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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder that causes the most prevalent
dementia in the elderly people. Obesity and insulin resistance, which may cause major health
problems per se, are risk factors for AD, and cytokines such as interleukin-6 (IL-6) have a role in these
conditions. IL-6 can signal either through a membrane receptor or by trans-signaling, which can be
inhibited by the soluble form of the co-receptor gp130 (sgp130). We have addressed the possibility
that blocking IL-6 trans-signaling in the brain could have an effect in the triple transgenic 3xTg-AD
mouse model of AD and/or in obesity progression, by crossing 3xTg-AD mice with GFAP-sgp130Fc
mice. To serve as control groups, GFAP-sgp130Fc mice were also crossed with C57BL/6JOlaHsd
mice. Seventeen-month-old mice were fed a control diet (18% kcal from fat) and a high-fat diet
(HFD; 58.4% kcal from fat). In our experimental conditions, the 3xTg-AD model showed a mild
amyloid phenotype, which nevertheless altered the control of body weight and related endocrine
and metabolic factors, suggestive of a hypermetabolic state. The inhibition of IL-6 trans-signaling
modulated some of these traits in both 3xTg-AD and control mice, particularly during HFD, and in
a sex-dependent manner. These experiments provide evidence of IL-6 trans-signaling playing a role
in the CNS of a mouse model of AD.
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that causes the most prevalent form
of dementia in elderly people. Clinically, it courses with impaired cognitive functions and memory
loss caused mainly by the accumulation of β-amyloid peptides (Aβ) forming extracellular plaques
and the intracellular aggregation of hyperphosphorylated Tau protein forming neurofibrillary tangles [1].
Both features cause a prominent neuroinflammation in the central nervous system (CNS) with marked
microglia and astroglia activation and the release of several pro-inflammatory cytokines [2].
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Multiple risk factors have been associated with AD; as aging is the most important,
the accumulation of mtDNA mutations and mitochondrial dysfunction caused by ROS could be
an early event in the disease [3]. Additionally, AD is also linked to some metabolic alterations. Being
overweight in middle age (40–45 years) increases the risk of dementia, at older ages (65–75 years)
the relation is U shaped, whereas at ≥76 years a higher BMI is related to decreased risk [4]. Accordingly,
weight loss is commonly associated with AD patients [5]. Chronic systemic inflammation is also
a landmark of obesity with secretion of systemic-acting pro-inflammatory cytokines from the adipose
tissue, which can even gain access to the brain through the blood brain barrier [6]. Some studies
using diet-induced obesity rodent models demonstrate impairment in memory and learning [7,8],
reduced synaptic plasticity [9] and eventually compromised neurogenesis [10]. These effects may be
caused by the infiltration of cytokines from the periphery and by local neuroinflammatory processes
and subsequent alteration of insulin pathways in the brain [11,12]. Additionally, an altered insulin
signaling in the brain contributes to Aβ aggregation and increases hyperphosphorylated tau protein
levels [13].

Interleukin-6 (IL-6) is one of the potential cytokines involved in the inflammatory processes
previously explained [14,15]. It has a complex signaling pathway mediated via three distinct modes.
In the classic signaling, IL-6 binds to a specific membrane receptor (mIL-6R), which activates
dimerization of gp130 and subsequent downstream JAK/STAT signaling. In the trans-signaling,
IL-6 binds to a soluble form of mIL-6R (sIL-6R) to activate gp130. Due to the ubiquitous expression
of gp130, most cells in the body can be stimulated by this process. IL-6 trans-signaling is specifically
inhibited by the soluble form of gp130, sgp130 [16]. The third pathway called cluster signaling has
been described as an exclusive mechanism for the communication between dendritic and T cells [17].

The implication of IL-6 in the control of body weight and metabolism has been reported previously.
Wallenius and colleagues demonstrated that IL-6 KO mice develop mature-onset obesity and decreased
glucose tolerance [18]. Accordingly, mice with overexpression of this cytokine in astrocytes (GFAP-IL6
mice) are resistant to high-fat diet (HFD)-induced obesity [19]. The development of conditional KO
mice for different brain cells also revealed alterations in the control of body weight [20,21]. Interestingly,
IL-6 trans-signaling has also been implicated in obesity, as sIL-6R is a critical chemotactic signal for
adipose tissue macrophages recruitment [22].

