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Abstract: Semen changes the gene expression in endometrial and oviductal tissues modulating
important processes for reproduction. We tested the hypothesis that mating and/or sperm-free
seminal plasma deposition in the reproductive tract affect the expression of genes associated with
sperm-lining epithelium interactions, ovulation, and pre-implantation effects (nerve growth factor,
NGF; α/β hydrolase domain-containing protein 2, ABHD2; C-terminal tensin-like protein, CTEN or
TNS4; and versican, VCAN) in the period 10–72 h post-mating. In Experiment 1, does (n = 9) were
treated with gonadotropin-releasing hormone (GnRH) (control), GnRH-stimulated, and vaginally
infused with sperm-free seminal plasma (SP-AI), or GnRH-stimulated and naturally mated (NM).
In Experiment 2, does (n = 15) were GnRH-stimulated and naturally mated. Samples were retrieved
from the internal reproductive tracts (cervix-to-infundibulum) 20 h post-treatment (Experiment 1) or
sequentially collected at 10, 24, 36, 68, or 72 h post-mating (Experiment 2, 3 does/period). All samples
were processed for gene expression analysis by quantitative PCR. Data showed an upregulation of
endometrial CTEN and NGF by NM, but not by SP-AI. The findings suggest that the NGF gene affects
the reproductive tract of the doe during ovulation and beyond, influencing the maternal environment
during early embryonic development.
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1. Introduction

Rabbits (Oryctolagus cuniculus) are considered to be game, vermin, laboratory animals, pets,
or livestock, and are principally consumed in Mediterranean Europe [1]. Unlike many other livestock
species, rabbits are induced ovulators, requiring the generation of genital-somatosensory signals
during coitus to activate midbrain and brainstem noradrenergic neurons and generate the preovulatory
peak of gonadotropin-releasing hormone (GnRH) [2,3]. This mating-induced output of GnRH, which is
of a far greater magnitude than what has been reported for other species, causes an immediate release
of luteinizing hormone from the anterior pituitary that results in ovulation [2].

Ejaculate deposition during mating affects the molecular and cellular functions near and distant
to the insemination site [4]. In rabbits, approximately 1 mL of ejaculate volume containing about
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300 million spermatozoa suspended in seminal plasma (SP) is deposited vaginally after mating [5].
When spermatozoa reach the oviduct, within minutes in rabbits [6], only a small number of them
attaches to the oviductal epithelium [7,8]. Sperm transport along the female reproductive tract follows
two phases. The first is a rapid phase, where the myometrium and myosalpinx move a vanguard of
spermatozoa to the upper ampulla and beyond, ensuring that a sperm group is cleared from the oviduct
before ovulation [9]. The second is a sustained phase that colonizes the tubal sperm reservoir until
ovulation takes place [10]. Previous research has proposed the distal isthmus (adjacent to, or perhaps
part of, the utero-tubal junction) as the principal anatomical region restricting rabbit spermatozoa,
acting as a sperm reservoir [10]. In these reservoirs, the spermatozoa are entrapped and safeguarded
from the female immune system by the fluid and extracellular matrix present in the lumen of the
oviduct [11].

Two of the principal components of the endometrial extracellular matrix are versican and
hyaluronic acid [12]. Both may interact with specific binding domains, creating open networks to
facilitate cell division, movement, and sorting [13]. The CD44, a cell-surface glycoprotein involved in
cell-cell adhesion, is the best-characterized ligand to hyaluronic acid that also binds to versican [14].
It is present in a wide variety of cells and tissues, including spermatozoa, facilitating the adhesion and
protection of those cells in the oviductal sperm reservoir [11].

Shortly after ovulation, spermatozoa are gradually released from the sperm reservoir and moved
to the ampullar site of fertilization [8,10]. Modifications of the sperm and/or the epithelium lining
surface proteins produced during sperm capacitation may reduce the sperm binding affinity to the
oviductal epithelium [8]. This, together with the attainment of hyperactivation motility, which is
required to facilitate sperm-oocyte contact and penetration of the zona pellucida [15], would result in
the detachment of spermatozoa from the oviductal sperm reservoir. Ovulation is induced around 10 h
after coitus or GnRH stimulation [16], and fertilization occurs 2–3 h after ovulation [15]. All of these
events are the result of endocrine and neuronal interplay mainly connected to mating, but perhaps in
concerted relation to the entry of semen and their effects on the genomic response by the female genital
tract, as previously suggested in other species [17–19].

The nerve growth factor (NGF) not only participates in the differentiation, plasticity, and phenotype
of sensory and sympathetic neurons [20], but has also been proposed as a key ovulation-inducing
factor in rabbits and other induced ovulators, due to its presence in the SP [3,21–24]. In the genital
tract, NGF may display different effects, from activating sperm motility via its cytoskeleton influence,
as it occurs during neuronal growth, to preventing embryo rejection through the inhibition of local
immune responses [20].

The enzyme α/β hydrolase domain-containing protein 2 (ABHD2) is involved in the control
of sperm hyperactivation via progesterone and cation channels of sperm, also known as CatSper
Ca2+ channels [25–27]. Versican (encoded by VCAN), an extracellular matrix component [12], plays a
fundamental role in embryo implantation [28]. Recently, differential VCAN and ABHD2 expression
have been reported in the porcine endometrium after mating and sperm-free SP infusion [29]. Besides,
differential expression of the gene encoding for the C-terminal tensin-like protein (CTEN; also known
as tensin 4, TNS4), a member of the tensin family crucial for cell-matrix adhesion [30], has been
reported in the porcine endometrium triggered by spermatozoa and sperm-free SP [19]. Altogether,
these genes may not only participate in the endometrium-sperm interaction, but also in the interaction
between the genital environment and the zygotes, which is a matter that has not yet been explored in
induced ovulators.

The present study tested the effect of mating and/or seminal plasma on the gene expression of the
tubular internal reproductive tract of does, with special reference to genes specifically associated with
sperm-lining epithelium interactions (adhesion), ovulation, and pre-implantation effects (which can be
separated from the free embryo influence) in the period 10–72 h post-mating, during which all these
events occur.
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2. Materials and Methods

2.1. Ethics Statement

Rabbits were handled according to the principles of animal care published by Spanish Royal
Decree 1201/2005 (BOE, 2005: 252:34367-91) and the Directive 2010/63/EU of the European Parliament
and the Council of 22 September 2010 on the protection of animals used for scientific purposes (2010;
276:33-79). The Committee of Ethics and Animal Welfare of the Universitat Autónoma de Barcelona,
Spain, approved this study (Expedient #517).

2.2. Animals

Six New Zealand White (NZW) adult rabbit bucks and 24 NZW adult rabbit does (from seven
to thirteen months old) from the nucleus colony at the farm of the Institut de Recerca i Tecnologia
Agroalimentaries (IRTA-Torre Marimon, Caldes de Montbui, Barcelona, Spain) were used in this
study. Each animal was housed in a single cage (85 × 40 × 30 cm) equipped with plastic footrests,
a feeder (restricted to 180 g/day of an all-mash pellet), and nipple-drinkers (ad libitum access to water).
Animals were kept under a controlled photoperiod of 16 h of light and 8 h of darkness, and a range of
temperature between 15 and 20 ◦C in winter and 20 and 26 ◦C in summer, with a relative humidity of
60% to 75% maintained by a forced ventilation system.

All males started to be trained with an artificial vagina at 4.5 months of age. A homemade
polyvinyl chloride artificial vagina containing water at a temperature of 50 ◦C was used. One ejaculate
was collected per male. Ejaculates that contained urine and calcium carbonate deposits on visual
inspection were discarded.

