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Abstract 

In this contribution we synthesized ternary CuGaS2-TiO2-Pt materials. The semiconductor 

components were surface functionalized with mercapto-alifatic acids to drive their linking 

and were platinized prior to or after contact between the semiconductors. The corresponding 

samples were utilized in the photo-production of hydrogen using methanol as a sacrificial 

agent. The testing under UV and visible illumination conditions together with the calculation 

of the true quantum efficiency of the process demonstrate the outstanding performance of 

these ternary materials under sunlight operation. Optimum activity was achieved for samples 

having a 3 to 5 wt % of the chalcogenide and a selective interaction of the noble metal with 

the major oxide component. The physico-chemical characterization and particularly the use 

of photoluminescence spectroscopy showed that photo-activity is controlled by charge 

separation under illumination, which drives to charge location of electrons and holes in 

different components of the powders and the efficient use of charge carriers in the chemical 

reaction. 

Introduction 

The efficient use of solar radiation is an important challenge in the quest for a new economy 

based in green and renewable technologies. In this scenario, hydrogen appears as an ideal 

energy vector owing to its high energy density, its extensive consolidated use in the chemical 

industry, and its potential eco-friendly production through photocatalysis using solar light and 

bio-molecules [1-7]. 
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While bare titania and titania-based oxides have some hydrogen photo-production activity 

[8], the incorporation of noble metal co-catalyst boosts hydrogen generation rates several 

orders of magnitude [1,4,9,10-18]. Among noble metals, platinum is the most studied and 

used co-catalyst mainly due to its highest work function which drives to a stronger electron 

transfer with titania, and results in the lowest energy for proton reduction [18]. Noble metal 

promotion of hydrogen photo-production relies in a number of physico-chemical phenomena 

and catalyst parameters, including particle size and shape of the noble metal, electron-

acceptor properties of the metal phase itself as well as of the charge separation properties of 

the metal-oxide interface. All these physico-chemical properties can have direct and 

beneficial effects in charge handling and, in turn, can impact the charge recombination 

process in a photocatalytic solid [19-32]. 

An important weakness of titania based photocatalysts is its wide band gap, which limits light 

absorption to the UV range [1-4,6]. To correct this flaw, titania can be combined with a light 

absorption material having a band gap in the visible range of the solar spectrum. Owing to 

their exceptional light absorption properties, non-toxic composition and environmentally 

benign character, several copper chalcogenides has been used to take full advantage of solar 

energy [33]. Specifically some copper chalcogenides have been used for solar light driven 

photo-production of hydrogen, rendering acceptable rates when promoted with Pt and other 

noble metals [34,35]. The combination of copper chalcogenides with titania-based materials 

incorporating a noble metal co-catalyst seems thus a promising composite system for 

achieving maximum profit from solar photons. However, to maximize activity, such a 

complex system, titania – copper chalcogenide – noble metal, needs to be obtained by 

properly assembling the three components. 

Here, we study the photo-catalytic properties toward hydrogen photo-production of a titania-

based system promoted by both CuGaS2 (CGS) and Pt. We test the photo-production of 



hydrogen using methanol as a sacrificial agent [4-6] and considering different amounts of 

CGS. We analyze the Pt contact with the different semiconductor phases and demonstrate 

that the optimum activity is achieved when Pt is preferentially in contact with the oxide 

semiconductor. We further present a detailed study of the UV and visible contributions to the 

hydrogen photogeneration, in order to understand whether a potential activity enhancement 

under sunlight excitation can be grounded in the properties of the titania support, the 

chalcogenide or both. In this direction, we calculate the true quantum efficiency of the photo-

process according to the IUPAC guidelines, requiring; i) the full analysis of the optical 

properties of the catalysts at the liquid reaction medium, as well as ii) the modelling of the 

light-matter interaction at the reactor where catalytic measurements are carried out [36]. The 

work shows the outstanding properties of the materials for full use of UV and visible photons 

of the solar light. This indicates the suitability of the Pt-promoted CuGaS2-TiO2 system for 

optimum profiting of solar light as the energy source for the settlement of a green and 

economically-viable pathway for hydrogen production using sacrificial molecules from 

biomass. The characterization of the materials shows that charge handling by the composite 

system is crucial in shaping the catalytic properties of the composite system under all 

illumination conditions tested. 

