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Abstract

Although sled dogs are one of the most unique groups of dogs, their origin and evolution has 

received much less attention than many other groups. We applied a genomic approach to 

investigate their spatiotemporal emergence, by sequencing the genomes of ten modern Greenland 

sled dogs, a ~9500 year old Siberian dog associated with archaeological evidence for sled 

technology, and a ~33,000 year old Siberian wolf. We found significant genetic similarity between 

the ancient dog and modern sled dogs. We detect gene flow from Pleistocene Siberian, but not 

modern American wolves, to present-day sled dogs. The results indicate that the major ancestry of 

modern sled dogs traces back to Siberia, where sled dog specific haplotypes of genes that 

potentially relate to Arctic adaptation were established by 9500 years ago.

Despite decades of studies, consensus is yet to be reached on when and where dogs were 

first domesticated, and when they were first deliberately used in many of the roles they 

exhibit today. In Siberia, late Upper Paleolithic artifacts of carved bone, antler and ivory, 

similar to tools used by modern Inuit for securing dog harness straps, suggest ancient origins 

of dog sledding (1). Furthermore, archeological findings from Zhokhov Island provide 

evidence of sled technology and dogs by the Sumnagin Mesolithic Culture ~9-8000 years 

ago (1–3) (Fig. S1), offering an opportunity to use genomics to further our understanding of 

early dog domestication and the origin of sled dogs.

We generated nuclear genomes from a dog mandible present at this site (“Zhokhov”, 9.6x 

coverage), dated to 9524 cal years before present (YBP) (Fig. 1A and Fig. S2) and a 

Siberian Pleistocene wolf mandible (“Yana”, 4.7x coverage), dated to 33,019.5 cal YBP 

(Fig. 1A and Fig. S3). In addition, we sequenced 10 modern Greenland sled dog genomes, a 

dog best described as an indigenous landrace breed, used for hunting and sledging by Inuit. 



Samples consist of two individuals from each of five geographically diverse localities (Fig. 

1A), thus providing a broad representation of the indigenous dog diversity.

We analysed our data alongside genomes from 114 geographically and genetically diverse 

canids (Table S1), using whole-genome pairwise distances, principal component analysis 

(PCA), Treemix (4) admixture graphs and D-statistics (Fig. 1). Yana appeared alongside 

wolves (Figs. 1B and 1C), while Zhokhov was found most closely related to dogs. 

Specifically, Zhokhov was most similar to modern sled dogs (Greenland sled dogs, Alaskan 

Malamutes, Alaskan and Siberian huskies) and American pre-European-contact dogs 

(PCDs), best illustrated by the ~2x Port au Choix dog from Maritime Archaic cultural 

context ~4000 YBP (3). Unsupervised clustering analyses with NGSadmix (4) (Fig. S6) 

grouped modern domestic dogs into four clusters: African, European, Asian, and sled dogs 

including Zhokhov. These relationships were confirmed by an admixture graph, where Yana 

was more closely related to a Pleistocene wolf from Taimyr Peninsula than to modern 

wolves, whereas Zhokhov represents a lineage that diverged from the ancestor of present-

day sled dogs (Figs. 1C and S8-S9). This suggests genetic continuity in Arctic dog breeds 

for at least the past ~9500 years, setting a lower bound on the origin of the sled dog lineage.

Next, D-statistics indicated an excess of allele sharing between both Yana/Taimyr and PCDs/

Zhokhov/sled dogs (Figs. 1D and S14), corroborating previous reports (3, 5). Importantly, 

this suggests the admixture occurred between Pleistocene wolves and the ancestors of PCDs, 

sled dogs and Zhokhov.

