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• Emergent patterns of zooplankton abundance, biomass and growth rates agree well 

with empirical estimates 

• Resolving zooplankton functional complexity has implications for the total biomass of 35 

fish, highlighting the critical importance of including zooplankton functional 

complexity in ecosystem models 

Abstract 

Despite their critical role as the main energy pathway between phytoplankton and fish, the 

functional complexity of zooplankton is typically poorly resolved in marine ecosystem models. 40 

Trait-based approaches—where zooplankton are represented with functional traits such as 

body size—could help improve the resolution of zooplankton in marine ecosystem models 

and their role in trophic transfer and carbon sequestration. Here, we present the Zooplankton 

Model of Size Spectra version 2 (ZooMSSv2), a functional size-spectrum model that resolves 

nine major zooplankton functional groups (heterotrophic flagellates, heterotrophic ciliates, 45 

larvaceans, omnivorous copepods, carnivorous copepods, chaetognaths, euphausiids, salps 

and jellyfish). Each group is represented by the functional traits of body size, size-based 

feeding characteristics and carbon content. The model is run globally at 5 resolution to 

steady-state using long-term average temperature and chlorophyll a for each grid-cell. 

Zooplankton community composition emerges based on the relative fitness of the different 50 

groups. Emergent steady-state patterns of global zooplankton abundance, biomass and 

growth rates agree well with empirical data, and the model is robust to changes in the 

boundary conditions of the zooplankton. We use the model to consider the role of the 

zooplankton groups in supporting higher trophic levels, by exploring the sensitivity of steady-

state fish biomass to the removal of individual zooplankton groups across the global ocean. 55 

Our model shows zooplankton play a key role in supporting fish biomass in the global ocean. 

For example, the removal of euphausiids or omnivorous copepods caused fish biomass to 

decrease by up to 80%. By contrast, the removal of carnivorous copepods caused fish biomass 

to increase by up to 75%. Our results suggest that including zooplankton complexity in 

ecosystem models could be key to better understanding the distribution of fish biomass and 60 

trophic efficiency across the global ocean.  

 

1 Introduction 
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Marine ecosystem models are valuable tools for understanding marine ecosystem function, 

structure and productivity under global change. However, the marine ecosystem is complex, 65 

and there remains a lack of unified understanding of key physiological and ecological 

processes (Tittensor et al., 2018). Modellers address this uncertainty by making assumptions 

about which ecosystem processes to represent in their models, depending on their objectives. 

A common assumption across higher trophic level modelling frameworks is to represent 

zooplankton—the main grazers of phytoplankton and bacteria, and prey of small fish—very 70 

simply (Everett et al., 2017).  

 

There are two common approaches to representing zooplankton in marine models focussed 

on higher trophic levels. First, phytoplankton and zooplankton dynamics are driven externally 

by nutrient-phytoplankton-zooplankton-detritus models (Maury, 2010; Woodworth-Jefcoats 75 

et al., 2013; Christensen et al., 2015; Carozza et al., 2016; Petrik et al., 2019) and then this is 

used to drive higher trophic levels in an ecosystem model.  Second, phytoplankton and small 

zooplankton are lumped together as a resource for the smallest fish size classes in size-

spectrum models (Blanchard et al., 2009, 2012; Law et al., 2009; Datta et al., 2010; Scott et 

al., 2014; Zhang et al., 2015, 2016). These simple representations of zooplankton, together 80 

with the similar lower trophic level structure among models, precludes a deeper 

understanding of the role of zooplankton in ecosystem functioning. 

Even with a simple representation of zooplankton, many modelling studies suggest that the 

productivity and structure of higher trophic levels are sensitive to the representation of lower 

trophic levels (Friedland et al., 2012; Jennings and Collingridge, 2015; Heneghan et al., 2016; 85 

Dam and Baumman, 2017). Mitra et al. (2014) demonstrated that in a modelled plankton food 

web, trophic dynamics were sensitive to small changes in parameterisation of zooplankton 

feeding rates. Similarly, Fuchs and Franks (2010) found that zooplankton with large predator-

prey mass ratios (PPMR, i.e., a predator is a lot larger than its prey) gave rise to a flatter 

plankton abundance size-spectra (relatively more large organisms), in comparison to 90 

zooplankton with small PPMRs, which led to a steeper plankton size-spectra. Moving beyond 

the plankton, Jennings and Collingridge (2015) demonstrated that the productivity and total 

biomass of the global fish community was highly sensitive to how energy moved through the 

lower planktonic trophic levels, from phytoplankton to zooplankton and beyond.  
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One of the main reasons that modellers choose to simplify zooplankton is because of their 95 

tremendous taxonomic diversity, especially at the phylum level. A typical zooplankton sample 

might contain organisms from 10 phyla or more, each with different body sizes, biochemical 

compositions, growth rates, feeding preferences and reproductive modes (Hansen et al., 

1994, 1997; Kiørboe et al., 2011; Mconville et al., 2017). While it is not possible to include 

thousands of common plankton species in ecosystem models, an alternative is to model 100 

organisms based on traits such as body size. Modelling the marine ecosystem using body size 

instead of species identity is rooted in over 50 years of observations that show a remarkable 

consistency in the distributions of organism abundance or biomass against body size (size-

spectra) across a range of marine ecosystems (Blanchard et al., 2017). For zooplankton, body 

size is strongly related to trophic position (Andersen et al., 2016a) and the size-based feeding 105 

behaviour of different zooplankton groups has been suggested to structure the community 

across environmental gradients (Mitra and Davis, 2010; Barton et al., 2013). Owing to their 

body size, zooplankton are the primary grazers of phytoplankton, which span nine orders of 

magnitude in body size, from picoplankton (0.2–2 m equivalent spherical diameter, ESD; 