Material and methods 

Preparation and chemical composition of catalysts 

Materials used as precursors, solvents and other functionalities in the synthetic procedures are 

described in the supporting information section. 

Synthesis of CGS nanocrystals (NCs): 1 mmol of copper(II) acetylacetonate (Cu(acac)2) and 

1 mmol of Ga(III) acetylacetonate (Ga(acac)3) together with 3.5 mmol of trioctylphosphine 

oxide (TOPO) were mixed with 10 mL of oleylamine (OAm) upon magnetic stirring. After 



degassing at 90 °C for 60 min under vacuum, an argon atmosphere was introduced and the 

reaction mixture was heated to 270 °C. At 150 °C, 1.12 mmol (0.25 mL) of dodecanothiol 

(DDT) and 7.4 mmol (1.75 mL) of tert-dodecanothiol (t-DDT) were injected, which changed 

the color of the solution from dark blue to clear yellow. While increasing temperature, the 

solution color further changed to clear brown, indicating the NC nucleation, and dark-brown 

at 250 °C. The mixture was allowed to react at 270 °C for 30 min and afterwards the heating 

mantle was removed to allow the solution to cool down naturally. CGS NCs were isolated by 

adding 5 mL of acetone and centrifuging at 5700 rpm for 5 min. The supernatant was 

discarded and the precipitate was redispersed in 5 mL of hexane. Additional purification steps 

were performed following the same procedure. Finally, NCs were redispersed in 5 mL of 

hexane for later use. 

11-Mercaptoundecanoic acid (MUA) ligand exchange: 1 mL of a CGS NCs solution 

(20 mg/mL in hexane) was mixed with 1 mL of a MUA solution (4 mmol in 10 mL of 

methanol) at pH 10, adjusted using tetramethylammonium hydroxide (TMAOH). The 

resulting bi-phase solution was shaken and sonicated for 15 min. Afterwards, the upper part 

was removed and 5 mL of fresh acetone was added. This step was followed by centrifugation 

for 5 min at 5000 rpm. The obtained precipitate was redispersed in 1 mL of methanol for later 

use. 

Titanium dioxide (TiO2) nanoparticles (NPs): TiO2 NPs were prepared using a 

microemulsion preparation method with the help of n-heptane as organic media, Triton X-

100 and hexanol as surfactant and co-surfactant, respectively. The titania reference was 

obtained using a water in oil microemulsion and titanium tetraisopropoxide as precursor. 

Water/Ti and water/surfactant molar ratios were, respectively, 110 and 18 for all samples. 

The resulting mixture was stirred for 24 h, centrifuged, and the separated solid precursors 



rinsed with methanol and dried at 110 °C for 12 h. After drying, the solid precursors were 

subjected to a heating ramp (2 °C min
−1

) up to 500 °C, maintaining this temperature for 2 h. 

Platinization: Pt was deposited on the surface of CGS, TiO2 or both CGS/TiO2 using 

H2PtCl6 as precursor. First, the material was suspended by stirring in a deionized water 

solution for 30 min. After that, the proper quantity (1 wt % of Pt on metal basis) of the Pt salt 

was added to the solution and kept on stirring along 5 min more. The reduction was carried 

out using a NaBH4 aqueous solution (Pt/NaBH4 molar ratio 1/5). The final solid was 

profusely rinsed with deionized water, collected by centrifugation and dried at 80 °C. 

3-Mercaptopropionic acid (MPA) functionalization: TiO2:Pt or TiO2 NPs (150 mg) were 

mixed with a H2O solution of 1 M MPA and 0.1 M H2SO4. The suspension was mixed for 

12 h to ensure ligands attachment. The obtained sample was labelled as MPA-TiO2(:Pt). 