Previous studies have demonstrated an association between Canine Transmissible Venereal 

Tumour (CTVT), sled dogs and especially PCDs (3). Here, we evaluated the relationship 

between Zhokhov, two CTVT genomes (Table S1), dogs and wolves using f3 statistics and 

phylogenetic analysis. Recent analyses of exome data suggest that CTVT expanded across 

Eurasia ~6000 years ago (6), thus reducing the likelihood that this transmissible cancer 

originated in the Americas. In our study, both the phylogenetic analysis (Fig. S9) and f3 

statistics (Fig. S10) placed the CTVT genomes closer to PCDs than to sled dogs or Zhokhov. 

These results imply that (i) the basal dog lineage that led to PCDs (3) occurred in Eurasia 

~6000 years ago, and/or (ii) multiple introductions of PCD-like dogs to the Americas.

We employed NGSadmix, admixture analyses and D-statistics (Fig. S6-S8, S11-S15) to 

evaluate gene flow and shared ancestry between Zhokhov, modern dogs and wolves. We 

found no significant gene flow between any sled dog (including Zhokhov) and modern 

American-Arctic wolf populations when compared to the Eurasian wolf (Fig. S15), thus 

suggesting that gene flow from modern wolves has not contributed to the sled dog gene pool 

within the past 9500 years. This result was surprising given genetic evidence for post 

domestication admixture between other wolves and dog breeds (5, 7). Furthermore, 

ethnographic evidence from Greenland indicates that, at least historically, dog-wolf matings 

were not uncommon (8). If true, the lack of gene flow from modern American-Arctic wolves 

into sled dogs implies selection against hybrids.

The clustering and admixture results show gene flow between some sled dogs and other 

modern dog breeds (Fig. 1C, Fig. S6-S8). We further explored this by comparing pairs of 



sled dogs to Zhokhov using D-statistics (Fig. 2A). While pairs of Greenland sled dogs are 

symmetrically related to Zhokhov (D~0) indicating a lack of admixture, comparisons 

involving non-Greenland sled dogs were not always consistent with the null hypothesis of no 

admixture. D-statistics and admixture analyses (Figs. 2B and S13) indicated that non-

Greenland sled dogs carry ancestry from non-sled dogs and that Greenland sled dogs are the 

least admixed. These results imply that Greenland sled dogs (i) have largely been kept 

isolated from contact with other dog breeds, and (ii) that their lineage traces more genomics 

ancestry to Zhokhov-like dogs relative to other dog breeds. Isolation of Greenland sled dogs 

was supported by inference of their historical effective population size (Fig. S16), which 

showed Greenland sled dogs had a relatively stable population size until a severe bottleneck 

~850 years ago. The timing of the bottleneck is consistent with the colonization of 

Greenland by Inuit (9), suggesting isolation in Greenland ever since.

Numerous generations in the Arctic environment and as draft animals may have provided a 

unique selection pressure on sled dogs. To detect putative signals of positive selection, we 

used Population Branch Statistics (PBS) (10), to scan for genomic regions highly 

differentiated in modern sled dogs relative to non-sled dogs (hereafter, other dogs) and 

wolves. We computed these statistics on modern genomes of 17 sled dogs, 61 other dogs and 

30 wolves (Table S1). A sliding window analysis revealed several genomic regions with high 

PBS values, hinting at selection in sled dogs (Fig. 3A). We took an outlier approach and 

focused on the most extreme values of the empirical distribution (above 99.95th percentile). 

For each of these outlier regions (Table S4), we identified overlapping genes and compared 

haplotypes across samples.

Enrichment analysis (4) on genomic regions with high PBS values (above 99.95th percentile) 

identified three gene ontology terms that were overrepresented (Table S6), namely gamma-

aminobutyric acid secretion (GO:0014051, p=0.119), calcium ion import (GO:0070509, 

p=0.119), and calcium ion transmembrane transport (GO:0070588, p=0.382). To investigate 

further, we focused on eight genomic regions that are highly differentiated in sled dogs, and 

three where other dogs differ from sled dogs and wolves (Figs. 3A and S18), and validated 

the autosomal regions with a cross-population composite likelihood ratio statistic (5) (Fig. 

