. Digging test was performed as previously described>3. Before goal-
directed digging experiments mice were habituated to palatable food to avoid
neophobia. Mice were food-deprived the day before the test.

Grooming test. Grooming test was performed as previously described> except for
the duration that was 10 min.

Novel object exploration. Novel object exploration test was performed as pre-
viously described®.

Accelerating rotarod. Rotarod testing was performed over the course of 4 days as
previously described?’.

Elevated plus maze. Elevated plus maze was performed as previously described®>.

Catalepsy. Mice were injected with haloperidol (1.5 mg/kg), dissolved in 0.2%
acetic acid, and returned to their home cage until testing. Each animal was indi-
vidually positioned 60 min post injection so that its hindlimbs were on a plane
surface and its forelimbs rested on a 0.3 cm diameter horizontal bar, 6 cm above the
surface level. Once the mouse remained immobile after release, the time until the
first removal of a front paw or sustained head movement was recorded by stop-
watch to a maximum of 180s.

Tail suspension test. Mice were suspended 50 cm above a cushioned pad using
tape to attach their tails to a horizontal pole above the pad. Each mouse was tested
for a 6 min trial. Latency to the first bout of immobility (defined as >5-s-long
segment of time spent immobile) and the total time spent immobile during the trial
were recorded. Immobility was defined as hanging passively without any move-
ment of the head or paws.

Spontaneous alternation test. Spontaneous alternation was measured in a Y-
shaped maze with three identical arms (40 X 9 x 16 cm) at a 120° angle. Each
individual mouse was placed in the center of the maze and allowed to freely explore
for 5min. A triad was defined as a set of three arm entries, when each entry was to
a different arm of the maze. The number of arm entries and the number of triads
were recorded. The percentage of alternation was calculated by dividing the
number of triads by the number of possible alternations and then multiplying
by 100.

Three-chamber social approach. A three-chamber arena was used to assess
sociability and preference for social novelty. On day 1, stranger target mice were
habituated to the wire cups. On day 2, test mice (2-month-old C57BL/6 males or
females) were placed in the middle chamber and allowed to freely explore all the
empty chambers of the apparatus for 10 min. Next, an unfamiliar mouse (Stran-
ger#1, gender matched) was introduced into one of the two side chambers,
enclosed in a wire cage allowing only for the test mouse to initiate any social
interaction. An identical empty wire cage was placed in the other side chamber.
Following placement, the test mouse was allowed to explore the whole three-
chamber arena for 10 min. At the end of the 10 min sociability test, a new unfa-
miliar mouse (Stranger#2, gender matched) was placed in the previously unoc-
cupied wire cage, and test mice were examined for an additional 10 min to assess
preference for social novelty. The time spent sniffing the Stranger#1, Stranger#2, or
empty wire cages were manually scored. The discrimination index for sociability
and social novelty were calculated as follows, respectively: (time exploring Stran-
ger#1—time exploring empty wire cage)/(total exploration time) x 100 and (time
exploring Stranger#2—time exploring Stranger#1)/(total exploration time) x 100.

Statistical analyses. GraphPad Prism v6.0 software was used for statistical ana-
lyses. Data are shown as the means + SEM. For normally distributed parameters,
Student’s ¢ test (unpaired, two-sided) was used for all the tests except the rotarod,
which was analyzed by two-way ANOVA repeated measures. *p < 0.05, **p < 0.01,
and ***p <0.001.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Sequence data have been deposited in Gene Expression Omnibus, accession code
GSE94145. The data supporting the findings of this study are available within the paper
and its Supplementary materials files or available from the corresponding author upon
reasonable request. The IUPHAR/BPS database (www.guidetopharmacology.org) was
used to implement gene classification.
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