Ternary nanocomposite formation: CGS-TiO2-Pt composites were obtained by introducing 

MPA-TiO2 (with or without Pt) powder (150 mg) in a methanol solution containing MUA-

CGS (with or without Pt) NCs (variable quantity) and sonicating the resulting suspension for 

at least 30 min. Afterwards, sample was precipitated by centrifuging and washed. The 

deposition of Pt over a specific support or in both leads to samples called CGS-TiO2:Pt; 

CGS:Pt–TiO2 and (CGS-TiO2):Pt. The CGS-TiO2:Pt series was analyzed in more detail. This 

series has samples labelled according to the nominal amount of CGS introduced: CGS1, 

CGS3; CGS5 and CGS8 stand for CGS-TiO2:Pt powders containing 1, 3, 5 and 8 wt% CGS. 

Characterization of catalysts 

X-ray diffraction (XRD) patterns were obtained on a Policristal X'Pert Pro PANalytical 

diffractometer using Ni-filtered Cu Kα radiation with a 0.02° step. Material particle sizes 

were estimated using the Scherrer formalism [37]. Nitrogen adsorption-desorption isotherms 

were measured on a Micromeritics ASAP 2010. UV–vis diffuse-reflectance spectroscopy 

experiments were performed on a Shimadzu UV2100 apparatus using Teflon as a reference 



[38]. Photoluminescence spectra were measured at room temperature on a Fluorescence 

Spectrophotometer Perkin Elmer LS50B. Specimens for transmission electron microscopy 

(TEM) characterization were prepared by drop casting the dispersions of NPs onto a 200 

mesh Cu grids with ultrathin carbon and formvar support films. TEM analyses were carried 

out on a ZEISS LIBRA 120, operating at 120 kV. High-resolution TEM (HRTEM) and 

scanning TEM (STEM) studies were carried out using a field emission gun FEI Tecnai F20 

microscope at 200 kV with a point-to-point resolution of 0.19 nm. High angle annular dark-

field (HAADF) STEM was combined with electron energy loss spectroscopy (EELS) in the 

Tecnai microscope by using a GATAN QUANTUM filter. X-ray photoelectron spectroscopy 

(XPS) analyses were carried out on a SPECS system equipped with an Al anode XR50 source 

operating at 150 W and a Phoibos 150 MCD-9 detector. The pressure in the analysis chamber 

was kept below 10
−7

 Pa. The area analyzed was about 2 mm × 2 mm. The pass energy of the 

hemispherical analyzer was set at 25 eV and the energy step was maintained at 1.0 eV. Data 

processing was performed with the Casa XPS program (Casa Software Ltd., UK). Binding 

energies were shifted according to the reference C 1s peak that was located at 284.8 eV. 

Chemical compositions were determined using atomic emission with inductive coupled 

plasma (ICP-AES) using an Optima 3300DV Perkin Elmer spectrometer. 

Description of the reactor 

Photocatalytic measurements at liquid medium were carried out using a batch pyrex (cutting 

absorption edge at ca. 290 nm) reactor as depicted in Fig. S1. The reactor contained a 3:7 v/v 

CH3OH/H2O mixture medium maintained at a constant temperature (20 ± 1 °C). The catalyst 

suspension (0.25–1 g L
−1

 concentration) was first degassed with an Ar stream for around 

20 min. Subsequently, the Ar flow was settled down to 10 mL min
−1

 and stabilized before 

reaction. Ar was used as carrier to displace reaction gases from the reactor to the detection 

system. The solution inside a reactor was irradiated using a Hg–Xe lamp (500 W) and 



dichroic filters (LOT Quantum Design) allowing exposure of the catalysis to the UV (280–

400 nm) or visible (420–680 nm) wavelength range. The reaction rates for hydrogen 

production were evaluated at 3 h from the start of the irradiation, where a pseudo-stationary 

situation is reached. The hydrogen rate was analyzed using on-line mass spectrometry 

(Onmistart 300). 