10−14.5–10−11.5 g wet weight) to microplankton (>20 m ESD; >10−8.4 g wet weight).  110 

 

For zooplankton, other traits such as predator-prey mass ratio (PPMR) and body composition 

are also important, since these factors also play a role in organism fitness (McGill et al., 2006; 

Litchman et al., 2013; Andersen et al., 2016a; McConville et al., 2017). For instance, 

phytoplankton size structure changes across environmental gradients (Agawin et al., 2000; 115 

Brewin et al., 2010; Barnes et al., 2011). Changes in the phytoplankton have implications for 

the structuring of the zooplankton community, which in turn affects how energy from primary 

production is transported to higher trophic levels. This is because zooplankton exhibit vast 

diversity in their feeding behaviour, with PPMRs varying >7 orders of magnitude across 

different functional groups, from ~10 for carnivorous copepods to ~108 for salps and 120 

larvaceans (Bone, 1997; Wirtz, 2012). Another functional trait that varies strongly across 

zooplankton groups is body composition, and this can have substantial effects on energy 

transfer to higher trophic levels. Carbon is the primary structural component of zooplankton 

(Kiørboe, 2013) and zooplankton vary widely in their carbon content between gelatinous 

groups with low carbon density and non-gelatinous groups with high carbon density (Kiørboe, 125 

2013; McConville et al., 2017). Thus, a zooplankton community dominated by more 
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gelatinous groups offers less nutritional value and growth potential for higher trophic levels. 

Moreover, changes in carbon content affects the relative fitness of different zooplankton 

groups, since critical physiological and competitive processes such as metabolism, search 

rate, and average growth efficiency scale with carbon across zooplankton groups (Acuña et 130 

al., 2011; Kiørboe, 2011; Kiørboe and Hirst, 2014; McConville et al., 2017).  

 

The diversity of traits in the zooplankton means that global ecosystem modellers must 

consider more than just their body size if they are to improve the realism of zooplankton in 

their models. In the past 15 years, trait-based modelling approaches have been applied to 135 

explain the distribution of phytoplankton groups (Follows et al., 2007; Edwards et al., 2013; 

Acevedo-Trejos et al., 2015), and there is a growing literature applying the approach 

separately to zooplankton (Fuchs and Franks, 2010; Brun et al., 2016; Heneghan et al., 2016; 

Schnedler-Meyer et al., 2016; Prowe et al., 2018) and fish communities (Stuart-Smith et al., 

2013; Blanchard et al., 2014; van Denderen et al., 2018; Petrik et al., 2019). However, to our 140 

knowledge, there are no global marine ecosystem models resolving both higher and lower 

trophic levels that incorporate the diversity of traits in the zooplankton. Recently, Blanchard 

et al., (2017) proposed unifying size-spectrum ecosystem modelling (which only resolves the 

body-size distribution of organisms) with trait-based modelling in a new functional size-

spectrum framework. This framework allows modellers to take advantage of the powerful 145 

role of body size in structuring the marine ecosystem as well as other functional traits that 

are important, and offers a promising way forward for resolving the functional complexity of 

the zooplankton within a model of the entire marine ecosystem. This is the approach we 

adopt here. 

 150 

Using functional traits such as body size and PPMR to resolve the diversity of the zooplankton 

in marine ecosystem models is not a new idea. Twenty-five years ago, Hansen et al. (1994) 

hypothesised that with knowledge of the size selectivity (e.g., PPMR) of different zooplankton 

groups, it would be possible to construct a simple size-based model of the pelagic food web. 

More recently, zooplankton feeding traits such as PPMR were incorporated in a functional 155 

size-spectrum model (Heneghan et al., 2016), which showed that fish biomass and ecosystem 

stability were sensitive to zooplankton feeding characteristics. This model (Zooplankton 

Model of Size Spectra, ZooMSSv1) allowed a qualitative assessment of how zooplankton traits 
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such as PPMR affected energy transfer from phytoplankton to fish, and highlighted the 

significant implications of variations in zooplankton community traits for high trophic level 160 

biomass and ecosystem stability. However, it did not represent zooplankton community 

composition or food quality and so could not be used to explore how those factors might 

affect ecosystem structure and transfer efficiency in the global ocean.  

Here, we follow the work of Heneghan et al., (2016) to present ZooMSSv2 (referred to 

hereafter as ZooMSS), the first functional size-spectrum model of the marine ecosystem to 165 

resolve phytoplankton, nine zooplankton functional groups (heterotrophic flagellates and 

ciliates, omnivorous and carnivorous copepods, larvaceans, euphausiids, salps, chaetognaths 

and jellyfish) and three size-based fish groups. Zooplankton functional groups are resolved 

using their body-size ranges, size-based feeding characteristics and carbon content. The 

model is run to steady-state, and the modelled zooplankton community emerges across 170 

global environmental gradients, depending on the functional traits of the different groups. 

The model is not fit to observational data, rather parameter values for the model’s functional 

trait are obtained from experimental results in the literature and the model’s ability to 

reproduce observed patterns in zooplankton biomass, abundance and growth is assessed.  