2.3. Experimental Design

Figure 1 displays the experimental design followed in this study. Two separate experiments
were performed.

Genes 2020, 11, x FOR PEER REVIEW 3 of 16 

 

2. Materials and Methods 

2.1. Ethics Statement 

Rabbits were handled according to the principles of animal care published by Spanish Royal 
Decree 1201/2005 (BOE, 2005: 252:34367-91) and the Directive 2010/63/EU of the European Parliament 
and the Council of 22 September 2010 on the protection of animals used for scientific purposes (2010; 
276:33-79). The Committee of Ethics and Animal Welfare of the Universitat Autónoma de Barcelona, 
Spain, approved this study (Expedient #517). 

2.2. Animals 

Six New Zealand White (NZW) adult rabbit bucks and 24 NZW adult rabbit does (from seven 
to thirteen months old) from the nucleus colony at the farm of the Institut de Recerca i Tecnologia 
Agroalimentaries (IRTA-Torre Marimon, Caldes de Montbui, Barcelona, Spain) were used in this 
study. Each animal was housed in a single cage (85 × 40 × 30 cm) equipped with plastic footrests, a 
feeder (restricted to 180 g/day of an all-mash pellet), and nipple-drinkers (ad libitum access to water). 
Animals were kept under a controlled photoperiod of 16 h of light and 8 h of darkness, and a range 
of temperature between 15 and 20 °C in winter and 20 and 26 °C in summer, with a relative humidity 
of 60% to 75% maintained by a forced ventilation system. 

All males started to be trained with an artificial vagina at 4.5 months of age. A homemade 
polyvinyl chloride artificial vagina containing water at a temperature of 50 °C was used. One 
ejaculate was collected per male. Ejaculates that contained urine and calcium carbonate deposits on 
visual inspection were discarded. 

2.3. Experimental Design 

Figure 1 displays the experimental design followed in this study. Two separate experiments 
were performed. 

 
Figure 1. Representation of the experimental design and tissue sections obtained from does. 
Sequential tissue segments derived from does: endocervix (Cvx), distal uterus (DistUt), proximal 
uterus (ProxUt), utero-tubal junction (UTJ), isthmus (Isth), ampulla (Amp), and infundibulum (Inf). 
Intramuscular injection of 0.03 mg gonadotropin-releasing hormone (GnRH) was used to induce 
ovulation in all groups of both experiments. 

In Experiment 1 (n = 9), gene expression analyses for ABHD2, NGF, CTEN, and VCAN were 
performed in sequential segments of the female reproductive tracts randomly chosen from one lateral 

Figure 1. Representation of the experimental design and tissue sections obtained from does. Sequential
tissue segments derived from does: endocervix (Cvx), distal uterus (DistUt), proximal uterus (ProxUt),
utero-tubal junction (UTJ), isthmus (Isth), ampulla (Amp), and infundibulum (Inf). Intramuscular
injection of 0.03 mg gonadotropin-releasing hormone (GnRH) was used to induce ovulation in all
groups of both experiments.
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In Experiment 1 (n = 9), gene expression analyses for ABHD2, NGF, CTEN, and VCAN
were performed in sequential segments of the female reproductive tracts randomly chosen
from one lateral side. Tissue samples were collected 20 h post-induction of ovulation with
0.03 mg gonadotropin-releasing hormone (GnRH; Fertagyl®, Esteve Veterinaria, Barcelona, Spain)
intramuscularly (im) (control of ovulation; Control, n = 3), 20 h post-induction of ovulation with
0.03 mg GnRH im and sperm-free SP vaginal infusion (SP-AI, n = 3), and 20 h post-induction of
ovulation with 0.03 mg GnRH im and natural mating (NM, n = 3). The control group was established
to highlight the effects of the SP infusion and mating, thus counteracting ovulation effects.

In Experiment 2, 15 does were sequentially euthanized at 10, 24, 36, 68, or 72 h post-induction of
ovulation with 0.03 mg GnRH im and natural mating (n = 3/collection time). Reproductive tract tissues,
as described in Experiment 1, were collected for ABHD2, NGF, CTEN, and VCAN gene expression
analysis. The 10 h post-mating group was established as the reference group.

2.4. Mating and Semen Collection

The does included in the mating group of Experiment 1 and 2 were sequentially mated with two
randomly selected bucks to diminish male-variation effects after the hormonal induction of ovulation
with 0.03 mg GnRH im. The ovulation was assumed to happen at 10 h after GnRH stimulation for all
groups. Additionally, semen was collected from the same rabbit bucks through an artificial vagina,
as described above. The sperm-free SP was obtained after centrifugation at 2000× g for 10 min and
checked for the absence of spermatozoa. The harvested sperm-free SP was immediately used as a pool
for sperm-free SP vaginal infusions of Experiment 1 after the hormonal induction of ovulation with
0.03 mg GnRH im.

2.5. Tissue Sample Collection

For each experimental condition, the does were euthanized by the administration of 600 mg
pentobarbital sodium (Dolethal, Vetoquinol, Madrid, Spain) intravenously (marginal ear vein).
Immediately thereafter, the right female reproductive tracts were chosen from the right lateral
side in all animals and retrieved and segmented in seven consecutive compartments (endocervix, distal
uterus, proximal uterus, utero-tubal junction, distal isthmus, ampulla, and infundibulum; Figure 1).
In Experiment 2, before segmentation of the internal genital tract, the entire oviduct was isolated
from the uterus and the ovary by cutting below the utero-tubal junction. Embryos were collected by
flushing the oviduct through the infundibulum (phosphate buffer saline supplemented with 5% fetal
calf serum and 1% antibiotic-antimycotic solution). All genital segments were stored in RNAlater
solution at −80 ◦C.

2.6. Quantitative PCR Analyses

Total RNA was extracted following a TRIzol-based protocol. Tissues were mechanically disrupted
in a 2-mL tube with 1 mL TRIzol using a bead mill (29 beats/s, 2 min) (TissueLyser II with 7 mm
stainless steel beads, Qiagen, Sollentuna, Sweden). The homogenized tissues were centrifuged at
12,000× g for 10 min at 4 ◦C. The supernatants were transferred to a new 2-mL tube and mixed
by hand with bromochloropropane (100 µL/mL homogenized). After 5-min of incubation at room
temperature, the mixtures were centrifuged 12,000× g for 15 min at 4 ◦C. The aqueous phases obtained
were transferred to a new 1.5-mL tube with isopropanol and RNA precipitation solution (1.2 M NaCl
and 0.8 M Na2C6H6O7) (250 µL of each/500 µL aqueous phase). After 10-min of incubation at room
temperature, the mixtures were centrifuged 12,000× g 10 min at 4 ◦C. The supernatants were discarded,
and 1 mL of 75% ethanol was added to each tube. The tubes were centrifuged 7500× g for 5 min at 4 ◦C
and the supernatants were discarded. The RNA pellets obtained were dried for 30 min in the fume
hood before their dissolution in 30 µL of RNase free water for 30 min on ice. The RNA concentration
of the extracts was determined from the absorbance of 260 nm with Thermo Scientific NanoDropTM

2000 (Fisher Scientific, Gothenburg, Sweden). All of the samples had a 260/280 nm absorbance ratio
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of 1.8–2.2. Additionally, the quality of the RNA was determined by the Agilent 2100 Bioanalyzer
(Agilent Technologies, Palo Alto, CA, USA), using the samples with a RNA integrity number (RIN)
value higher than 8. The synthesis of the first-strand cDNA was performed using the High-Capacity
RNA-to-cDNA™ Kit (Applied Biosystems™, CA, USA), which consisted of 4 µg RNA in a final volume
of 20 µL. After the synthesis, the samples were stored at −20 ◦C until further analyses.