Calculation of quantum efficiency 

Quantum efficiency is defined, according to the IUPAC recommendation [36], as the ratio of 

the number of molecules reacting by the number of photon interacting with the sample. This 

equation takes into account that the transfer of two electrons is required to reduce two protons 

and produce one H2 molecule. The reaction rate of hydrogen production (r in equation (1)) 

was measured in the liquid phase reactors as detailed in the previous subsection. To 

determine the denominator, we obtained the solution of the radiative transfer equation (RTE) 

in the heterogeneous reactor [39]. 

Results and discussion 

The catalytic output of CGS-TiO2:Pt samples with the CGS component in the 1 to 8 wt % 

range is presented in Fig. 1. Catalytic results are presented using UV and visible illumination. 

The CGS-TiO2:Pt series was first analyzed as, according to the band positions of the 

composite system, electrons produced after charge separation under illumination would flow 

to the titania component (and subsequently to the noble metal) while holes would be 

accumulated in the CGS component [41]. Fig. S4 compares the catalytic output of the best 

sample included in Fig. 1 with other ternary configurations where Pt is selectively deposited 

in one of the components or in both randomly, i.e. CGS-TiO2:Pt; CGS:Pt–TiO2 and (CGS-

TiO2):Pt powders. We observed that the configuration presented in Fig. 1, CGS-TiO2:Pt, 

maximized activity. As mentioned, his point can be rationalized by considering the fact that 

at CGS-TiO2 interfaces, electrons will be driven to the oxide component. Thus, the presence 
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of Pt in the oxide surface will capture such electrons efficiently, particularly with respect to 

the capture process taking place if (Pt was) present on the chalcogenide. So, the CGS-TiO2:Pt 

configuration will improve significantly charge separation as discussed below. Note that the 

role of the linkers proving adequate component attachment in the CGS-TiO2:Pt configuration 

is important. The absence of linker between semiconductors in the preparation stage 

decreases the values of the CGS5 composition by ca. 1.8 times. Finally, Fig. S4 displays 

results from a long run utilizing the CGS5 sample, with time on stream up to 72 h. Under all 

illumination conditions tested here the material displayed a fairly stable catalytic activity. 

Fig. 1A demonstrates that the composite ternary system is able to display enhanced activity 

with respect to materials having a single semiconductor under all illumination conditions 

tested. This result already points out at an increased activity under sunlight illumination. To 

quantify this increase, we analyzed the UV and visible contributions to the quantum 

efficiency observable (Fig. 1B). The titania reference displayed relatively high values, above 

5.5 and 3.7 for, UV and visible light, respectively. These values compare reasonably well 

with previous reports concerning TiO2:Pt materials. Table 2 summarizes previous reports of 

true quantum efficiency for the aqueous alcohol photo-reforming process. For works using a 

noble metal (mostly Pt but also Pd) loading in the 0.5 to 1 wt % (similar to ours), quantum 

efficiency values in the 1.7–5.7% range for UV and around 1–2% for visible illumination 

were reported [15,42-44]. Higher quantum efficiency values were occasionally reported 

(see Table 2) only using samples containing higher noble metal (Pt, Ru) loading (above 

2.5 wt %) [45,46]. The CGS reference also presented catalytic activity. CGS activity was 

much lower than titania under UV and also reasonably low with respect to titania under 

visible light. Note that the above described conclusions consider comparisons in quantitative 

terms based on the measurement of the quantum efficiency, and a very different and 
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erroneous picture would evolve from the measurement of the reaction rates (compare, for 

example, panels A and B of Fig. 1). 