The model is generally able to reproduce steady-state global patterns of zooplankton biomass 175 

and abundance, as well as empirical growth rates from flagellates to jellyfish.  What is more, 

model output is robust to uncertainties in the boundary conditions of the smallest size class 

of each group. By resolving zooplankton functional diversity, the model allows us for the first 

time to examine the unique roles of different zooplankton groups in supporting higher trophic 

level biomass across the global ocean. We finish by exploring the change in global fish biomass 180 

when different zooplankton groups are removed from the model, as well as the change in 

biomass when the zooplankton are represented simplistically as a single functional group. 

2 Methods 

We developed the Zooplankton Model of Size Spectra version 2 (ZooMSS) based on the 

prototype of Heneghan et al. (2016). ZooMSS uses the functional size-spectrum framework 185 

(Blanchard et al., 2017) to resolve the body size ranges, size-based feeding characteristics and 

carbon content of nine zooplankton groups and three fish groups. Parameter values for the 

functional traits are not fit to data here, but are determined using published estimates 
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available in the literature (Table 2). The model is run to steady-state on 5 grid squares across 

the global ocean (Figure 1). For each region, the model is forced with the long-term mean 190 

satellite sea surface temperature and chlorophyll a from MODIS-Aqua. Scripts to run the 

model, as well as global forcings for sea surface temperature and chlorophyll a, are available 

for download at  https://github.com/MathMarEcol/ZoopModelSizeSpectra.  

2.1 Zooplankton Model of Size Spectra version 2 (ZooMSS) 

ZooMSS represents the marine ecosystem as three communities: phytoplankton, 195 

zooplankton and fish. The zooplankton community consists of nine of the most abundant 

zooplankton groups, and the fish community is made up of a small, medium and large group 

(Figure 1; Table 1-3).  

 

Figure 1: The modelled size-spectrum, over a 5 region of the global ocean. The 200 

phytoplankton spectrum is held constant, and abundances of zooplankton and fish groups are 

governed by size-dependent processes of growth and mortality. Total Fish is the sum of the 

three fish groups (small, medium and large). 

Dynamics of the phytoplankton are not explicitly resolved in the model, rather the size 

structure of the phytoplankton community is estimated directly from satellite chlorophyll a 205 

https://github.com/MathMarEcol/ZoopModelSizeSpectra


8 
 

observations (Brewin et al., 2010; Barnes et al., 2011; Hirata et al., 2011). Abundances of the 

zooplankton and fish communities are driven by size-dependent processes of growth and 

mortality, and the abundances of each functional group governed by separate second-order 

McKendrick-von Foerster equations: 

𝜕

𝜕𝑡
𝑁𝑖(𝑤, 𝑡) = −

𝜕

𝜕𝑤
(𝑔𝑖(𝑤, 𝑡)𝑁𝑖(𝑤, 𝑡)) − 𝜇𝑖(𝑤, 𝑡)𝑁𝑖(𝑤, 𝑡) +

1

2

𝜕2

𝜕𝑤2
(𝑑𝑖(𝑤, 𝑡)𝑁𝑖(𝑤, 𝑡)). (E1) 210 

The density of individuals in group 𝑖 of weight 𝑤 at time 𝑡 per m3 is given by 𝑁𝑖(𝑤, 𝑡). 

Individual processes in group 𝑖 are given by growth 𝑔𝑖(𝑤, 𝑡), mortality 𝜇𝑖(𝑤, 𝑡) and diffusion 

rates 𝑑𝑖(𝑤, 𝑡) (Figure 2). We use the McKendrick-von Foerster equation to govern 

zooplankton and fish communities because it is a popular choice for modelling fish-focused 

size-spectrum models, and it is similar to governing equations in plankton-focused size-based 215 

models (Baird and Suthers, 2007; Fuchs and Franks, 2010; Zhou et al., 2010; Ward et al., 2012, 

Cuesta et al., 2018). Looking ahead, this means that future model developments that resolve 

the dynamics of the phytoplankton, or more of the functional diversity of the zooplankton, 

could be achieved with the same—or similar—governing equation used here.  

 220 

Figure 2 Overview of the individual-level processes that drive the abundance of the 
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zooplankton and fish groups. From the perspective of an individual from group 𝑖 of size 𝑤, 

the feeding rate 𝑓𝑖  is determined by the density of suitably sized-prey, here represented as 

single group 𝑗. The feeding rate is calculated using a size-selection function 𝜙, centred at size 

𝑤′ =
𝑤

𝛽𝑖(𝑤)
 where 𝛽𝑖(𝑤) is the individual’s predator-prey mass ratio. Captured food then 225 

determines the individual’s growth and diffusion rates in each time step. Finally, this 

individual experiences predation mortality from larger organisms 𝜇𝑝, as well as senescence 

mortality 𝜇𝑆𝑖
. 

From the perspective of a predator from group 𝑖, the feeding rate 𝑓 (g yr-1) on prey group 𝑗 

depends on the search rate of group 𝑉𝑖(𝑤) (m3 yr-1; E13), and the density of suitable prey (g 230 

yr−1): 

𝑓𝑖𝑗(𝑤, 𝑡) = 𝑉𝑖(𝑤) ∫ 𝜙𝑖(𝑤, 𝑤′)𝑁𝑗(𝑤′, 𝑡)𝑤′𝑑𝑤′𝑤

𝑤𝑝
, (E2)

where 𝜙𝑖(𝑤, 𝑤′) (E11, Table 1; all subsequent equations are also found in Table 1) is the 

probability a predator of size 𝑤 would consume an individual of size 𝑤’ and 𝑤𝑝 is the minimum 

size of phytoplankton – the smallest body size in the system. The growth rate of a predator 235 

from group 𝑖, of size 𝑤 at time 𝑡, is fuelled by the consumption and conversion of prey biomass 

to new biomass (g yr−1):                                  