A Quantitative Polymerase Chain Reaction (qPCR) was performed using the Real-Time PCR
Detection System (CFX96™; Bio-Rad Laboratories, Inc; CA, USA). The reactions consisted of 2 µL of
synthesized cDNA, 250 nM of forward and reverse specific gene primers, 5 µL of PowerUp™ SYBR™
Green Master Mix (Applied Biosystems™, CA, USA), and water to a final volume of 10 µL. The protocol
was as follows: one cycle of uracil-DNA glycosylase (UDG) activation at 50 ◦C for 2 min; one cycle of
denaturation at 95 ◦C for 2 min; and 40 cycles of denaturation at 95 ◦C for 5 s, annealing/extension
at 60.2 ◦C for 30 s, and a melting curve at 60–95 ◦C (0.5 ◦C increments) for 5 s/step. Two technical
replicates were used for each sample. The efficiencies of the primers were calculated using five different
concentrations of the same cDNA sample (serial dilutions of 1/5) and the same protocol described
above. Three technical replicates were used for each concentration. The gene relative expression
levels were quantified using the Pfaffl method [31]. Two housekeeping genes were initially used for
cDNA normalization (β-ACTIN and GADPH). After a preliminary analysis of the results, only β-ACTIN
was constantly expressed through the tissues and treatments, and was chosen for further analyses.
The primer sequences, product sizes, and efficiencies are shown in Table 1. For the β-ACTIN gene,
commercial gene-specific PCR primers for rabbit samples were used (PrimePCR™ SYBR® Green Assay:
ACTB, Rabbit; Bio-Rad Laboratories, Inc; CA, USA). The amplicons of the qPCR were loaded into an
agarose gel after being mixed with GelRed® Nucleic Acid Gel Stain (Biotium, CA, USA) to confirm the
product sizes. After running the test, the gel was imaged by a gel imaging system (ChemiDoc XRS+

System, BioRad Laboratories, Inc; CA, USA).

Table 1. Primers used for the quantitative PCR analyses.

Gene Primer Sequence (5′–3′) Product Size (bp) Efficiency (%)

ABHD2 F: CGGAGCCACTTCTACTTTCG 159 87.7
R: GCACACCGATAGCCATTTTT

β-ACTIN F: unknown 120 88.6
R: unknown

CTEN F: TGGTCCACTTCAGAGTCACG 211 97.3
R: AAGAGGTGGCACACGTTCTC

NGF F: CCCCTCCAACAGGACTTACA 138 103.7
R: ACCTCATTGCCCTTGATGTC

VCAN F: TGCACCACAACCAACAGATT 177 89.5
R: AGCTGCGAAGAGATGTGGTT

ABHD2: α/β hydrolase domain-containing protein 2; β-ACTIN: β-actin; CTEN: C-terminal tensin-like protein;
NGF: nerve growth factor; VCAN: versican; F: forward; R: reverse; A: adenine; C: cytosine; G: guanine; T: thymine;
bp: base pair.

2.7. Statistical Analyses

All data were exported with CFX Maestro™ 1.1 software version 4.1.2433.1219 (Bio-Rad
Laboratories, Inc; CA, USA). All data sets were analyzed for a normal distribution and homoscedasticity
using the Shapiro–Wilk Normality test and Levene’s test. Log(x) transformation was used to restore a
normal distribution prior to analysis. The statistical analysis was conducted in R version 3.6.1. [32]
with nlme [33] to develop linear mixed-effects (LME) models and multcomp [34] to perform pairwise
comparisons adjusted by Tukey’s test. Data are presented as the median [minimum, maximum], unless
otherwise stated. The threshold for significance was set at p < 0.05.

Treatments of Experiment 1 (control, SP-AI, and NM) were included as fixed effects and the
females as the random part of the model. Pairwise comparisons were adjusted by Tukey’s test.
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A second LME model was used, including the different collection times of Experiment 2 (10, 24,
36, 68, and 72 h post-mating) as fixed effects and the females as the random part of the model. Post-hoc
comparisons were performed using Tukey’s multiple comparisons test.

Additionally, the differential expression changes in the qPCR results among tissues (endocervix to
infundibulum) in Experiments 1 and 2 were further re-analyzed, separately. Using the utero-tubal
junction as an arbitrary anatomical compartment reference among all tissues examined, gene expression
changes were compared, per gene, issued by the control, NM, or SP-AI (Experiment 1) or by different
times post-mating (Experiment 2), among the anatomical regions of the female reproductive tract.
The tissue was included as fixed effects and the females as the random part of the LME model. The LME
model was followed by Tukey’s multiple comparison test, to analyze the differences among each
anatomical region of the female reproductive tract. Data are presented as the median [minimum,
maximum], unless otherwise stated. Data on the differential expression among tissues are presented as
Row Z-Scores.

The first statistical analyses were conducted to determine gene expression changes among the
experimental groups for each tissue section, whereas the second statistical analyses were conducted to
determine the differences between the tissue segments for every experimental group. Both analyses used
the same data (expression values), but were analyzed to emphasize, in the first analysis, the different
treatments and post-mating times, and in the second analysis, the differential expression among tissues.

3. Results

3.1. Differential Gene Expression in the Rabbit Female Reproductive Tract 20 h after Natural Mating or Vaginal
Infusion With Sperm-Free Seminal Plasma

Differences in ABHD2, NGF, and CTEN expression among the groups included in Experiment 1
are displayed in Figure 2. No differences were found in the distal isthmus, which is the sperm reservoir
established in the rabbit [10]. The ABHD2 expression was downregulated by the NM group in the
utero-tubal junction (p < 0.05), and downregulated by NM and SP-AI groups in the ampulla (p < 0.05).
Conversely, the SP-AI group upregulated ABHD2 expression in the infundibulum compared to the NM
group (p < 0.01). The NGF expression was upregulated by the NM group in the distal and proximal
uterus (p < 0.05). However, the SP-AI group upregulated NGF expression in the endocervix (p < 0.05).
The CTEN expression was upregulated by the NM group in the endocervix, and proximal and distal
uterus (p < 0.01). Additionally, the SP-AI group downregulated CTEN expression in the endocervix
and ampulla (p < 0.01). The results obtained from all of the genes and tissues analyzed are depicted
in Figure S1.
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statistically significant (p < 0.05) in the rabbit endocervix (Cvx), distal uterus (DistUt), proximal uterus
(ProxUt), utero-tubal junction (UTJ), ampulla (Amp), and infundibulum (Inf) 20 h after the induction of
ovulation with an intramuscular injection of 0.03 mg gonadotropin-releasing hormone (GnRH) (20 h_C,
n = 3), 20 h post-GnRH-stimulation and seminal plasma vaginal infusion (20 h_SP-AI, n = 3), and 20 h
post-GnRH-stimulation and natural mating (20 h_NM, n = 3). Fold changes relative to the control of
the ovulation group are shown. Different letters (a,b) represent statistical differences between groups
(p < 0.05). Median [minimum, maximum].