Classic signaling is crucial for anti-inflammatory IL-6 functions; in contrast, IL-6 trans-signaling
is more related to its pro-inflammatory actions, being involved in some neurodegenerative diseases
such as AD and Parkinson’s disease, inflammatory colon cancer, arthritis and inflammatory bowel
disease [23]. It has been demonstrated that blocking IL-6 trans-signaling with the sgp130Fc protein
decreases inflammation-related damage in peripheral tissues [22] and in the CNS (by using the so-called
GFAP-sgp130Fc mice, which express sgp130Fc in astrocytes [24]). Additionally, it has been discovered
that the common IL-6R variant p.D358A (rs2228145), which increases its proteolysis by ADAM10
and ADAM17 and as a result increases the amount of sIL-6R, may advance the age of onset of AD in
APOE ε4 carriers [25].

We hypothesized that blocking IL-6 trans-signaling with sgp130Fc in the brain would impact AD
and/or obesity progression. We recently demonstrated the former in two different mouse models of AD,
namely the 3xTg-AD mice and the Tg2576 mice, by crossing them with GFAP-sgp130Fc mice in order
to obtain 3xTg-AD mice with the IL-6 trans-signaling pathway blocked in the CNS [26]. We herewith
present results with 3xTg-AD mice, with and without transgenic sgp130Fc expression by astrocytes,
and challenged with a high-fat diet to elicit obesity, which suggest that IL-6 trans-signaling modulates
some of the hypermetabolic traits presented by the 3xTg-AD mice in a sex-dependent manner.
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2. Materials and Methods

2.1. Generation of Double Transgenic 3xTg-AD/GFAP-sgp130Fc Mice

The parental strains used in this study, GFAP-sgp130Fc and 3xTg-AD mice, were generated
and characterized previously [24,27,28]. To obtain the 4 genotypes of interest the following
crossing strategy was designed, as in [26]. Homozygous 3xTg-AD (+/+) animals were mated
with heterozygous GFAP-sgp130Fc (+/−) to obtain the double transgenic 3xTg-AD/GFAP-sgp130Fc
(+/−) (+/−) and 3xTg-AD (+/−) (−/−) mice. In addition, GFAP-sgp130Fc (+/−) mice were also crossed
with WT mice (C57BL/6JOlaHsd) to obtain the control groups GFAP-sgp130Fc (+/−) and WT (−/−).
Genotype was determined by PCR analysis of tail DNA. (sgp130Fw: 5’-GAGGTGACATGTGTGGTGG
TGGATGTTC-3’; sgp130Rv: 5’-GAGAACACGTTGCCCTGCTGCCATCTAG-3’/AppFw: 5’-GCTTGC
ACCAGTTCTGGATGG-3’; AppRv: 5’-GAGGTATTCAGTCATGTGCT-3’/TauFw: 5’-GAGGTATT
CAGTCATGTGCT-3’; TauRv: 5’-TTCAAAGTTCACCTGATAGT-3’).

All mice used in this study were fed ad libitum (unless otherwise stated) and housed in
a 12 h dark-light cycle under specific pathogen-free conditions and constant temperature (22 ± 2
◦C). All experimental procedures were approved by the Ethics Committee in Human and Animal
experimentation (CEEAH 3541 and 3971, valid up to 06/2019 and 05/2023, respectively) from
the Autonomous University of Barcelona and were in accordance with Spanish legislation and the EU
directive (2010/63/UE) on ‘Protection of Animals Used for Experimental and Other Scientific Purposes’.

Animals were sacrificed by decapitation to collect the brain. The right hemisphere was dissected
into cortex, hippocampus and hypothalamus and flash-frozen in liquid nitrogen for gene expression
and ELISA. Blood was collected from the trunk and centrifuged (9520 g for 10 minutes) at 4 ◦C to obtain
the serum. All samples were stored at −80 ◦C until processed. Subsets of animals were sacrificed at
different ages to check disease progression.

2.2. Diets

The HFD (TD 03584, 58.4% kcal from fat), and the control diet (2018, 18% kcal from fat) were
obtained from Harlan Iberica (Sant Feliu de Codines, Spain). The experiment had two phases and began
when the mice were 17-month-old: they were first fed the control diet (n = 6–11); and then the HFD.
Because of aging-related mortality, seven new 3xTg-AD male mice were added in the second phase,
which showed similar responses to the other mice. Body weight and food intake were monitored
regularly. In most cases mice were not isolated but kept group-housed after weaning (2–3 per cage)
according to their genotype and sex. During the control diet phase, animals were subjected sequentially
to an insulin tolerance test (ITT), a fasting and refeeding test (F&R), and an oral glucose tolerance
test (OGTT), on weeks 3, 4 and 5, respectively. During the HFD phase, mice were subjected to
ITT and OGTT only, in the weeks 6 and 8, respectively. Hypothalamus, liver, visceral (gonadal)
and subcutaneous (inguinal) fat depots and brown adipose tissue were removed and weighed upon
euthanasia of the animals and frozen in liquid nitrogen for further analysis. Body temperature was
measured at the beginning of the control diet phase.