𝑔𝑖(𝑤, 𝑡) = 𝜏 ∑ 𝐸𝑖𝑗  𝑓𝑖𝑗(𝑤, 𝑡)𝑗 , (E3)  

where 𝐸𝑖𝑗 is the growth conversion efficiency for predators of group 𝑖 eating prey from group 

𝑗 (E14a,b), and τ is the effect of temperature on ingestion for group 𝑖 (E4). A drawback of the 240 

Type 1 functional response used here for feeding is that it ignores the effect of satiation at 

high food densities. This means that maximum growth rates of zooplankton and fish groups 

could be unrealistically fast in areas with high food availability, i.e., high chlorophyll a 

concentration. However, the effect of fast growth rates would be similar across all functional 

groups, and so would not affect their relative fitness. Further, we will compare modelled 245 

growth rates at high chlorophyll concentrations with empirical data to assess whether the 

model’s growth rates are reasonable. The choice of functional response not only affect 

feeding rates at high or low food concentrations, but can also lead to different temporal 

dynamics between predators and prey (Gentleman and Neuheimer, 2008). However, our 

focus here is on long term steady-state patterns in the composition of the global zooplankton 250 
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community and not on the dynamics of the different groups through time. Nevertheless, 

ecosystem dynamics have a real impact on marine ecosystems, particularly for zooplankton, 

which face seasonal fluctuations in prey abundance from phytoplankton blooms and busts. 

The representation of zooplankton functional response will therefore be an important 

consideration for any future work exploring the temporal dynamics of the marine ecosystem 255 

across environmental gradients. 

Temperature effects are represented using a 𝑄10 temperature coefficient: 

𝜏 = 𝑄10

(
𝐾−𝐾ref 

10
)
, (E4)  

where 𝐾 and 𝐾ref are the temperatures in Kelvin of each 5° grid square, and the reference 

temperature where 𝜏 = 1, respectively.  260 

From the perspective of prey of size 𝑤, the total mortality from predation by larger size 

classes 𝜇𝑝(𝑤, 𝑡) (yr−1) is given by:  

𝜇𝑝(𝑤, 𝑡) = 𝜏 ∑ ∫ 𝜙𝑗(𝑤′, 𝑤)𝑉𝑗(𝑤′)𝑁𝑗(𝑤′, 𝑡)𝑑𝑤′
�̅�𝑗

𝑤𝑗

, (E5) 

where �̅�𝑗 is the maximum size of a predator from group 𝑗. Since individuals grow over time, 

an additional source of mortality from senescence was incorporated that increased with body 

size (yr−1): 265 

𝜇𝑆𝑖
(𝑤, 𝑡) = 𝜏𝛿 (

𝑤

𝑊𝑠𝑖 
 
)

𝜌

, (E6)  

where 𝛿 is the coefficient of senescence mortality, 𝜌 the exponent and 𝑊𝑠𝑖  
the body size after 

which senescence mortality rapidly increases for an individual from group 𝑖. This senescence 

mortality term also acts as a closure term for the largest size classes, by preventing a build-270 

up of large individuals who are not exposed to predation (Andersen et al., 2016b). For an 

individual of size 𝑤, at time 𝑡, from group 𝑖, total mortality 𝜇𝑖(𝑤, 𝑡) (yr−1) is given by summing 

predation and senescence mortality (yr−1): 

𝜇𝑖(𝑤, 𝑡) =  𝜇𝑝(𝑤, 𝑡) + 𝜇𝑆𝑖
(𝑤, 𝑡). (E7) 
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Finally, the second-order diffusion term for an individual from group 𝑖 of size 𝑤 at time 𝑡 is 275 

(g2 yr−1): 

𝑑𝑖(𝑤, 𝑡) = 𝑉𝑖(𝑤) ∑(𝜏𝐸𝑖𝑗)
2

∫ (𝑤′)2𝜙𝑖(𝑤, 𝑤′)𝑁𝑗(𝑤′, 𝑡)𝑑𝑤′
𝑤

𝑤𝑝𝑗

. (E8) 

We incorporate the diffusion term following the work of Datta et al., (2010), who 

demonstrated that stochastic variation in growth at the individual level (something that the 

more commonly used first-order McKendrick-von Foerster equation does not consider) can 280 

be approximated at the functional group level by adding a diffusion term to the first-order 

McKendrick-von Foerster equation. Incorporating a diffusion term means that the model 

incorporates both the advection of biomass from smaller to larger size classes through the 

processes of predation and growth (𝒈𝒊(𝒘, 𝒕); E3) but also includes an approximation of the 

variability in the growth rates of each community from the stochastic variation in individual-285 

level growth rates through time (𝒅𝒊(𝒘, 𝒕); E8). As well as increasing model realism by 

approximating the functional group-level effects of individual-level variability, Datta et al., 

(2011) demonstrated that the diffusion term improves the stability of the numerical 

approximation of real world predator-prey interactions and individual growth trajectories in 

the presence of large, destabilising predator–prey mass ratios, which have been shown to 290 

cause the community size spectra to develop travelling wave attractors (Law et al., 2009; 

Zhang et al., 2013; Heneghan et al., 2016). This is especially important here given our model 

includes zooplankton predator-prey mass ratios that are many orders of magnitude larger 

than predator-prey size ratios used in fish-focused size-spectrum models that use the first-

order McKendrick-von Foerster equation (see Table 2).  295 

 