The quantum efficiency of ternary composite materials shows also an interesting behavior 

throughout the series of samples containing different amounts of CGS. The measurement of 

both the rate (Fig. 1A) and the optical properties of the solid-liquid solution (Fig. S3) allow to 

unveil a strongly different behavior as a function of the illumination nature. Under UV we 

observed an initial decay from the titania reference but a subsequent recovery of the quantum 

efficiency value was noticed. The CGS5 sample displayed a relatively close value (equal 

within experimental error) to the titania reference. Larger concentrations of CGS in the 

ternary composite system were detrimental to activity (Fig. 1B). As noted, a different 

behavior is presented under visible illumination. The already relatively good value presented 

by the titania reference is increased by more than 50% for the CGS3 and CGS5 samples. 

With the quantum efficiency measured under UV and visible illumination we calculated the 

precise value for a AM1.5 solar standard, obtaining 6.5 ± 0.9 for CGS3 and 5.9 ± 0.8 for 

CGS5. As summarized in Table 2, the maximum values reported for noble metal-promoted 

(i.e. including Pt, Pd, Au or Ru) titania samples are well below 3.5% [15,17,42-46]. So, the 

addition of small quantities of CGS (equal or below 5 wt %) to a platinized titania sample is 

able to boost significantly the quantum efficiency under sunlight. To our knowledge, the 

CGS3 and CGS5 samples provide the highest value reported up to date for the exploitation of 

sunlight. This comparison also includes the use of other supports more prone to facilitate the 

utilization of the visible contribution of sunlight such as carbon nitride or graphene supported 

samples promoted with noble metals do not render quantum efficiency values above 2% [47-

49]. 

To interpret their activity of the materials we thoroughly characterized them. Fig. 2 shows a 

representative TEM micrograph of the CGS NCs and their corresponding XRD, UV–vis, 

https://www-sciencedirect-com.recursos.biblioteca.upc.edu/science/article/pii/S0360319919341679#fig1
https://www-sciencedirect-com.recursos.biblioteca.upc.edu/science/article/pii/S0360319919341679#fig1
https://www-sciencedirect-com.recursos.biblioteca.upc.edu/science/article/pii/S0360319919341679#appsec1
https://www-sciencedirect-com.recursos.biblioteca.upc.edu/science/article/pii/S0360319919341679#fig1
https://www-sciencedirect-com.recursos.biblioteca.upc.edu/science/article/pii/S0360319919341679#tbl2
https://www-sciencedirect-com.recursos.biblioteca.upc.edu/science/article/pii/S0360319919341679#bib15
https://www-sciencedirect-com.recursos.biblioteca.upc.edu/science/article/pii/S0360319919341679#bib17
https://www-sciencedirect-com.recursos.biblioteca.upc.edu/science/article/pii/S0360319919341679#fig2


photoluminescence (PL) and FTIR spectra. TEM analysis showed the average size of the NP 

to be ca. 20 ± 10 nm. As displayed by XRD analysis, CGS NCs crystallized in the wurtzite 

phase (PDF 001-1280; space group P4132). EDX analysis showed the composition to match 

that of stoichiometric CGS with a 1:1 Cu:Ga ratio. UV–vis spectroscopy provided evidence 

that CGS NCs had a direct band gap at 2.5 eV, consistent with previous publications [33]. 

CGS NCs also displayed a broad PL peak characteristic of copper chalcogenide 

semiconductors and centered at around 2.9 eV. Finally, FTIR characterization pointed out 

that as-prepared CGS NCs contained significant amounts of organic ligands at their surface, 

as revealed by the presence of peaks at 2924 and 2830 cm
−1

 that correspond to C–H 

stretching (Fig. 2). This native surface organic ligand, most probably DDT according to 

previous reports [50] was displaced by MUA using a bi-phase, hexane-methanol, solution. 

FTIR spectrum of MUA-CGS displayed the characteristic absorbance peak of the carboxyl 

group at around 1695 cm
−1

, confirming the replacement of DDT by MUA moieties. 