2.3. Body Temperature

Body temperature measurement was carried out using a lubricated rectal probe (Cibertec, Madrid,
Spain). The measurements were taken throughout the day, at 8, 11, 16 and 19 h.

2.4. Fasting and Refeeding (F&R)

The animals were fasted overnight for 14 h and posteriorly refed. Body weight and food intake
were measured regularly during the first 48 h post-fasting. Using these parameters body weight change
post-fasting was calculated as well as the food intake.
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2.5. Insulin Tolerance Test (ITT) and Oral Glucose Tolerance Test (OGTT)

The metabolic status of the mice was evaluated by an insulin tolerance test (ITT) and an oral
glucose tolerance test (OGTT). For ITT, mice were injected intraperitoneally (i.p.) with 1 U/kg of insulin
after a 4 h fast. For OGTT, mice were fasted for 15 h before being administered an oral glucose dose of
2 g/kg of body weight. Blood glucose was measured in tail samples at time points 0, 15, 60 and 120 min
for ITT and at 0, 30, 60 and 120 min for OGTT with an ACCU CHECK glucometer (Roche).

2.6. Enzyme-Linked ImmunoSorbent Assays (ELISAs) and Colorimetric Tests

ELISA kits were used to measure soluble Aβ40, Aβ42 and sgp130Fc levels in brain samples (Amyloid
beta 40 and 42 Human ELISA Kits, ThermoFisher (Vienna, Austria); Human sgp130 DuoSet ELISA,
R&D Systems (Abingdon, UK) and leptin, insulin and FGF-21 in serum (rat/mouse ELISA leptin/insulin
kits, Millipore (Billerica, MA, USA), ; Mouse/Rat FGF-21, R&D Systems (Minneapolis, MN, USA).
In the case of Aβmeasurements, brain samples were homogenized by sonication in a lysis buffer (50 nM
TrisHCl, 150 nM NaCl, 2 mM EDTA, 0.1% Igepal CA 630 (Fluka, St. Louis, MO, USA, 3% SDS and 2%
sodium deoxycolate) supplemented with a protease inhibitor cocktail and phenylmethylsulfonyl
fluoride (Sigma-Aldrich, St. Louis, MO, USA). For sgp130Fc, brain samples were homogenized
using a tissue homogenizer (Precellys, Bertin Instruments, Montigny-le-Bretonneux, France) in RIPA
buffer supplemented with phosphatase and protease inhibitors. To measure cholesterol, triglycerides
and glucose in serum specific colorimetric test kits were used (Cholesterol MonlabTest®/Triglycerides
MonlabTests® (Selva de Mar, Spain); and Glucose-TR Spinreact (Sant Esteve de Bas, Spain).

2.7. RT-qPCR

For the two-step RT-qPCR, total RNA was isolated using Maxwell simply RNA Tissue Kit
(Promega, Madison, WI, USA) from hypothalamus and liver. Then, it was reverse transcribed into
cDNA in a reaction using iScript cDNA synthesis kit and iTaq Universal SYBR Green Supermix
(Bio-Rad Laboratories, Inc., Hercules, CA, USA). RT-qPCR for selected genes important for this
study (Il6 and Agrp in hypothalamus and Fgf21 in liver) was performed in 384-well plates and run
in CFX384 real-time PCR detection system (Bio-Rad Laboratories, Inc., Hercules, CA, USA). Gapdh
was used as the reference gene [29,30]. (Il6Fw: 5’-GCTTA ATTACACATGTTCTCTGGGAAA-3’;
Il6Rv: 5’-CAAGTGCATCATCGTTGTTCATAC-3’/AgrpFw: 5’-AGAGTTCCCAGGTCTAAGTCTG-3’;
AgrpRv: 5’-GCGGTTCTGTGGATCTAGC-3’/Fgf21Fw: 5’-TTCTTTGCCAACAGCCAGAT-3’; Fgf21Rv:
5’-GTCCTCCAGCAGCAGTTCTC-3’/GapdhFw: 5’-GGCAAATTCAACGGCACA-3’; GapdhRv: 5’-CGGA
GATGATGACCCTTT-3’).