2.1.1 Parameterizing the phytoplankton  

For each 5° region, the density of phytoplankton 𝑁𝑃(𝑤) of size 𝑤 is given by: 

𝑁𝑃(𝑤) = 𝑎𝑤𝑏 . (E9) 

The slope 𝑎, intercept 𝑏, and maximum size of the static phytoplankton spectrum were 300 

derived from temporally and spatially averaged satellite chlorophyll a from MODIS-Aqua 

(accessed via the GIOVANNI portal: https://giovanni.gsfc.nasa.gov/giovanni/), using the 

synoptic model developed by Brewin et al. (2010). The Brewin model gives an estimate of the 

https://giovanni.gsfc.nasa.gov/giovanni/
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percentage contribution of 3 phytoplankton size classes—pico (0.2–2 m ESD), nano (2–20 

m ESD) and microphytoplankton (>20 m ESD)—to the total chlorophyll a concentration (mg 305 

m−3 yr−1). Picophytoplankton constitute up to 75% of the biomass in low chlorophyll a 

(oligotrophic) waters, declining to <10% in high chlorophyll a (eutrophic) waters as micro-

phytoplankton increase from <10% in oligotrophic waters to >75% in eutrophic waters, and 

nano-phytoplankton increase from 20% in oligotrophic to 45% in mid-chlorophyll a waters, 

before declining to 15% in eutrophic waters (Figure 3 a). 310 

The contribution of microphytoplankton, and the maximum size of phytoplankton, both 

increase with chlorophyll a concentration (Brewin et al., 2010; Hirata et al., 2011; Barnes et 

al., 2011). We incorporated this change in the size range of the microphytoplankton with 

increasing chlorophyll a by linearly increasing its maximum size from 21–60 m ESD, 

depending on the percentage contribution of the microphytoplankton group to total 315 

chlorophyll a. We used 60 m as the maximum ESD for the phytoplankton following Barnes 

et al.’s (2011) finding that 90% of phytoplankton are smaller than 55–65 m across polar, 

tropical and upwelling environments. Total chlorophyll a concentration for each of the 3 size 

classes was converted to grams wet weight assuming 1 g chlorophyll a = 50 g C (Zhou et al., 

2010), and 1 g C = 10 g wet weight (Hansen et al., 1994, Boudreau & Dickie, 1992, Woodworth-320 

Jefcoats et al., 2013) and the three size ranges were also converted from ESD to grams wet 

weight (assuming 1 cm3 = 1 g wet weight; Boudreau & Dickie, 1992). Finally, slope and 

intercept were found analytically with E8 (see Supplementary Material A1). Phytoplankton 

slopes we derived ranged from −1.2 to −0.77 across the global ocean (Figure 3 b), which is 

similar to the range reported by previous empirical studies (Huete-Ortega et al., 2011; 325 

Marañón, 2015; Moreno-Ostos et al., 2015). 

We use satellite chlorophyll a observations to drive the abundance and structure of the 

phytoplankton community in each grid cell. Observed chlorophyll a is an estimate of the 

surface phytoplankton biomass in a region, given the processes of predation and nutrient 

cycling and regeneration. Thus, by using observed satellite chlorophyll a our model is 330 

implicitly incorporating these important processes in the phytoplankton, which is sufficient 

for our present objective of resolving steady-state patterns of zooplankton biomass and 

composition across the global ocean, given in situ phytoplankton biomass. In global marine 
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ecosystem models, it is common practice to use satellite or earth system model estimates of 

phytoplankton biomass (Blanchard et al., 2009; Maury, 2010; Christensen et al., 2015; Petrik 335 

et al., 2019) or primary production (Gascuel and Pauly, 2009; Carozza et al., 2016; Jennings 

and Collingridge, 2015) as inputs to drive higher trophic level processes without feedback 

from predation or nutrient cycling. We chose to use phytoplankton biomass—calculated with 

chlorophyll a—over primary production here because it is the most common measure of food 

for zooplankton (Richardson and Verheye, 1999; Hirst & Bunker 2003). 340 
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Figure 3 a) Proportion of phytoplankton that is picoplankton (<2 μm ESD), nanoplankton (2 

μm–20 μm ESD) and microplankton (>20 μm ESD), against log10(chlorophyll a), adapted from 

Brewin et al., (2015); b) Phytoplankton abundance spectrum at low (10−1.5 g m−3) and high 

(100.5 g m−3) chlorophyll a. The slope 𝒂 and intercept 𝒃 for the two spectra were calculated 345 

using satellite chlorophyll a from MODIS-Aqua, and the synoptic model from Brewin et al., 

(2015) (see Supplementary Material A1 for more information). 

 
 
 350 
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Table 1 Model equations with their units and in-text reference numbers. 