S21). In the differentiated regions, we focused on two sets of genes, (i) genes where 

Zhokhov carries the same haplotype as the modern sled dogs and (ii) genes involved in 

adaptation to different diets.

TRPC4 is highly differentiated in sled dogs and the putatively selected haplotype bears a 

striking similarity to Zhokhov (Figs. 3A and B). TRPC4 is a transient receptor potential 

(TRP) channel protein that plays an important role in vasorelaxation and lung microvascular 

permeability (11). It is also involved in a temperature sensitivity pathway (12, 13), where it 

interacts with TRPV2, which is also highly differentiated in sled dogs (99.8th PBS 

percentile, Table S4 and Fig. S19A), and codes for temperature and potentially pain 

receptors (14). Several related thermo-TRP sensors in the same pathway - calcium ion 

transmembrane transport - have been previously reported to be under selection in cold-

adapted woolly mammoths (15), which suggests convergent evolution in Arctic adaptation.



Another highly differentiated gene in sled dogs, CACNA1A (Fig. 3A and C), is a calcium 

channel subunit that plays an essential role in skeletal muscle contraction (16). Further, 

CACNA1A has been reported to be under positive selection in humans - the Bajau sea 

nomads (17), where it is involved in hypoxia adaptation (18), indicating a possible role 

managing exercise-induced hypoxia in sled dogs. Altogether, we hypothesize that the 

TRPC4, TRPV2 and CACNA1A genes are involved in functions beneficial to physical 

activity in the Arctic. If so, given that the differentiated haplotypes are also found in 

Zhokhov (Figs. 3A, B and S19A), any advantages they confer would have been important to 

dogs in the Arctic ~9500 YBP.

Most domestic dogs are adapted to starch-rich diets via significant increases in AMY2B 
copy numbers and strong positive selection for a dog-specific MGAM haplotype (19). 

Consistent with previous findings (20), we observed that sled dogs carry substantially fewer 

AMY2B copies than other dog breeds (Fig. S20). Interestingly, we also found that MGAM 
and AMY2B are the regions of the genome with lowest PBS, suggesting high differentiation 

of other dogs relative to sled dogs and wolves (Fig. 3A). Because negative PBS can arise 

under different demographic scenarios, we confirmed these observations by computing PBS 

with other dogs as the focal population (Fig. S18). Indeed, modern sled dogs and Zhokhov 

are among the only dogs in our dataset that carry the ancestral MGAM haplotype found at 

high frequency in wolves (Figs. 3C and S18). Therefore, our observations suggest sled dogs 

do not carry the genetic adaptations to starch rich diets seen in other dog breeds.

In contrast, sled dogs harbor unique haplotypes of genes involved in coping with high intake 

of fatty acids. SLC25A40, a mitochondrial carrier protein involved in clearing triglycerides 

from the blood (21), and APOO, an Apolipoprotein gene involved in regulating high levels 

of fat and fatty acid metabolism (22), are both highly differentiated in sled dogs (Figs. 3A). 

Interestingly, the derived haplotypes of both genes are absent in Zhokhov, indicating the 

haplotypes are unique to modern sled dogs and post-date their common ancestors with 

Zhokhov (Figs. S19B and S19E). As another example of convergent evolution, another gene 

of the Apolipoprotein family, APOB, is reported to be under selection in polar bears, 

possibly as a result of adaptation to fat rich diets and clearance of cholesterol from the blood 

(23). Overall, similar adaptations to high intake of fatty acids have been described in the 

Inuit and other Arctic human populations (24, 25), thus our observations suggest that sled 

dogs adapted to a fat rich and starch poor diet, echoing the dietary adaptations of the Arctic 

human cultures they co-existed with.