Chemical analysis of CGSx samples provided a metal concentration of 0.4 mol. % for all co-

catalysts, which was equal to the formal one within an error of 4.2% for all samples. Cu and 

Ga content were also in accordance with the intended weight percentage within an error of 

5.6%. Fig. 3 displays the XRD pattern and the UV–vis spectrum of CGS-TiO2:Pt powders 

(the CGSx samples) and TiO2 reference. TiO2 NPs displayed an anatase crystal phase (PDF 

21-1272; space group I41/amd) and a primary particle size of ca. 12 nm as obtained from the 

fitting of the XRD pattern. The UV–vis spectra showed the decay characteristic of the oxide 

semiconductor, with a direct band gap of 3.34 eV [51]. The BET surface area of TiO2 dried 

powder, calculated from nitrogen adsorption-desorption isotherms was ca. 70 m
2
 g

−1
 (Table 

1). XRD patterns of the ternary composites prepared by mixing MPA-TiO2:Pt with different 

amounts of MUA-CGS were dominated by the anatase component, with the CGS 

contribution being only clearly visible for the composite containing an 8 wt % CGS (Fig. 3a). 
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Similarly, only for the composite containing the largest amount of CGS, CGS8, a significant 

contribution to the UV–vis spectrum was observed (Fig. 3b). As expected, the primary 

particle sizes and band gap values were not modified upon physically combining the two 

materials. Also, the position of the valence and conduction bands do not change significantly 

(values within experimental error although the valence band might present an uphill shift 

trend with CGS content of the composites) as measured by XPS (utilized together with the 

band gap values obtained from UV–visible spectroscopy). Moreover, as shown in Fig. S5 the 

absence of changes among samples in XRD and UV–visible spectra can be extended to post-

reaction specimens. This provides evidence that the materials are also stable under reaction 

conditions. 

The composite materials were further analyzed using high resolution electron 

microscopy. Fig. 4 shows HAADF-STEM and bright field TEM micrographs of the CGS5 

composite. In Fig. 4c a HRTEM of the nanocomposite clearly displays the TiO2 lattice 

fringes and small dark spots corresponding to Pt NPs on its surface. EELS composition maps 

clearly displayed a very homogeneous, at the NP level, distribution of TiO2 and CGS, with no 

evidences for phase separation between the two main components. Chemical species at the 

catalyst surface were also analyzed by XPS for the CGS5 powder. Fig. 5 shows the energy 

regions of O 1s, Ti 2p, Ga 2p, S 2p, Cu 2p and Pt 4d. As expected, Ti, Ga and Cu were 

present in just on oxidation state, Ti
4+

, Ga
3+

 and Cu
1+

, and three contributions were fitted to 

the O 1s region, corresponding to lattice oxygen in TiO2 and different oxygen-based surface 

species, such as adsorbed oxygen and OH
−
 groups. On the other hand, the Pt 4d region was 

resolved with three chemical states associated to Pt
4+

 (Pt 4d5/2 = 320.5 eV, 317.5 eV), Pt
2+

 (Pt 

4d5/2 = 315.0 eV) and Pt
0
 (Pt 4d5/2 = 312.5 eV) [52]. This may indicate a core-shell structure 

for the noble metal component, with an inner metallic layer and an outer oxidized layer. Such 

a structure has been shown to be beneficial for photo-activity [53]. 
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Fig. 6 displays photoluminescence profiles of the samples under UV (365 nm) and visible 

(425 nm) illumination. The UV spectrum of the TiO2 reference is dominated by two kinds of 

transitions corresponding to the annihilation of conduction band free electrons with trapped 

holes and valence band free holes with trapped electron. In our samples, these transitions are 

located, respectively, at ca. 425 and 475–550 nm [54,55]. The spectrum is clearly different to 

the pure chalcogenide reported here (Fig. 2) or by others [56] using UV excitation 

wavelengths. The catalysts show rather similar spectral shape to the anatase reference, the 

main component of the powders, indicating the similar recombination process(es) taking 

place after illumination in these two types of solids (Fig. 6A). Main changes among samples 

are restricted to the intensity of the photoluminescence and can be directly interpreted as a 

measure of the recombination of charge in the composites. A direct correlation between 

photoactivity (Fig. 1) and photoluminescence intensity (Fig. 6A) can be thus established 

under UV illumination. This indicates the critical role of charge handling among components 

which in turn drive catalytic behavior. 