Description Equation Units Equation 
Number 

Master equation: 𝜕

𝜕𝑡
𝑁𝑖(𝑤, 𝑡) = −

𝜕

𝜕𝑤
(𝑔𝑖(𝑤, 𝑡)𝑁𝑖(𝑤, 𝑡)) − 𝜇𝑖(𝑤, 𝑡)𝑁𝑖(𝑤, 𝑡)

+
1

2

𝜕2

𝜕𝑤2
(𝑑𝑖(𝑤, 𝑡)𝑁𝑖(𝑤, 𝑡)) 

 

  

Rate of change of the 

abundance of individuals of 

group 𝑖 of size 𝑤 at time 𝑡 

yr−1 E1 

Growth and mortality:    

Feeding rate of predator 
group i on group j 

𝑓𝑖𝑗(𝑤, 𝑡) = 𝑉𝑖(𝑤) ∫ 𝜙𝑖(𝑤, 𝑤′)𝑁𝑗(𝑤′, 𝑡)𝑤′𝑑𝑤′
𝑤

𝑤𝑝

 
g yr−1 E2 

Individual growth rate for 
group 𝑖 

𝑔𝑖(𝑤, 𝑡) = 𝜏 ∑ 𝐸𝑖𝑗 𝑓𝑖𝑗(𝑤, 𝑡)

𝑗

 g yr−1 E3 

Temperature effect for group 
𝑖 𝜏 = 𝑄10

(
𝐾−𝐾ref

10
)
 

- E4 

Individual predation rate 
𝜇𝑝(𝑤, 𝑡) = 𝜏 ∑ ∫ 𝜙𝑗(𝑤′, 𝑤)𝑉𝑗(𝑤′)𝑁𝑗(𝑤′, 𝑡)𝑑𝑤′ 

�̅�𝑗

𝑤𝑗

 
 
yr−1 

 
E5 

Senescence mortality 
𝜇𝑆𝑖

(𝑤, 𝑡) = 𝜏 𝛿 (
𝑤

𝑊𝑠𝑖  

)

𝜌

 
yr−1 E6 

Total mortality 𝜇𝑖(𝑤, 𝑡) =  𝜇𝑝(𝑤, 𝑡) +  𝜇𝑆𝑖
(𝑤, 𝑡) yr−1 E7 

Individual diffusion term for 
group 𝑖 

𝑑𝑖(𝑤, 𝑡) =  𝑉𝑖(𝑤) ∑(𝜏𝐸𝑖𝑗)2 ∫ (𝑤′)2𝜙𝑖(𝑤, 𝑤′)𝑁𝑗(𝑤′ , 𝑡)𝑑𝑤′
𝑤

𝑤𝑝𝑗

 
 
g2 yr−1 

 
E8 

Phytoplankton spectrum: 𝑁𝑃(𝑤, 𝑡) = 𝑎𝑤𝑏  m−3 E9 

Functional traits:    

Predator-prey mass ratio for 
group 𝑖, size 𝑤 

𝛽𝑖(𝑤) = (exp(0.02 ln(𝐷𝑤)2 − 𝑚 + 1.832))3 - E10 

Size selection for group 𝑖 𝜙𝑖(𝑤, 𝑤′) = exp [−(ln(𝛽𝑖(𝑤)𝑤′/𝑤))
2

/2𝜎𝑖
2] /(𝜎𝑖√2𝜋) - E11 

Feeding kernel width 
parameter for group 𝑖 

𝜎𝑖 = 0.05log10(�̅�𝑖) +  0.33  E12 

Search rate for group 𝑖 𝑉𝑖(𝑤) = 𝛾𝑤𝛼  m3 yr−1−1
 E13 

Average growth efficiency for 
predator 𝑖 eating prey of 
group 𝑗 (for all groups except 
salps and larvaceans) 

𝐸𝑖𝑗 = 2.5𝐶𝑗 - E14a 

Average growth efficiency for 
predator 𝑖 eating prey of 
group 𝑗 (for salp and larvacean 
predators) 

𝐸𝑖𝑗 = 0.25
𝐶𝑗

𝐶𝑖
 

- E14b 

Lower boundary condition for 
group 𝑖 

𝑁𝑖(𝑤𝑖 , 𝑡) =  𝑃𝑖 ∑ 𝑁𝑗(𝑤𝑖 , 𝑡)

𝑗≠𝑖

 m−3 E15 
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2.1.2 Incorporating functional traits 355 

We could parameterise many of the functional traits and key processes for different 

zooplankton groups because of the extensive experimental work carried out on zooplankton 

(see Table 2). 

 

2.1.2.1 Body size and predator–prey mass ratio 360 

For each zooplankton group, we established body size ranges in wet weight using 

measurements and conversion equations from the literature (see Table 2). Prey preference 

for predators of a certain size was represented using the ratio of a predator’s body size to its 

preferred prey body size (PPMR), rather than specifying diet preferences (Table 2; Figure 4). 

Across zooplankton taxa, PPMR increases with predator size, due to the non-isometric scaling 365 

of feeding-related apparatus with body size (Wirtz, 2012). We used the mechanistic 

formulation from Wirtz (2012) to calculate the PPMR range for each zooplankton group, 

except for salps and larvaceans. Wirtz (2012) links PPMR to a quantitative measure of the 

feeding mode: raptorial, active feeding is linked to a lower PPMR because predators eat prey 

closer to their own size. By contrast, passive, suspension feeding yields a higher PPMR. The 370 

PPMR of an individual from group 𝑖 of size 𝑤 𝛽𝑖(𝑤) is given by 

𝛽𝑖(𝑤) = (exp(0.02 ln(𝐷𝑤)2 − 𝑚 + 1.832))3, (E10) 

where 𝐷𝑤 is an individual of size 𝑤’s equivalent spherical diameter in 𝜇m, and 𝑚 is the 

quantitative measure of feeding mode; a large positive 𝑚-value is linked to a more 

carnivorous feeding strategy, with a lower PPMR. By contrast, a large negative 𝑚-value is 375 

associated with a larger PPMR and a filter feeding strategy of prey capture. For filter feeders 

such as salps and larvaceans, we follow Wirtz’s formulation that PPMR increases with body 

size, but we assume that their filter mesh does not increase with body size. This means that, 

for salps and larvaceans, individuals will capture the same size prey no matter their own size 

(see Bone et al., 2003). In keeping with previous studies, the PPMR for the fish communities 380 

was held constant at 100 across their size ranges (Blanchard et al., 2009; Hartvig et al., 2011; 

Rochet et al., 2012; Andersen et al., 2016b).  