3.2. Differential Gene Expression in the Rabbit Female Reproductive Tract from Ovulation (10 h Post-Mating)
to up to 72 h Post-Mating

Differences in ABHD2, NGF, CTEN, and VCAN expression among groups included in Experiment
2 are displayed in Figure 3. The ABHD2 expression was upregulated at 24, 36, and 72 h post-mating in
the utero-tubal junction (p < 0.05), whereas it was downregulated at 24, 36, 68, and 72 h post-mating
in the infundibulum (p < 0.001). The NGF expression was downregulated in the endocervix at 36 h
post-mating (p < 0.01); downregulated in the distal and proximal uterus at 36, 68, and 72 h post-mating
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(p < 0.05); upregulated in the distal isthmus at 36, 68, and 72 h post-mating (p < 0.05); and downregulated
in the infundibulum at 24, 36, 68, and 72 h post-mating (p < 0.001). The CTEN expression followed an
NGF expression pattern with a time lag of hours in the uterine tissues. At 24 h post-mating, the CTEN
expression was upregulated in the endocervix (p < 0.01). Additionally, the CTEN expression was
downregulated in the distal uterus at 68 and 72 h post-mating (p < 0.05); upregulated in the utero-tubal
junction at 24 h post-mating (p < 0.001); upregulated in the isthmus at 24 and 72 h post-mating
(p < 0.05); and downregulated at 24, 36, 68, and 72 h post-mating (p < 0.05). The VCAN expression was
downregulated in the endocervix at 36 and 72 h post-mating (p < 0.05); downregulated in the distal
uterus at 24 and 68 h post-mating (p < 0.05); downregulated at 24 h post-mating in the proximal uterus
(p < 0.001); and downregulated in the infundibulum at 24, 36, 68, and 72 h post-mating (p < 0.01).
The results obtained from all of the genes and tissues analyzed are depicted in Figure S2.
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was statistically significant (p < 0.05) in rabbit endocervix (Cvx), distal uterus (DistUt), proximal uterus
(ProxUt), utero-tubal junction (UTJ), distal isthmus (Isth), ampulla (Amp), and infundibulum (Inf)
20 h after 10, 24, 36, 68, or 72 h post-induction of the ovulation (intramuscular injection of 0.03 mg
gonadotropin-releasing hormone) and natural mating (n = 3/collection time). Fold changes relative
to 10 h post-mating group are shown. Different letters (a,b,c) represent statistical differences between
groups (p < 0.05). Median [minimum, maximum].
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3.3. ABHD2 and CTEN Follow a Similar Expression Pattern in Tissues at 20 h Post-Mating

The tissue analysis expression showed significant differences in ABHD2, CTEN, NGF, and VCAN
expression among tissues in the different groups included in Experiment 1 (Figure 4a, Figure S3).
The ABHD2 and CTEN expression presented a similar tissue pattern. The infundibulum presented
the highest ABHD2 and CTEN expression in the SP-AI and control groups (p < 0.05), whereas the
distal uterus, followed by the endocervix, presented the highest ABHD2 and CTEN expression in the
NM group (p < 0.01). In the case of NGF expression, the proximal uterus presented the highest NGF
expression in all groups included in Experiment 1 (p < 0.01). The highest VCAN expression in the
control and NM groups was present in the distal uterus (followed by the proximal uterus in the control
group) (p < 0.05), whereas the proximal uterus, followed by the distal uterus, presented the highest
VCAN expression in the SP-AI group (p < 0.01).
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Figure 4. Gene expression changes among tissues in the different groups included in the study.
Changes in ABHD2, CTEN, NGF, and VCAN expression among different tissues (endocervix, Cvx; distal
uterus, DistUt; proximal uterus, ProxUt; utero-tubal junction, UTJ; distal isthmus, Isth; ampulla, Amp;
and infundibulum, Inf) (a) at 20 h after the induction of ovulation with 0.03 mg of gonadotropin-releasing
hormone (GnRH) intramuscularly, as the control of ovulation (20 h_C); 20 h post-GnRH-stimulation
and sperm-free seminal plasma vaginal infusion (20 h_SP-AI); and 20 h post-GnRH-stimulation and
natural mating (20 h_NM); (b) at 10, 24, 36, 68, and 72 h post-GnRH-stimulation and natural mating.
Row Z-Scores of the mean fold change relative to the reference group (UTJ) are shown. Red indicates
upregulation and green indicates downregulation.
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3.4. NGF Follows an Up-Reguation Wave Expression Pattern in a Post-Mating Time-Dependent Manner

The tissue analysis expression showed significant differences in ABHD2, CTEN, NGF, and VCAN
expression among tissues in the different groups included in Experiment 1 (Figure 4b, Figure S4).

As seen in the tissue expression analysis of Experiment 1 (Figure 4a), ABHD2 and CTEN expressions
followed a similar tissue pattern in Experiment 2. At 10 h post-mating (time of ovulation), both
genes were upregulated in the infundibulum (p < 0.05), whereas for the remaining times, post-mating
presented higher expressions in the uterine tissues (endocervix, distal uterus, and proximal uterus)
(p < 0.05). The NGF expression in the different tissues seemed to follow an upregulated wave along the
oviduct tissues beginning, with the maximum Z-score, at 36 h post-mating in the utero-tubal junction
and distal isthmus (p < 0.05), and finishing in the distal isthmus at 72 h post-mating (p < 0.01), moving
through the ampulla at 68 h post-mating (p < 0.05). Finally, the uterine tissues (distal and proximal
uterus) presented the highest VCAN expression at 36, 68, ad 72 h post-mating (p < 0.05).

3.5. Ovulated Follicles and Embryo Recovery

The number of ovulated ovarian follicles, and the number and stage of the embryos collected
were counted for each doe (Table 2).

Table 2. Number of ovulated follicles and embryo recovery from both reproductive tract sides of the
does included in this study.

Time Post-Mating Ovulated Follicles Embryo Recovery Embryo Stage

24 h 6.17 ± 0.90 3.17 ± 2.41 2 and 4-cell
36 h 4.67 ± 2.81 3.67 ± 2.81 8-cell
68 h 5.67 ± 2.21 5.67 ± 1.80 Early morula
72 h 4.00 ± 0.58 4.17 ± 0.37 Morula

Data are presented as the mean ± SD.

4. Discussion

In this study, we investigated the differential expression of four genes (ABHD2, VCAN,
NGF, and CTEN) associated with sperm-lining epithelium interactions (adhesion), ovulation,
and pre-implantation effects (which can be separated from the un-implanted embryo influence)
in the period 10–72 h post-mating, during which all of these events occur. Our study provides the
basis for new mechanistic approaches that can lead to novel strategies for improving fertility in
rabbit production.

Two independent types of statistical analyses were included in the present study to emphasize
differences between groups and tissues. The first statistical analyses compared experimental groups in
the same tissue segments, whereas the second statistical analyses compared tissue segments in the
same experimental groups. The results can vary and appear to disagree in some cases because the
information extracted from each analysis is complementary, not the same.

The oviduct is involved in the transport of spermatozoa and oocytes to the site of fertilization,
as well as the maintenance of sperm viability [7,16]. This interaction preserves the spermatozoa in
a storage reservoir until ovulation and maintains their fertilization competence [8]. Our analyses
revealed no effect on the gene expression of the selected genes by mating or sperm-free SP in the
sperm reservoir at 20 h post-exposure. These results suggest that, even though the role of the sperm
reservoir is fundamental during the first 2–3 h post-ovulation, the expression of the selected genes was
not affected by natural mating or sperm-free SP vaginal infusion after 10 h post-ovulation. However,
adjacent tissues of the sperm reservoir, such as the utero-tubal junction, presented differential ABHD2
expression at 20 h post-exposure.