2.8. Statistics

Statistical calculations were done using the Statistical Package for Social Sciences version 19 (SPSS,
Chicago, IL, USA) and RStudio (v 1.2.5033, R version 4.0.1, Boston, MA, USA). Males and females
were analyzed separately. Most data were analyzed using the generalized linear model (GLZ) with
3xTg-AD (positive vs. negative) and sgp130Fc (positive vs. negative) as main factors; when there is
a significant interaction between the main factors in the GLZ it is stated accordingly. Generalized
estimated equations (GEE) were used for repeated measures (i.e., body weight, temperature, ITT
and OGTT) including also both genotypes as main factors and time as a within-subject factor. In case
of comparisons between two groups, an unpaired t-Student was used. Effect size was calculated
using Glass’ delta (with R’s effectsize package, with small sample correction) for unpaired t-tests.
For GLZ data, we indicate R2 (Equation. (1), [31]) as a measure of the variance explained by the model.
Representative % of changes between 3xTg-AD and WT groups (unless otherwise stated) will be stated
in some cases. Statistical significance was defined as p ≤ 0.05.
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Equation (1). R2, or coefficient of determination. The numerator, σ2
ε, indicates the variance of

the residuals, and the denominator is the variance of the dependent variable:

R2 = 1−
σ2
ε∑n

i = 1(yi − y)2 (1)

3. Results

3.1. sgp130Fc Influenced Body Weight and Food Intake in a Sex-Dependent Manner in Response
to a High-Fat Diet

Having in mind that during the control diet phase the mice were subjected to an ITT, a F&R
and an OGTT, the results indicate that 3xTg-AD animals had lower body weight (decreasing for
instance a ~13.5% and ~21.3% in 3xTg-AD vs WT in male and female mice, respectively). This decrease
was significant when comparing the four groups in both sexes (males p = 0.039; females p < 0.001),
whereas the inhibition of IL-6 trans-signaling did not have a clear effect (Figure 1A). Despite their lower
body weight, absolute (g/day) food intake was significantly increased in 3xTg-AD mice (increasing
~25.6% and 12.8% in 3xTg-AD mice vs WT mice in male and female mice, respectively) (males p < 0.001
R2 = 0.54; females p = 0.002 R2 = 0.33) (Figure 1B). No significant effect of the sgp130Fc protein
was observed.
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Figure 1. Body weight and food intake alterations in control diet. (A) During the control diet phase,
3xTg-AD mice presented lower body weight. The inhibition of the IL-6 trans-signaling did not have
a significant effect. (B) 3xTg-AD mice presented increased food intake in both sexes, with no effect of
the sgp130Fc protein. (C) Sgp130Fc quantification by ELISA in brain cortex of AD mice. Results are
MEAN ± SEM.F p ≤ 0.05 vs. 3xTg-AD negative; N p ≤ 0.05 vs. sgp130Fc negative.

Despite their advanced age, in general mice gained weight during the HFD phase, and as seen
with the control diet, with HFD the 3xTg-AD mice again had lower body weight (decreasing a ~18.5%
and ~16.0% in 3xTg-AD vs WT in male and female mice, respectively). This decrease was significant
when comparing the four groups (males p = 0.009; females p < 0.001) (Figure 2A). Additionally,
3xTg-AD male mice presented higher food intake (~18.2% in 3xTg-AD vs WT) (p < 0.001 R2 = 0.50)



Cells 2020, 9, 1605 6 of 15

(Figure 2B). The inhibition of IL-6 trans-signaling did not have a significant effect on the body weight
in male mice, although, it is likely that this rather indicates that the 3xTg-AD/GFAP-sgp130Fc male
mice have recovered better from the different experimental procedures they were subjected to. Thus,
at the end of the HFD phase, a similar body weight difference (compared to 3xTg-AD mice) to that
observed at the beginning of the control phase is now apparent. In contrast, in females the inhibition
of IL-6 trans-signaling decreased HFD-induced obesity of both 3xTg-AD and control mice (p < 0.001).
Results for food intake were similar to those of the control diet phase, but significant interaction
emerged since it was increased in 3xTg-AD/GFAP-sgp130Fc (~17.8% vs GFAP-sgp130Fc) but not in
3xTg-AD (vs WT) females (p = 0.049 R2 = 0.50).