The relatively small body sizes and high PPMRs of salps, larvaceans and omnivorous copepods 

means that these groups feed exclusively on phytoplankton, heterotrophic flagellates and 
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heterotrophic ciliates (Figure 4). Euphausiids also have high a PPMR range, but their larger 385 

size means that their largest size classes can also access smaller copepods, larvaceans and 

euphausiids, consistent with their omnivorous diet in the oceans (Schmidt and Atkinson, 

2016). The low PPMR ranges of carnivorous copepods, chaetognaths and jellyfish, coupled 

with their larger body size means that these groups are almost totally carnivorous; we further 

restricted their diets so that they do not feed on phytoplankton at all, which is consistent with 390 

most current understandings of their diets (Terazaki, 2000; Purcell and Arai, 2001). 

2.1.2.2 Prey size selectivity 

The range of available prey sizes for an individual predator of body size 𝑤 from group 𝑖 is 

defined by a log-normal feeding kernel. This feeding kernel is centred on the predator’s 

preferred predator–prey mass ratio (PPMR; 𝛽𝑖(𝑤)), with a standard deviation (𝜎𝑖) given by 395 

the kernel width parameter for that predator’s group (Table 2):                    

𝜙𝑖(𝑤, 𝑤′) = exp [− (ln (
𝛽𝑖(𝑤)𝑤′

𝑤
))

2

/ 2𝜎𝑖
2] /(𝜎𝑖√2𝜋). (E11) 

A wider feeding kernel means a predator can feed over a larger prey size range. For 

zooplankton, feeding kernel width is positively correlated with PPMR (Hansen et al., 1994; 

Fuchs and Franks, 2010; Kiørboe, 2016); filter feeders such as larvaceans or salps with a large 

mean PPMR feed over a wider size range than carnivorous copepods or heterotopic 400 

flagellates with a smaller PPMR. We used the empirical model developed by Fuchs and Franks 

(2010) to link the feeding kernel width of each zooplankton group (𝜎𝑖), to that group’s mean 

PPMR (�̅�𝑖): 

𝜎𝑖 = 0.05log10(�̅�𝑖) +  0.33. (E12) 

The feeding kernel widths for the fish communities were held constant at 1.3, in keeping with 405 

previous studies (Andersen et al., 2016b). 

2.1.2.3 Growth conversion efficiency and carbon content  

Previous size spectrum models have focused on fish and used a currency solely of wet mass 

rather than considering carbon, largely because fish groups vary little in their carbon content. 410 

However, as ZooMSS resolves nine zooplankton prey groups, and the carbon content of 
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zooplankton varies by more than an order of magnitude amongst common zooplankton 

groups (e.g., jellyfish = 0.5%, and copepods  = 12%), we have included carbon content as a 

measure of food quality. As Straile (1997) found that mean growth conversion efficiency—as 

a measure of prey carbon converted to predator carbon—was ~0.25 across a large range of 415 

zooplankton taxa, we consider that prey groups with a comparatively higher carbon content 

(e.g., copepods, euphausiids) contribute more to the wet-weight growth of a predator 

compared with lower carbon (more gelatinous) groups such as jellyfish (Spitz et al., 2010; 

Kiørboe, 2013; Mitra et al., 2014). In terms of wet weight, the growth conversion efficiency 

of a predator of group 𝑖 (𝐸𝑖𝑗) feeding on prey from group j prey is: 420 

𝐸𝑖𝑗 = 2.5𝐶𝑗 , (E14a) 

where 𝐶𝑗 is the carbon–wet weight ratio of group 𝑗 (Table 2).  

As gelatinous filter feeders—salps and larvaceans—are the fastest growing metazoans and 

have growth rates an order of magnitude faster than other zooplankton of the same size (Hirst 

et al., 2003), we included this in the model by modifying E14a for these groups: 425 

𝐸𝑖𝑗 = 0.25
𝐶𝑗

𝐶𝑖
, (E14b)  

so that the growth conversion efficiency of predators that are salps and larvaceans is also 

related to their carbon content 𝐶𝑖. This means that these groups increase their wet weight by 

5–10× more than other zooplankton of the same size, when consuming a given prey. For 

example, according to E13a, a copepod consuming heterotrophic flagellates that have a 430 

carbon-wet weight ratio of 0.15 would have a gross growth efficiency of 0.375, but according 

to E13b a larvacean consuming the same flagellate would have a gross growth efficiency of 

1.875. However, as a corresponding trade off, we made the assumption that for salps and 

larvaceans the additional wet weight in excess of what other zooplankton would gain is 

converted to detritus, not into new biomass. This is based on their unique physiology: 435 

larvaceans grow and shed mucus houses multiple times each day (Bone, 1997), and salps 

produce large faecal pellets that contribute disproportionately to carbon flux compared with 

other zooplankton (Henschke et al., 2016). In the current implementation of the model, we 
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consider the faecal pellets and mucus houses to be detritus and lost from the system. Future 

versions of ZooMSS will track the detritus through the food web. 440 

Figure 4 Overview of the size ranges of the functional groups (solid boxes) in the model, and their 

prey size ranges (dashed boxes). Note that boxes for predator and prey size are further apart for 

groups with higher PPMRs (e.g., euphausiids, larvaceans and salps). 
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Table 2 Trait values for the nine zooplankton and three fish groups. 