According to the principle of the oviductal sperm reservoir explained above, we hypothesized
that the ABHD2 expression should decrease in the distal isthmus before ovulation, repressing, in this
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way, sperm capacitation and, just after ovulation (10 h post-mating), the ABHD2 expression should
increase to facilitate the detachment of the oviductal sperm reservoir and spermatozoa-oocyte contact.
However, our observations found no differences in ABHD2 expression in the distal isthmus at different
hours post-mating up to 72 h. Despite the lack of differences in the distal isthmus, at 20 h post-mating,
the ABHD2 expression was downregulated in the utero-tubal junction. These findings suggest that
the utero-tubal junction instead of the distal isthmus, or the utero-tubal junction in conjunction with
the distal isthmus, may be the anatomical region of the doe reproductive tract that acts as a potential
sperm reservoir in rabbits. Additionally, the ABHD2 expression decreased in the utero-tubal junction
at the time of ovulation, increasing around 24 h post-mating until 72 h post-mating. Our observations
may be relevant for understanding events during sperm capacitation, as well as for early embryo
development. However, further research is needed to clarify the exact mechanism of action of the
ABHD2 in the oviductal segments of the rabbit.

The analysis of VCAN expression revealed no effect of natural mating and sperm-free SP at
20 h post-exposure. In contrast, expression values from 10 to 72 h post-mating showed a dual
regulation of VCAN expression. On one hand, the data suggest a probable implication of the oviductal
extracellular matrix in the oocyte picked up by the infundibulum close to expected ovulation, showing
the downregulation of VCAN expression at different times post-mating compared to 10 h post-mating.
On the other hand, the endometrial extracellular matrix could be involved in the entrapment of
spermatozoa in proximal and distal parts of the uterus and endocervix at the time of ovulation (10 h
post-mating), in order to prevent the forward motion of spermatozoa to the utero-tubal junction and
the oviduct. This hypothesis is in accordance with previous research proposing the cervix as the first
anatomical barrier for spermatozoa progression in rabbits, from which viable spermatozoa progress
to the oviduct into the site of fertilization [6,35,36]. Other anatomical structures have been proposed
as barriers to sperm progression [35], but it seems that the distal isthmus acts as the oviductal sperm
reservoir in rabbits [10].

Versican also plays a fundamental role in embryo implantation [28], suggesting that its expression
should be increased in the endometrium before implantation takes place. Our study revealed an
early upregulation of VCAN expression in the distal uterus in all groups at 20 h post-exposure. This
upregulation remained from 36 h until 72 h post-mating in the proximal uterus, indicating that an
appropriate environment for embryo implantation is occurs a few hours after ovulation and before the
embryos reach the endometrium.

Recent studies have identified the NGF as an ovulatory induction factor present in the female
and male genital tract in some reflex ovulating species, such as camelids and rabbits [24,37–39].
The biological actions of NGF are mediated by two neurotrophin receptors: the tropomyosin receptor
kinase A (TrkA, specific for NGF) and the p75 neurotrophin receptor (p75-NTR, a pan-neurotrophin
receptor with a low affinity to NGF) [40]. Both receptors are present in male rabbits [21–23,39] and
female reproductive tracts [24,41]. Two complementary mechanisms for the induction of ovulation
in rabbits via NGF have been proposed [24]. One of the mechanisms is based on an endocrine
ovulation-inducing factor-mediated pathway, where NGF is mainly synthesized in the uterine wall and
absorbed into the bloodstream and directly acts on the ovary [24]. At the same time, a complementary
nervous NGF-mediated pathway could be produced by the direct action of NGF on primary sensory
neurons which trigger GnRH neurons in the hypothalamus [24].

Our results revealed an upregulation of NGF expression at 20 h post-mating in the distal and
proximal uterus, suggesting that mating, but not sperm-free SP infusion, is involved in the NGF
regulation on uterine tissues. In relation to this effect, the endocervix, the proximal and distal uterus,
and the infundibulum followed a similar uterine tissue pattern upregulating NGF at 10 h post-mating.
Taken together, endocervix and endometrial tissues, in conjunction with the infundibulum, may act as
the main sources of NGF based on the endocrine ovulation-inducing factor-mediated pathway [24].

Once ovulation occurs, the unfertilized oocytes migrate along half of the total length of the
oviduct within the first 2 h post-ovulation [42]. At the same time (2–3 h post-ovulation), fertilization
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takes place near the ampulla [10,15,35]. Embryos are delayed at the ampulla-isthmus junction until
48 h post-mating and then pass through the isthmus portion after 70 h post-mating to finally pass
through the utero-tubal junction and enter the uterus [42]. The analyses of NGF expression showed an
upregulation in the isthmus at 36, 68, and 72 h post-mating, suggesting that embryos are naturally
exposed to NGF during its passage along the isthmus before implantation, probably to enhance
embryo hatching rates in a similar way as reported previously in a rabbit in vitro embryo development
study [43]. However, the mechanisms by which NGF exerts such actions are still unclear.

It is hypothesized that NGF may assist in embryo implantation through the inhibition of the local
immune response [20] and is able to enhance endogenous anti-inflammatory mechanisms on monocytes
via the activation of TrkA signaling, inhibiting the production of proinflammatory cytokine, including
the interleukins (IL) IL-1β and IL-6 and tumor necrosis factor α (TNF-α), and increasing the production
of the anti-inflammatory cytokines IL-10 and IL-1Ra [44]. Our study included an interval up to 72 h
post-mating. Therefore, it only included preimplantation stages. However, the upregulation of NGF
expression observed in the isthmus at 36, 68, and 72 h post-mating and the wave of NGF expression that
began at 36 h post-mating in the utero-tubal junction and finished in the isthmus at 72 h post-mating,
moving through the ampulla at 68 h post-mating, may be related to the tolerance to embryos by the
immune system of the doe. Moreover, according to the tissue expression analyses, the presence of NGF
expression in the proximal uterus 10 h after ovulation (20 h post-mating) may be related to reducing
the inflammatory response produced by ovulation and mating in the reproductive tract.

The NGF can upregulate the expression of CTEN, a distant member of the tensin focal adhesion
family, mainly via RAS-Raf-Mek, PI3K-Akt, and Stat3 pathways [45]. The CTEN is involved in cell
motility, apoptosis, growth factor receptor homeostasis, and tumorigenicity [30]. Its expression shows
a restricted pattern in the human prostate and placenta [46]. In this study, we have demonstrated its
expression in the doe reproductive tract. Recent research has described its differential expression in the
pig female reproductive tract induced by spermatozoa and sperm-free SP [19], indicating that CTEN
might be related to an early signaling mechanism of the female reproductive tract in response to both
spermatozoa and SP.

Our results suggest that mating, but not sperm-free SP, is involved in CTEN upregulation in the
proximal and distal uterus. Similarly, the CTEN expression was upregulated at 20 h post-mating in the
endocervix, suggesting that mating is an effector of cell migration and the apoptosis response against
spermatozoa in the cervix and uterus (proximal and distal), probably related to a reduction of the
spermatozoa population in the uterine lumen, as previously reported [6,35]. Furthermore, the results
suggest that CTEN expression follows a similar NGF expression pattern in the uterus (proximal and
distal) when mating is involved, whereas CTEN expression follows a similar NGF expression pattern in
the endocervix when sperm-free SP infusion is involved. Interestingly, our analyses showed a similar
expression, of NGF and CTEN, both upregulated, at 10 h post-mating compared with the remaining
times post-mating. Accordingly, CTEN expression followed a similar NGF expression, with a time lag
of hours in some cases, in the different post-mating times in the endocervix, distal uterus, and distal
isthmus. However, the exact mechanism of this interaction is unknown. In a similar way to ABHD2
expression, the tissue expression analyses conducted 20 h after treatment demonstrated differential
CTEN expression that switches from infundibulum to uterine tissues, but only if fertilization takes
place. The specific mechanisms involved in this differential expression in the female reproductive tract
are unknown and require further investigation.