For visible light excitation, photoluminescence spectra (Fig. 6B) show typical relatively weak 

signals associated to defect state(s) de-excitation over a decay curve corresponding to the 

excitation line [57,58]. Here some differences are encountered among samples and also with 

respect to the anatase reference. For CGS loadings below 5%, it appears that the presence of 

the chalcogenide produces a strong effect decreasing intensity for the peak at 610 to a larger 

extent than in the one at ca. 650 nm. This may be caused by the surface location of the first, 

the potential role of hole related species (depleted from titania in composite samples) in the 

recombination for 610 nm and may other possibilities. For the CGS8 sample the peak near 

610 nm shows increasing intensity with respect to other composite samples, which seems 

directly associated to an enhancement of the recombination process of the corresponding 

titania-related defect states. In any case the important point is that the chalcogenide presence 
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in the composite can allow to quench defect states involved in recombination of charge and 

presumably detrimental for activity [54,55,57,58]. The important catalytic role of defects in 

(nanosized) titania as charge location (and in specific cases recombination) centers is 

therefore confirmed by photoluminescence [2]. The quenching of the photoluminescence 

intensity and thus the positive effect in catalytic properties showed parallel behavior(s), 

indicating that under visible light the contact between components facilitates charge handling 

and separation taking place for charge generated in the anatase major component. In addition 

to this, visible light can excite the chalcogenide component which should also suffer the 

charge separation induced by the contact between the two semiconductors. Both effects 

would positively influence photo-activity. 

Thus, the presence of two components in the CGS-TiO2:Pt system has direct influence in 

charge separation and handling under UV and visible illumination, with direct consequences 

in photo-activity. After light absorption, the generated holes required for the activation of the 

alcohol are accumulated at the chalcogenide component and produce protons which (previous 

diffusion through the water surface layer present in the materials) can be recombined to 

generate hydrogen with the help of the noble metal component and the cooperation of light-

generated electrons [6,53]. The efficient contact among components explains the high 

quantum efficiency achieved under UV, visible an, particularly important, under sunlight 

illumination conditions. 

Conclusions 

In this work we prepared a ternary CuGaS2-TiO2-Pt composite system by functionalization of 

the semiconductor components to achieve optimum interaction and further platinization. 

These materials contain anatase as oxide component and wurtzite as the chalcogenide one. 

Testing the platinization of each (selective deposition) or both components showed a strong 

effect on the photo-production of hydrogen. Higher catalytic performance was achieved when 
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the noble metal is in exclusive contact with the anatase oxide. This seems to track the 

expected charge carrier flow upon illumination based in the relative position of the 

semiconductor bands, which would facilitate the flow of electrons to the oxide (and thus the 

noble metal) component and holes to the chalcogenide. 

Here we report the analysis of the hydrogen photo-production using methanol as sacrificial 

agent as a function of the chalcogenide content of the CuGaS2-TiO2:Pt component solids 

under UV and visible illumination conditions relevant for the use of sunlight as the energy 

source of the chemical process. The CuGaS2-TiO2:Pt systems show an important response for 

all illumination conditions as a function of the chalcogenide content. Maximum activity is 

achieved for materials with a 3 to 5 wt % of the chalcogenide irrespective of the illumination 

conditions. The measurement of the true quantum efficiency renders an outstanding value of 

6.5% under sunlight illumination, not reported previously by any other material tested in 

similar conditions. The characterization of the catalysts showed a strong correlation between 

charge separation and catalytic activity. This result indicates that the efficient contact 

between components drives to an improved charge separation occurring after illumination, 

with a direct positive impact on photo-activity, rendering the outstanding functional 

properties owned by the CuGaS2-TiO2:Pt composite materials. 
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Table 1. Main physico-chemical properties of the solids.
a
 