The weights of liver and fat tissues (Figure 2C) were in concordance with those of body weight.
Thus, all of them were decreased (from ~29 to 74% in 3xTg-AD vs WT) significantly in 3xTg-AD male
(WATSc p < 0.001 R2 = 0.50; WATGon p = 0.032 R2 = 0.27; BAT p = 0.001 R2 = 0.38; Liver p = 0.002
R2 = 0.31) and female (from ~23 to 56% in 3xTg-AD vs. WT) mice (WATSc p < 0.001 R2 = 0.69; WATGon
p = 0.002 R2 = 0.50; BAT p < 0.001 R2 = 0.64; Liver p = 0.008 R2 = 0.37), and the inhibition of IL-6
trans-signaling further decreased them in all females (WATSc p < 0.005 ; WATGon p = 0.005; BAT
p = 0.001).
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Figure 2. Body weight and food intake alterations in high-fat diet. (A) HFD caused obesity, and again
3xTg-AD mice presented lower body weight. The inhibition of IL-6 trans-signaling did not have
a significant effect in male mice, whereas in females it decreased HFD-induced obesity of both 3xTg-AD
and control mice. (B) 3xTg-AD male mice had also higher food intake in this phase. This effect was
not observed in females. The inhibition of IL-6 trans-signaling had no effects on males, in females, it
decreased food intake, more markedly in the WT than in 3xTg-AD animals. (C) The absolute weight
from the adipose tissue depots and liver was diminished in 3xTg-AD mice. The blocking of IL-6
trans-signaling further diminished the absolute tissue weights in females. Results are MEAN ± SEM.
F p ≤ 0.05 vs. 3xTg-AD negative; N p ≤ 0.05 vs. sgp130Fc negative; � Indicates a significant interaction
between both factors.
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The presence of sgp130Fc was measured in brain cortex from 3xTg-AD and
3xTg-AD/GFAP-sgp130Fc mice at 10 months of age by ELISA (Figure 1C). As expected, a clear
increase in sgp130Fc immunostaining was observed in 3xTg-AD/GFAP-sgp130Fc mice (males p = 0.001
Glass’ delta = 33.42; females p = 0.001 Glass’ delta = 34.42), with no differences between males
and females.

3.2. 3xTg-AD Mice Recovered the Body Weight Quicker and Had a Higher Food Intake after
an Overnight Fasting. The Inhibition of IL-6 Trans-Signaling Attenuated These Effects Especially
in 3xTg-AD Males

As expected, all mice lost weight after an overnight fasting (Figure 3A). In females, this loss was
higher in 3xTg-AD mice regardless of sgp130Fc expression (p = 0.015 R2 = 0.25). No differences were
observed in males. Once the animals were re-fed their body weight increased; the 3xTg-AD mice
recovered faster in both sexes (males t4 p = 0.001 R2 = 0.45, t24 p = 0.029 R2 = 0.42, t48 p = 0.026
R2 = 0.32; females t4 p = 0.002 R2 = 0.33, t24 p = 0.032 R2 = 0.28), a response blunted by the blocking
of IL-6 trans-signaling, especially in males. Absolute food intake measurements (Figure 3B) showed
a compensatory hyperphagia in 3xTg-AD mice after fasting, evident in both sexes (males p < 0.001
R2 = 0.66; females p < 0.001 R2 = 0.49), a response again blunted by sgp130Fc in male mice, and to
a limited extent in female mice.

Regarding body temperature (Figure 3C), it oscillated according to the circadian rhythm between
1 and 3 ◦C throughout the day. The higher temperatures were observed in the earlier hours of the day
when it was more evident that 3xTg-AD mice showed higher body temperature compared with control
mice in both sexes (males p < 0.001; females p = 0.034). However, only 3xTg-AD males kept the same
trend throughout the day. Blocking IL-6 trans-signaling did not cause any effect.
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throughout the day in males. No effect of the inhibition of the IL-6 trans-signaling was observed. 
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Indicates a significant interaction between both factors. 
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trans-signaling inhibition. Once the animals were re-fed, 3xTg-AD animals gained weight quicker than
controls, a response blunted by the blocking of IL-6 trans-signaling. (B) A post-fasting hyperphagia
was observed in the 3xTg-AD mice, a response again blunted in some cases by the blocking of IL-6
trans-signaling. (C) Higher body temperatures were observed in the earlier hours of the day, when
3xTg-AD mice showed an increase compared with controls. This effect was maintained throughout
the day in males. No effect of the inhibition of the IL-6 trans-signaling was observed. Results are
MEAN ± SEM. F p ≤ 0.05 vs. 3xTg-AD negative; N p ≤ 0.05 vs. sgp130Fc negative; � Indicates
a significant interaction between both factors.