The mid-ampulla has been proposed as the site of fertilization in rabbits [10,15,35]. Curiously,
no effects on VCAN, ABHD2, NGF, and CTEN expression were found in the ampulla through time.
It should be noted that a lack of gene expression changes in the ampulla is not unexpected given
the fast passage of the oocytes through this anatomical region, with them spending more time in the
ampulla-isthmus junction during isthmic migration [42], which is the anatomical region where we
found numerically more gene expression variations among the different conditions and times included.
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5. Conclusions

In conclusion, our findings suggest that the endocervix and the uterine horns, in conjunction
with the infundibulum, are involved in the endocrine ovulation-inducing factor NGF-mediated
pathway. Additionally, we propose the implication of NGF in the maternal environment-embryo
interaction, perhaps controlling inflammation of the reproductive tract, and embryo survival. However,
the mechanisms by which NGF exerts such actions are unknown. Furthermore, we reported the
differential expression of other genes (ABHD2, CTEN, and VCAN) involved in the endometrium-sperm
interaction and embryo implantation. The findings of the present study should form the basis
of new mechanistic approaches for developing new strategies for the improvement of fertility in
animal production.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/7/758/s1:
Figure S1. Changes in (A) ABHD2, (B) CTEN, (C) NGF, and (D) VCAN expression among different treatments
at 20 h post-treatment: 20 h post-induction of ovulation, control (20 h_C); 20 h post-seminal plasma infusion,
20 h_SP; and 20 h post-natural mating, 20 h_NM. Tissue anatomical regions of the female rabbit reproductive
tract (endocervix, Cvx; distal uterus, DistUt; proximal uterus, ProxUt; utero-tubal junction, UTJ; distal isthmus,
Isth; ampulla, Amp; and infundibulum, Inf). Fold changes relative to the reference group (20 h_C) are shown.
Different letters (a,b) represent statistical differences between tissues (p < 0.05). Median [minimum, maximum];
Figure S2. Changes in (A) ABHD2, B) CTEN, C) NGF, and D) VCAN expression at different times (from 10 to
72 h) post-mating: 10, 24, 36, 68, and 72 h post-natural mating. Tissue anatomical regions of the female rabbit
reproductive tract (endocervix, Cvx; distal uterus, DistUt; proximal uterus, ProxUt; utero-tubal junction, UTJ;
distal isthmus, Isth; ampulla, Amp; and infundibulum, Inf). Fold changes relative to the reference group (10 h
post-mating) are shown. Different letters (a–c) represent statistical differences between tissues (p < 0.05). Median
[minimum, maximum]; Figure S3. Changes in (A) ABHD2, (B) CTEN, (C) NGF, and (D) VCAN expression among
different tissues at 20 h post-treatment. 20 h post-induction of the ovulation, control (20 h_C); 20 h post-seminal
plasma infusion, 20 h_SP; and 20 h post-natural mating, 20 h_NM. Tissue anatomical regions of the female rabbit
reproductive tract (endocervix, Cvx; distal uterus, DistUt; proximal uterus, ProxUt; utero-tubal junction, UTJ;
distal isthmus, Isth; ampulla, Amp; and infundibulum, Inf). Fold changes relative to the reference group (UTJ)
are shown. Different letters (a–d) represent statistical differences between tissues (p < 0.05). Median [minimum,
maximum]; Figure S4. Changes in (A) ABHD2, (B) CTEN, (C) NGF, and (D) VCAN expression among different
tissues in the period 10–72 h (10, 24, 36, 68, and 72 h post-natural mating). Tissue anatomical regions of the
female rabbit reproductive tract (endocervix, Cvx; distal uterus, DistUt; proximal uterus, ProxUt; utero-tubal
junction, UTJ; distal isthmus, Isth; ampulla, Amp; and infundibulum, Inf). Fold changes relative to the reference
group (UTJ) are shown. Different letters (a–d) represent statistical differences between tissues (p < 0.05). Median
[minimum, maximum].

Author Contributions: Conceptualization, H.R.-M. and M.A.-R.; methodology, M.L.-B. and M.A.-R.; software,
J.G., A.J.-M., and M.A.-R.; validation, A.J.-M.; formal analysis, J.G., A.J.-M., and M.A.-R.; investigation, J.G. and
C.A.M.; resources, H.R.-M., M.L.-B., and M.A.-R.; data curation, J.G.; writing—original draft preparation, J.G.;
writing—review and editing, A.J.-M., C.A.M., H.R.-M., M.L.-B., and M.A.-R.; visualization, J.G.; supervision,
M.L.-B. and M.A.-R.; project administration, M.A.-R.; funding acquisition, H.R.-M., M.L.-B., and M.A.-R. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Research Council FORMAS, Stockholm (Project 2017-00946 and Project
2019-00288); The Swedish Research Council (Vetenskapsrådet, VR; project 2015-05919); and the Juan de la Cierva
Incorporación Postdoctoral Research Program (MICINN; IJDC-2015-24380). J.G. is supported by 2018 FI_B 00236.

Acknowledgments: We thank Annette Molbaek and Åsa Schippert from the genomic Core Facility at LiU for
expert assistance when running the bioanalyzer. We appreciate the kind support provided by Míriam Piles and
Oscar Perucho and the technical staff from Torre Marimon—Institut de Recerca i Tecnologia Agroalimentàries
(IRTA, Caldes de Montbui, Barcelona, Spain), and Annaïs Carbajal, Sergi Olvera-Maneu, and Mateo Ruiz-Conca
for their kind assistance in sample handling.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.

References

1. Petracci, M.; Soglia, F.; Leroy, F. Rabbit meat in need of a hat-trick: From tradition to innovation (and back).
Meat Sci. 2018, 146, 93–100. [CrossRef] [PubMed]

2. Bakker, J.; Baum, M.J. Neuroendocrine regulation of GnRH release in induced ovulators. Front. Neuroendocrinol.
2000, 21, 220–262. [CrossRef] [PubMed]

http://www.mdpi.com/2073-4425/11/7/758/s1
http://dx.doi.org/10.1016/j.meatsci.2018.08.003
http://www.ncbi.nlm.nih.gov/pubmed/30142510
http://dx.doi.org/10.1006/frne.2000.0198
http://www.ncbi.nlm.nih.gov/pubmed/10882541


Genes 2020, 11, 758 14 of 16

3. Ratto, M.H.; Berland, M.; Silva, M.E.; Adams, G.P. New insights of the role of B-NGF in the ovulation
mechanism of induced ovulating species. Reproduction 2019, 157, R199–R207. [CrossRef] [PubMed]

4. Parada-Bustamante, A.; Oróstica, M.L.; Reuquen, P.; Zuñiga, L.M.; Cardenas, H.; Orihuela, P.A. The role of
mating in oviduct biology. Mol. Reprod. Dev. 2016, 83, 875–883. [CrossRef]

5. Roca, J.; Martínez, S.; Orengo, J.; Parrilla, I.; Vázquez, J.M.; Martínez, E.A. Influence of constant long days
on ejaculate parameters of rabbits reared under natural environment conditions of Mediterranean area.
Livest. Prod. Sci. 2005, 94, 169–177. [CrossRef]