Sample Particle size/nm Band gap/eV
b
 BET area/m

2
 g

−1
 

TiO2 11.6 3.34 67.9 

CGS1 11.3 3.22 67.0 

CGS3 11.3 3.23 65.9 

CGS5 11.3 3.24 66.2 

CGS8 11.3 3.07 64.1 

CGS 17.0 2.90 25.6 

a
Average standard error: particle size 6.1%; Band gap; 2.7%; BET area 7.9%. 

b
Anatase/CGS band gap calculated as indirect/direct gap semiconductor. 
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Table 2. Summary of literature reports concerning quantum efficiency measurement 

of the hydrogen photo-production using metal/titania catalysts. 

Material Reaction System 

(Liquid Phase) 

Alcohol: 

Water (v/v 

%) 

Catalyst 

concentration 

(g/L) 

QE (%)
a
 Ref. 

UV Vis SL 

Pt/P25 Semi-continuous 10:90 0.5 5.6 – – [15] 

Pt/Nb–TiO2 Semi-continuous 40:60 0.5 5.0 2.5 3.5 [17] 

Pt/P25 Batch 2:98 1.0 5.7 – – [42] 

PtPd/Nb–TiO2 Semi-continuous 30:70 0.5 2.9 1.2 1.4 [43] 

Pt/Nb–TiO2 Semi-continuous 30:70 0.5 1.9 0.07 – [44] 

Pd/Nb–TiO2 Semi-continuous 30:70 0.5 1.7 0.005 – [44] 

Pt doped TiO2 Batch 2:98 1.0 22.6 – – [45] 

Ru/TiO2 Semi-continuous 30:70 0.5 3.0 0.6 1.1 [46] 

aQuantum efficiency values measured under UV, Visible (Vis) or Sunlight-type (SL) 

illumination conditions. 
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Fig. 1. Reaction rates (A) and quantum efficiency (B) of CGSx samples and 

TiO2 reference. 

 

 

 

 

 

 



 

Fig. 2. CGS NCs: a) Representative TEM micrograph; b) XRD pattern including the 

reference for the wurtzite crystal phase (JCPDS 001–1280). c) UV–vis spectrum. d) 

PL spectrum. e) FTIR spectra of DDT, as produced CGS NCs (labelled as DDT-

CGS), MUA and CGS NCS after ligand exchange with MUA (labelled MUA-CGS). 

 

Fig. 3. XRD patterns and UV–visible spectra of the catalysts. 



 

Fig. 4. Microscopy analysis of CGS5 sample: a) Representative HAADF-STEM 

micrograph; b) Representative HAADF-STEM micrograph; c) HRTEM micrograph, 

detail of the orange squared region and its corresponding power spectrum which 

reveals that the nanostructure has a crystal phase that is in agreement with the 

TiO2 tetragonal phase (space group = I41/amd) with a = b = 3.7840 Å and 

c = 9.5000 Å visualized along its [010] zone axis. One of the electron diffraction spots 

can be matched with the (200) plane of Pt; d) EELS chemical composition maps 

obtained from the red squared area of the STEM micrograph. Individual Ti L2,3-edges 

at 456 eV (green), O K-edges at 532 eV (blue), Cu L2,3-edges at 931 eV (purple) and 

Ga L2,3-edges at 1115 eV (orange). (For interpretation of the references to color in this 

figure legend, the reader is referred to the Web version of this article.) 



 

Fig. 5. C 1s, O 1s, Ti 2p, Cu 2p3/2, Ga 2p3/2 and Pt 4d regions of the XPS spectrum of 

the CGS5 sample. 

 

Fig. 6. Photoluminescence of CGSx samples and TiO2 reference; (A) excitation 

wavelength 365 nm; (B) excitation wavelength 425 nm. 