3.3. 3xTg-AD Mice Showed Lower Hormonal and Cholesterol Levels in Serum, Although There Were
No Differences in Glycaemia

Figure 4A shows the hormones and blood metabolites after the HFD in all genotypes and both
sexes. 3xTg-AD females presented lower (~32.3% in 3xTg-AD vs WT) cholesterol (p = 0.006 R2 = 0.28),
whereas triglycerides and glucose were normal; no effect of IL-6 trans-signaling was observed in these
parameters. In addition, there was a general trend for 3xTg-AD animals having decreased levels of
insulin, leptin and FGF-21. For instance, insulin levels were decreased a ~57.8% (male) and ~42.2%
(female) in 3xTg-AD vs WT mice. When analyzed the four groups together, significant differences
were clearly observed (males p = 0.003 R2 = 0.39; females p < 0.001 R2 = 0.55). Significant differences
were also observed for leptin (decreasing a ~79.9% (male) and ~43.2% (female) in 3xTg-AD vs WT)
(males p < 0.001 R2 = 0.46; females p = 0.002 R2 = 0.46) and FGF-21 (from ~33.1 to 45.3% in 3xTg-AD
vs WT). In males, blocking of IL-6 trans-signaling tended to reverse these 3xTg-AD-elicited changes
(FGF-21 p = 0.004 R2 = 0.27); in females, in contrast, it tended to further decrease them regardless of
the 3xTg-AD genotype (insulin p = 0.031; leptin p = 0.014).
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IL-6 trans-signaling decreased insulin and leptin levels in 3xTg-AD and control females and increased
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Fgf-21 levels in 3xTg-AD males. (B) Il6 expression in the hypothalamus was increased in 3xTg-AD males;
and this effect was rescued by the presence of sgp130Fc. No differences were seen in the orexigenic Agrp.
(C) Fgf21 expression in the liver was increased by the inhibition of IL-6 trans-signaling in 3xTg-AD
males; no effects were observed in females. Results are MEAN ± SEM.F p ≤ 0.05 vs. 3xTg-AD negative;
N p ≤ 0.05 vs. sgp130Fc negative; � Indicates a significant interaction between both factors.

For analyses of gene expression, a RT-qPCR was carried out in the hypothalamus (Figure 4B)
and liver (Figure 4C). In the hypothalamus, no differences were obtained between the different
genotypes in Agrp, whereas Il6 mRNA levels were increased in 3xTg-AD males (a ~36% in 3xTg-AD vs
WT) (p = 0.026 R2 = 0.47), an effect reversed by the inhibition of the IL-6 trans-signaling (p = 0.007).
In liver, the inhibition of IL-6 trans-signaling elevated significantly Fgf21 hepatocyte gene expression in
the AD positives males (p = 0.033 R2 = 0.1); no differences were observed in females.

3.4. 3xTg-AD Mice Had Hypersensitivity to Insulin and Increased Tolerance to Glucose Measured by ITT
and OGTT, Respectively

Insulin sensitivity and glucose tolerance during both the control and HFD phases are shown in
Figure 5A,B, respectively. Insulin sensitivity was increased in 3xTg-AD mice in both sexes (males
p = 0.039; females p = 0.034) and blocking of IL-6 trans-signaling did not reach statistical significance.
During HFD sensitivity was still higher in 3xTg-AD mice (males p = 0.005; females p = 0.008), but in
this case the effect of sgp130Fc significantly reversed it in male mice (p = 0.047).
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Soluble Aβ40 and Aβ42 levels in cortex and hippocampus from males and females were measured 
following HFD by ELISA (Figure 6). Both were very low in both 3xTg-AD and 3xTg-AD/GFAP-
sgp130Fc mice, and several mice showed undetectable levels; conservatively, we assigned a value 
equivalent to the lowest one measured in the ELISA for these animals. In general, female mice showed 
higher Aβ40 and Aβ42 levels than males, and the blocking of the IL-6 trans-signaling did not have 
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Figure 5. Insulin tolerance test (ITT) and oral glucose tolerance test (OGTT) at both experimental
phases. (A) 3xTg-AD mice showed hypersensitivity to insulin in both control and HFD phases, which
was reverted by the inhibition of IL-6 trans-signaling in males during the HFD phase. (B) In the control
phase, the 3xTg-AD mice tended to have better glucose tolerance, whereas in the HFD phase results
were not clear-cut; this was also the case regarding the effect of sgp130Fc. Results are MEAN ± SEM.
F p ≤ 0.05 vs. 3xTg-AD negative; N p ≤ 0.05 vs. sgp130Fc negative; � Indicates a significant interaction
between both factors.