6. Morton, D.B.; Glover, T.D. Sperm transport in the female rabbit: The role of the cervix. J. Reprod. Fertil. 1974,
38, 131–138. [CrossRef]

7. Timothy Smith, T.; Nothnick, W.B. Role of Direct Contact between Spermatozoa and Oviductal Epithelial
Cells in Maintaining Rabbit Sperm Viability. Biol. Reprod. 1997, 56, 83–89. [CrossRef]

8. Suarez, S.S. Interactions of Gametes with the Female Reproductive Tract. Cell Tissue Res. 2016, 363, 185–194.
[CrossRef]

9. Overstreet, J.W.; Cooper, G.W. Sperm Transport in the Reproductive Tract of the Female Rabbit: I. The Rapid
Transit Phase of Transport. Biol. Reprod. 1978, 19, 101–114. [CrossRef]

10. Overstreet, J.W.; Cooper, G.W. Sperm Transport in the Reproductive Tract of the Female Rabbit: II.
The Sustained Phase of Transport. Biol. Reprod. 1978, 19, 115–132. [CrossRef]

11. Rodriguez-Martinez, H.; Tienthai, P.; Atikuzzaman, M.; Vicente-Carrillo, A.; Rubér, M.; Alvarez-Rodriguez, M.
The ubiquitous hyaluronan: Functionally implicated in the oviduct? Theriogenology 2016, 86, 182–186.
[CrossRef] [PubMed]

12. Kresse, H.; Schnherr, E. Proteoglycans of the extracellular matrix and growth control. Tissue 2001, 189,
266–274. [CrossRef] [PubMed]

13. Wight, T.N. Provisional Matrix: A Role for Versican and Hyaluronan. Matrix Biol. 2017, 60, 38–56. [CrossRef]
14. Kawashima, H.; Hirose, M.; Hirose, J.; Nagakubo, D.; Plaas, A.H.K.; Miyasaka, M. Binding of a large

chondroitin sulfate/dermatan sulfate proteoglycan, versican, to L-selectin, P-selectin, and CD44. J. Biol. Chem.
2000, 275, 35448–35456. [CrossRef] [PubMed]

15. Pincus, G.; Enzemann, E.V. Fertilisation in the Rabbit. J. Exp. Biol. 1932, 9, 403–408.
16. Dukelow, W.R.; Williams, W.L. Survival of Capacitated Spermatozoa in the Oviduct of the Rabbit.

J. Reprod. Fert. 1967, 14, 477–479. [CrossRef]
17. Robertson, S.A. Seminal plasma and male factor signalling in the female reproductive tract. Cell Tissue Res.

2005, 322, 43–52. [CrossRef]
18. Druart, X. Sperm interaction with the female reproductive tract. Reprod. Domest. Anim. 2012, 47, 348–352.

[CrossRef]
19. Alvarez-Rodriguez, M.; Atikuzzaman, M.; Venhoranta, H.; Wright, D.; Rodriguez-Martinez, H. Expression of

immune regulatory genes in the porcine internal genital tract is differentially triggered by spermatozoa and
seminal plasma. Int. J. Mol. Sci. 2019, 20, 513. [CrossRef]

20. Levi-Montalcini, R. The nerve growth factor 35 years later. Science 1987, 237, 1154–1162. [CrossRef]
21. Maranesi, M.; Zerani, M.; Leonardi, L.; Pistilli, A.; Arruda-Alencar, J.; Stabile, A.M.; Rende, M.; Castellini, C.;

Petrucci, L.; Parillo, F.; et al. Gene Expression and Localization of NGF and Its Cognate Receptors NTRK1
and NGFR in the Sex Organs of Male Rabbits. Reprod. Domest. Anim. 2015, 50, 918–925. [CrossRef] [PubMed]

22. Garcia-Garcia, R.M.; Masdeu, M.d.M.; Sanchez Rodriguez, A.; Millan, P.; Arias-Alvarez, M.; Sakr, O.G.;
Bautista, J.M.; Castellini, C.; Lorenzo, P.L.; Rebollar, P.G. β-nerve growth factor identification in male rabbit
genital tract and seminal plasma and its role in ovulation induction in rabbit does. Ital. J. Anim. Sci. 2018, 17,
442–453. [CrossRef]

23. Casares-Crespo, L.; Fernández-Serrano, P.; Vicente, J.S.; Marco-Jiménez, F.; Viudes-de-Castro, M.P. Rabbit
seminal plasma proteome: The importance of the genetic origin. Anim. Reprod. Sci. 2018, 189, 30–42.
[CrossRef]

24. Maranesi, M.; Petrucci, L.; Leonardi, L.; Piro, F.; Rebollar, P.G.; Millán, P.; Cocci, P.; Vullo, C.;
Parillo, F.; Moura, A.; et al. New insights on a NGF-mediated pathway to induce ovulation in rabbits
(Oryctolagus cuniculus). Biol. Reprod. 2018, 98, 634–643. [CrossRef] [PubMed]

25. Miller, M.R.; Mannowetz, N.; Iavarone, A.T.; Safavi, R.; Gracheva, E.O.; Smith, J.F.; Hill, R.Z.; Bautista, D.M.;
Kirichok, Y.; Lishko, P.V. Unconventional endocannabinoid signaling governs sperm activation via the sex
hormone progesterone. Science 2016, 352, 555–559. [CrossRef]

http://dx.doi.org/10.1530/REP-18-0305
http://www.ncbi.nlm.nih.gov/pubmed/30763273
http://dx.doi.org/10.1002/mrd.22674
http://dx.doi.org/10.1016/j.livprodsci.2004.10.011
http://dx.doi.org/10.1530/jrf.0.0380131
http://dx.doi.org/10.1095/biolreprod56.1.83
http://dx.doi.org/10.1007/s00441-015-2244-2
http://dx.doi.org/10.1095/biolreprod19.1.101
http://dx.doi.org/10.1095/biolreprod19.1.115
http://dx.doi.org/10.1016/j.theriogenology.2015.11.025
http://www.ncbi.nlm.nih.gov/pubmed/26768539
http://dx.doi.org/10.1002/jcp.10030
http://www.ncbi.nlm.nih.gov/pubmed/11748584
http://dx.doi.org/10.1016/j.matbio.2016.12.001
http://dx.doi.org/10.1074/jbc.M003387200
http://www.ncbi.nlm.nih.gov/pubmed/10950950
http://dx.doi.org/10.1530/jrf.0.0140477
http://dx.doi.org/10.1007/s00441-005-1127-3
http://dx.doi.org/10.1111/j.1439-0531.2012.02097.x
http://dx.doi.org/10.3390/ijms20030513
http://dx.doi.org/10.1126/science.3306916
http://dx.doi.org/10.1111/rda.12609
http://www.ncbi.nlm.nih.gov/pubmed/26392300
http://dx.doi.org/10.1080/1828051X.2017.1382315
http://dx.doi.org/10.1016/j.anireprosci.2017.12.004
http://dx.doi.org/10.1093/biolre/ioy041
http://www.ncbi.nlm.nih.gov/pubmed/29438491
http://dx.doi.org/10.1126/science.aad6887


Genes 2020, 11, 758 15 of 16

26. Machado, S.A.; Sharif, M.; Wang, H.; Bovin, N.; Miller, D.J. Release of Porcine Sperm from Oviduct Cells is
Stimulated by Progesterone and Requires CatSper. Sci. Rep. 2019, 9, 1–11. [CrossRef]