Bone composition of polar bears and reindeer consumed at the Zhokhov site indicate an 

extensive hunting range and transport of large body parts back to camp (26). Further, 

abundant obsidian tools found at the Zhokhov site reveal movement of obsidian across 

~1500 km to the site (3). Together, they indicate significant long-distance travel and 

transportation of resources, in which dog sledding would have been highly advantageous if 

not necessary. Putative sled remains and our genomic analyses of a 9500 years old dog from 

the Zhokhov site indicate that tradition and key genomic variation that define modern sled 

dogs, were established in the Northeast Asian Arctic over 9500 years ago. Our results imply 

that the combination of these dogs with the innovation of sled technology facilitated human 

subsistence since the earliest Holocene in the Arctic.
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Fig. 1. Geographic location of the samples and overall genetic affinities.
(A) Identity by State pairwise distances between Zhokhov and present-day dogs (Table S1), 

geographic affiliation of dogs and archaeological sites. Color scale indicates genetic distance 

between Zhokhov and each sample. Circles and triangles represent modern and ancient dogs, 

respectively. Stars show Zhokhov and Yana sites. (B) Principal Component Analysis using 

whole-genome data (2,200,623 transversion sites) on all samples. (C) Treemix admixture 

graph built using whole genome data (766,082 transversion sites) on a dataset consisting of 

66 canids merged into 15 groups according to their geographic location and admixture 

profile (Table S1 and Fig. S6). Colors indicate main groups as in panel B. Arrows show 

inferred admixture edges colored by migration weight. (D) D-statistic of the form D(H1, 

Boxer dog; Taimyr/Yana, Andean fox) testing for Pleistocene wolf gene flow in ancient and 

modern dogs, testing whether samples share more alleles with Taimyr (x-axis) or Yana (y-

axis) wolves when compared to the boxer dog. Color indicates the type of sample in H1. 

Points show the D-statistic, while horizontal and vertical lines show 3 standard errors for the 

test with the Taimyr (x-axis) and Yana (y-axis), respectively. The results obtained from both 

ancient wolves fall along the diagonal, suggesting they are symmetrically related to all dogs.



Fig. 2. Relationships between Zhokhov and present-day sled dogs (sled dogs).
(A) D-statistics testing the relationships between pairs of sled dogs and Zhokhov. Cell colors 

indicate the Z-scores obtained from the test D(dog1, dog2; Zhokhov, Andean fox), where 

dog1 and dog2 are all possible pairs of sled dogs. Comparisons involving pairs of Greenland 

sled dogs and non-Greenland sled dogs resulted in significant deviations from H0 (|Z|>3). 

(B) D-statistics showing that sled dogs that are significantly further from Zhokhov compared 

to Greenland sled dog Aasiaat 2 (y-axis: D(Greenland sled dog Aasiaat 2, H2; Zhokhov, 

Andean fox)) also show evidence of significant gene flow from other dogs (x-axis: 

D(Greenland sled dog Aasiaat 2, H2; German shepherd dog, Andean fox)). Points indicate 

the D-statistic, while horizontal and vertical lines indicate 3 standard errors for the x- and y-

axis, respectively. We considered the test to be significant for gene-flow when these lines do 

not overlap with the dotted line (|Z|>3).



Fig. 3. Adaptation.
(A) Manhattan plot of the PBS values (y-axis) in windows of 100 kilo-base pairs (kb) using 

a 20 kb slide across chromosomes (x-axis). Data points between the 20th and 80th percentile 

of the empirical distribution are not plotted and dashed red lines show the 99.95th and 0.05th 

percentiles. Names of genes within the highest peaks are shown, with asterisks representing 

no overlap with genes. We note that other genes not displayed in the figure can overlap the 

outlier regions, a full list can be found in Table S4-5. Haplotype structures for TRPC4 (B), 

CACNA1A(C) and MGAM (D). Rows represent individuals, columns polymorphic 

positions in the dog genome. Cells are colored by genotype: dark gray (alternative allele 

homozygous), light gray (heterozygous) and white (reference allele homozygous). The row 

height for ancient individuals was increased to facilitate visualization. Zhokhov is 

highlighted with a red asterisk. SDs is used as an acronym for sled dogs.
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