In accordance with their increased insulin sensitivity, glucose tolerance was better in 3xTg-AD
mice (males p = 0.010; females p = 0.028), during the control diet (Figure 5B). During HFD, however,
that was not significant in male mice, and somewhat surprisingly, in females the opposite emerged
(p = 0.005). In females with control diet, the blocking of IL-6 trans-signaling decreased this tolerance
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(p = 0.032) mostly in control animals as indicated by the significant interaction between genotypes
(p = 0.027), whereas during HFD no significant effects were observed in 3xTg-AD animals.

3.5. Mild Phenotype of 3xTg-AD Mice

Soluble Aβ40 and Aβ42 levels in cortex and hippocampus from males and females were measured
following HFD by ELISA (Figure 6). Both were very low in both 3xTg-AD and 3xTg-AD/GFAP-sgp130Fc
mice, and several mice showed undetectable levels; conservatively, we assigned a value equivalent to
the lowest one measured in the ELISA for these animals. In general, female mice showed higher Aβ40

and Aβ42 levels than males, and the blocking of the IL-6 trans-signaling did not have significant effects.
Nevertheless, it significantly increased (a ~463% in 3xTg-AD/GFAP-sgp130Fc vs 3xTg-AD) the ratio
Aβ42/Aβ40 in the hippocampus (p = 0.05 Glass’ delta = 6.33).Cells 2020, 9, x FOR PEER REVIEW 10 of 15 
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Figure 6. Presence of Aβ in brain of 3xTg-AD mice. Low levels of Aβ were detected in cortex
and hippocampus from 3xTg-AD mice fed with HFD. The inhibition of the IL-6 trans-signaling
significantly increased the ratio Aβ42/Aβ40 in the hippocampus. Results are MEAN ± SEM. N p ≤ 0.05
vs. sgp130Fc negative.

4. Discussion

AD and obesity are major public health problems. They are two of the most prevalent diseases
in our society and understanding their pathological mechanisms and the relationship between them
will help us to develop successful therapies. We have analyzed the putative interaction between AD
transgenes and HFD-induced obesity in a widely used AD mouse model, with and without the blocking
of IL-6 trans-signaling in the brain.

We previously showed that 3xTg-AD male and female mice fed a normal diet have a diminished
body weight [26]. This is also the case with other AD mouse models, such as the Tg2576 [26,32–35].
This is similar to the loss of weight present in AD patients [5]. Therefore, it was not unexpected to
find that 3xTg-AD mice were again weighing less than controls, regardless of sex. Importantly, this
was also the case when fed a HFD. This lower body weight was accompanied by (i) a diminished
mass of the white and brown adipose tissues and liver; (ii) decreased circulating levels of cholesterol
and of insulin, leptin and FGF-21 serum levels, hormones that are expected to be regulated according
to body weight and fat and/or liver mass; and (iii) with the increased insulin sensitivity in the ITT
and glucose tolerance in the OGTT [36–38]. Contrary to expectations, 3xTg-AD mice had a higher
food intake during both phases. This increased food intake, despite lower body weight, could be
the consequence of the endocrine changes observed, since leptin and insulin inhibit food intake by
acting in hypothalamic nuclei. Previous studies demonstrated that the hyperphagia in the 3xTg-AD
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model could be attributed to a defective gut-brain signaling, with a reduction in the sensitivity to
the anorexic actions of certain satiety factors such as cholecystokinin (CKK) [39]. We challenged
the mice in the control diet phase with an overnight fasting, and observed that the 3xTg-AD mice lost
more weight, but upon refeeding they regained weight faster than control mice, likely because they
had an increased drive for food intake. These results strongly suggest that the 3xTg-AD mice present
a hypermetabolic state, which would reconcile their lower body weight with the higher food intake.
Indeed, their body temperature throughout the day was also significantly increased. Interestingly, all
these effects were more evident in 3xTg-AD male mice than in females. These results are in agreement
with previous findings where 3xTg-AD animals presented a hypermetabolic state, the reduction in
body weight being accompanied by a significant rise in metabolic rate indicated by higher oxygen
consumption and carbon dioxide production [40–42].