27. Martinez, C.A.; Alvarez-Rodriguez, M.; Wright, D.; Rodriguez-Martinez, H. Does the pre-ovulatory pig
oviduct rule sperm capacitation in vivo mediating transcriptomics of catsper channels? Int. J. Mol. Sci. 2020,
21, 1840. [CrossRef]

28. Miyazaki, Y.; Horie, A.; Tani, H.; Ueda, M.; Okunomiya, A.; Suginami, K.; Kondoh, E.; Baba, T.; Konishi, I.;
Shinomura, T.; et al. Versican V1 in human endometrial epithelial cells promotes BeWo spheroid adhesion
in vitro. Reproduction 2019, 157, 53–64. [CrossRef]

29. Alvarez-Rodriguez, M.; Martinez, C.; López-Béjar, M.; Rodríguez-Martinez, H. Abstracts. Seminal Plasma
Affects the Expression of the ABHD2 and VCAN Genes in the Sow Internal Genital Tract. In Proceedings
of the 23rd Annual Conference of the European Society for Domestic Animal Reproduction (ESDAR),
St. Petersburg, Russia, 19–22 September 2019; Volume 54 (Suppl. S3), p. 115.

30. Lo, S.H. C-terminal tensin-like (CTEN): A promising biomarker and target for cancer. Int. J. Biochem. Cell Biol.
2014, 51, 150–154. [CrossRef]

31. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res.
2001, 29, e45. [CrossRef]

32. Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria. Available online: https://www.r-project.org/ (accessed on 1 January 2020).

33. Pinheiro, J.; Bates, D.; DebRoy, S.; Sarjar, D.; Team, R.C. Nlme: Linear and Nonlinear Mixed Effects
Models. R Package Version 3.1-145. Available online: https://cran.r-project.org/package=nlme (accessed on
1 January 2020).

34. Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50,
346–363. [CrossRef] [PubMed]

35. Braden, A.W.H. Distribution of sperms in the genital tract of the female rabbit after coitus. Aust. J. Biol. Sci.
1953, 6, 693–705. [CrossRef] [PubMed]

36. El-Banna, A.A.; Hafez, E.S.E. Sperm transport and distribution in rabbit and cattle female tract. Fertil. Steril.
1970, 21, 534–540. [CrossRef]

37. Castellini, C.; Mattioli, S.; Dal Bosco, A.; Collodel, G.; Pistilli, A.; Stabile, A.M.; Macchioni, L.;
Mancuso, F.; Luca, G.; Rende, M. In vitro effect of nerve growth factor on the main traits of rabbit
sperm. Reprod. Biol. Endocrinol. 2019, 17, 93. [CrossRef]

38. Sanchez-Rodriguez, A.; Paloma, A.; Arias-Alvarez, M.; Rebollar, P.G.; Bautista, J.M.; Lorenzo, P.L.;
García-García, R.M. Recombinant rabbit beta nerve growth factor production and its biological effects
on sperm and ovulation in rabbits. PLoS ONE 2019, 14, e0219780.

39. Sanchez-Rodriguez, A.; Arias-Alvarez, M.; Timón, P.; Bautista, J.M.; Rebollar, P.G.; Lorenzo, P.L.;
Garcia-Garcia, R.M. Characterization of β-Nerve Growth Factor-TrkA system in male reproductive tract
of rabbit and the relationship between β-NGF and testosterone levels with seminal quality during sexual
maturation. Theriogenology 2019, 126, 206–213. [CrossRef]

40. Garcia-Garcia, R.M.; Alvarez, M.A.; Sanchez-Rodriguez, A.; Lorenzo, P.L.; Rebollar, P.G. Role of Nerve
Growth Factor in the Reproductive Physiology of Female Rabbits: A Review. Theriogenology 2020. [CrossRef]

41. García García, R.M.; Arias Álvarez, M.; Sánchez Rodríguez, A.; García Rebollar, P.; Lorenzo, P.L. Abstracts.
NGF systems is differentially expressed in the ovary, oviduct and uterus of rabbit does although independent
of serum hormonal levels. In Proceedings of the 22nd Annual Conference of the European Society for
Domestic Animal Reproduction (ESDAR), Córdoba, Spain, 27–29 September 2018; Volume 53 (Suppl. 2), p. 88.

42. Greenwald, G.S. A study of the transport of ova through the rabbit oviduct. Fertil. Steril. 1961, 12, 80–95.
[CrossRef]

43. Pei, Y. Effect of nerve growth factor (NGF) on the development of preimplantation rabbit embryos in vitro.
Vet. Res. Commun. 2010, 34, 11–18. [CrossRef]

44. Prencipe, G.; Minnone, G.; Strippoli, R.; De Pasquale, L.; Petrini, S.; Caiello, I.; Manni, L.; De Benedetti, F.;
Bracci-Laudiero, L. Nerve Growth Factor Downregulates Inflammatory Response in Human Monocytes
through TrkA. J. Immunol. 2014, 192, 3345–3354. [CrossRef]

http://dx.doi.org/10.1038/s41598-019-55834-z
http://dx.doi.org/10.3390/ijms21051840
http://dx.doi.org/10.1530/REP-18-0333
http://dx.doi.org/10.1016/j.biocel.2014.04.003
http://dx.doi.org/10.1093/nar/29.9.e45
https://www.r-project.org/
https://cran.r-project.org/package=nlme
http://dx.doi.org/10.1002/bimj.200810425
http://www.ncbi.nlm.nih.gov/pubmed/18481363
http://dx.doi.org/10.1071/BI9530693
http://www.ncbi.nlm.nih.gov/pubmed/13126047
http://dx.doi.org/10.1016/S0015-0282(16)37622-1
http://dx.doi.org/10.1186/s12958-019-0533-4
http://dx.doi.org/10.1016/j.theriogenology.2018.12.013
http://dx.doi.org/10.1016/j.theriogenology.2020.01.070
http://dx.doi.org/10.1016/S0015-0282(16)34028-6
http://dx.doi.org/10.1007/s11259-009-9325-1
http://dx.doi.org/10.4049/jimmunol.1300825


Genes 2020, 11, 758 16 of 16

45. Hung, S.Y.; Shih, Y.P.; Chen, M.; Lo, S.H. Up-regulated cten by FGF2 contributes to FGF2-mediated cell
migration. Mol. Carcinog. 2014, 53, 787–792. [CrossRef] [PubMed]

46. Lo, S.H.; Lo, T. Bin Cten, a COOH-terminal tensin-like protein with prostate restricted expression,
is down-regulated in prostate cancer. Cancer Res. 2002, 62, 4217–4221. [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/mc.22034
http://www.ncbi.nlm.nih.gov/pubmed/23625726
http://www.ncbi.nlm.nih.gov/pubmed/12154022
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Ethics Statement 
	Animals 
	Experimental Design 
	Mating and Semen Collection 
	Tissue Sample Collection 
	Quantitative PCR Analyses 
	Statistical Analyses 

	Results 
	Differential Gene Expression in the Rabbit Female Reproductive Tract 20 h after Natural Mating or Vaginal Infusion With Sperm-Free Seminal Plasma 
	Differential Gene Expression in the Rabbit Female Reproductive Tract from Ovulation (10 h Post-Mating) to up to 72 h Post-Mating 
	ABHD2 and CTEN Follow a Similar Expression Pattern in Tissues at 20 h Post-Mating 
	NGF Follows an Up-Reguation Wave Expression Pattern in a Post-Mating Time-Dependent Manner 
	Ovulated Follicles and Embryo Recovery 

	Discussion 
	Conclusions 
	References