Previous studies demonstrated the implication of IL-6 in body weight regulation, likely by acting
on critical hypothalamic and/or other central systems. Thus, IL6-KO mice develop mature-onset
obesity [18], whereas transgenic mice overexpressing IL-6 in astrocytes (GFAP-IL6 mice) are resistant to
HFD-induced obesity [19]. A recent study demonstrated that IL-6 trans-signaling is enhanced in the CNS
of obese mice, that the central administration of IL-6 suppresses feeding, and that the co-injection of
sgp130Fc and IL-6 abrogated the food-intake-suppressing effect of IL-6 in both lean and HFD-fed obese
animals [43]. In our physiologically relevant experiments (i.e., no injection of IL-6 centrally), we did
notice that during the control diet phase, the transgenic expression of sgp130Fc by astrocytes caused
a modest decrease of absolute food intake of control male and female mice. Following an overnight
fasting, body weight regain was also diminished by the blocking of IL-6 trans-signaling in the brain
in 3xTg-AD mice of both sexes, at least in part because of a decreased food intake upon refeeding.
Interestingly, the effect of central sgp130Fc is more prominent in 3xTg-AD mice than in controls when
fed a control diet. We next studied the effect of a HFD, where significant differences in food intake
caused by sgp130Fc were not noticed in female mice. Unfortunately, a F&R experiment could not
be carried out in this phase. However, HFD-induced obesity was clearly decreased in female mice,
regardless of 3xTg-AD transgenes. This again suggests that blocking IL-6 trans-signaling in the brain
abrogates central effects of IL-6 as proposed by Timper et al. [43]. Since this effect is the opposite
of what is observed in IL6-KO mice [18], it is presumably revealing a major difference between IL-6
trans-signaling and IL-6 membrane receptor-mediated normal signaling in the brain. Kraakman
and colleagues described that mice with peripheral IL-6 trans-signaling inhibition had an increase
in body weight, fat mass and leptin levels in serum, although the presence of sgp130Fc prevents
(HFD)-induced adipose tissue macrophages accumulation [22]. This underlines the fundamental
difference of blocking IL-6 trans-signaling in the CNS compared to the periphery. A role of IL-6
in the hypothalamic systems controlling food intake and energy expenditure has been suggested
extensively [21,44–46]. In our experiment, however, the expression of Agrp was not significantly altered
in the situations studied. The changes observed in insulin, leptin and FGF-21 levels mostly suggest
that they are secondary to changes in body weight, fat depots and liver.

As expected [26], 3xTg-AD animals presented a mild phenotype. Soluble Aβ40 and Aβ42 levels
were very low (~an order of magnitude below those of Tg2576 mice [32,33]) at an advanced age (~
20 months), in both cortex and hippocampus. Despite the technical difficulties (some mice were
below the limit of sensibility of the ELISA), by comparing the present results with those of our
earlier study with a control diet [26], we noticed that Aβ levels are further decreased by HFD.
The reason for this is unclear, since previous studies do not support such an inhibitory effect of HFD
in 3xTg-AD [41,47] and Tg2576 [48]. This mild phenotype may have to do with (i) the fact that we
used hemizygous mice because of the experimental design (need to cross the AD and GFAP-sgp130Fc
strains), which shall decrease significantly Aβ production [28,49–51]; (ii) genetic background of the used
strains [52]; (iii) differences in the housing conditions or in the used methodology [53]. Glial cells
and neuroinflammation may have a critical role in the prevention, but also initiation and progression
of AD [54] interfering in multiple brain functions as energy metabolism [3]. They are involved in
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the maintenance of the CNS homeostasis and protection from various stresses (i.e., hypoxia) by providing
metabolic and structural support [55]. Regarding the role of IL-6 trans-signaling, previous studies
demonstrated decreased neuroinflammation, including IL-6 production, in response to peripheral LPS
if sgp130 is administered icv [56]; and using the same GFAP-sgp130Fc, a prominent down-regulation
of the neuroinflammation caused by the transgenic expression of IL-6 was observed [24]. In agreement
with that view, in the hypothalamus of 3xTg-AD male mice Il6 gene expression was increased
significantly, and this was blocked by sgp130Fc. Interestingly, blocking IL-6 trans-signaling increased
the Aβ42/Aβ40 ratio in the hippocampus of female mice following HFD.

5. Conclusions

The aforementioned evidences suggested a hypermetabolic state in the 3xTg-AD animals which is
modulated, in a sex-dependent manner, by the inhibition of IL-6 trans-signaling. The reasons for these
sex-specific differences are likely to be attributed to hormonal factors [57,58].
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