Group Min. Size, 𝑤𝑖 Max Size, �̅�𝑖 𝑚-
value 

log10PPMR 
range, 𝛽𝑖(𝑤) 

Feeding Kernel 
Width, 𝜎𝑖  

Carbon-Wet 

Weight Ratio, 𝑪𝒊 Length ESD log10(g)* Length ESD log10(g)* 

Hetero. Flagellates  - 3.3×10-4 cma –10.7a - 7×10-3 cma –6.8a 1.52 0.2–0.72 0.363^ 0.154 

Hetero. Ciliates - 1×10-3 cmb –9.3b - 1×10-2 cmb –6.3a 0.042  2.5–2.92 0.473^ 0.154 

Larvaceans 8×10-3 cmc 1×10-2 cmc –6.4c 3×10-1 cmc 1×10-1 cmc –3.2c -  6.8–10.87 0.73^ 0.029 

Omni. Cop. - 4×10-3 cmd –7.5d 2.8×10-1 cme 9×10-2 cme –3.5e -0.52  3.6–4.62 0.573^ 0.121 

Carn. Cop. - 4×10-3 cmd –7.5d 6×10-1 cme 1.8×10-1 cme –2.5e 1.52  0.8–1.92 0.43^ 0.121 

Euphausiids - 6×10-2 cmf –4.2f 6 cmg 1.5 cmg 0.2g -23,15  6.6–7.83,15 0.703^ 0.121 

Chaetognaths 1×10-1 cmh 1.5×10-2 cmh –5.9h 4 cmh 6×10-1 cmh –0.9h 116  1.9–3.416 0.463^ 0.041 

Salps 5×10-2 cmi 5×10-2 cmi –4.7i - 3.6 cmi 1.4i -  6.8–11.719 0.73^ 0.029 

Jellyfish - 1.2×10-1 cmj –3j - 6 cmj 2j 0.731  2.7–4.71 0.523^ 0.0051 

Small Fish - 1.2×10-1 cmk –3k - 6 cm 2 -  222 1.322 0.123 

Medium Fish - 1.2×10-1 cmk –3k - 27 cm 4 -  222 1.322 0.123 

Large Fish - 1.2×10-1 cmk –3k - 125 cm 6 -  222 1.322 0.123 

* g wet weight calculated from ESD, assuming 1 gram = 1 cm3, ^ Feeding kernel widths were calculated with the empirical equation derived in (3), using mean log10(PPMR) for this group. 
 
a From Table 3 in (1), b From figure 1 in (5), c  Minimum and maximum larvacean trunk lengths taken from (6) and (8) respectively, and converted to ESD and wet weight using equation derived 445 
in (7), d Carbon mass obtained from supplementary material in (10), converted to wet weight and ESD using carbon: wet weight ratio from (1) e Maximum omnivorous and carnivorous copepod 
lengths taken from (11) and converted to ESD and then wet weight using equation derived in (12), f Euphausiid embryo ESD from figure 2 in (13), g Maximum length taken from supplementary 
material in (3) and converted to ESD and wet weight using equation from (14), h Minimum and maximum ESD from supplementary material in (3), lengths derived using head width: body 
length ratio from (16) i Minimum and maximum salp length taken from (17) and converted to ESD and wet weight using equation derived in (18), maximum salp body size taken as geometric 
mean of Salpida and Pyrosomatida from (17), after using equation in (18) j From supplementary material in (20), k From (21). 450 
 

1. Hansen et al. (1997), 2. Wirtz (2012), 3. Fuchs and Franks (2010), 4. Menden-Deuer and Lessard (2000), 5. Taylor (1978), 6. López-Urrutia (2004), 7. Deibel (1998), 8. Hopcroft et al. (1998), 

9. Sato et al. (2001), 11. Kiørboe & Hirst (2014), 11. Benedetti et al. (2016), 12. Acevedo et al. (2012), 13. Kawaguchi et al. (2011), 14. Meyer and Teschke (2016),  15. Schmidt and Atkinson 

(2016), 16. Pearre (1980), 17. Henschke et al. (2016), 18. Heron et al. (1988), 19. Bone et al. (2003), 20. Acuña et al. (2011), 21. Heneghan et al. (2016), 22. Andersen et al., (2016b), 23. Pauly 

and Christensen (1995).455 
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Table 3 Model parameter values. 

Symbol Definition Value Unit Source 

𝛾 Coefficient of search 
rate  

𝛾 = 640  g −αm−3yr−1 1,2  

𝛼 Exponent of search rate 𝛼 = 0.8  - 1,2  
𝑊𝑆𝑖

 Body size at which 
senescence mortality 
begins for group 𝑖 

0.01�̅�𝑖 g 3,4 

𝛿 Coefficient of 
senescence mortality 

1 yr−1 - 

𝜌 Exponent of 
senescence mortality 

0.3 - 3,4 

𝑤𝑝 Smallest phytoplankton 
body size 

10-14.5 g 5 

𝑃𝑖  Relative abundance of 
smallest size class of 
group 𝑖 

Flagellates = 0.1 
Ciliates = 0.1 
Larvaceans = 0.1 
Omnivorous copepods = 0.04 
Carnivorous copepods = 0.06 
Euphausiids = 0.1 
Chaetognaths = 0.1 
Salps = 0.01 
Jellyfish = 0.01 

- - 

𝑄10 Temperature scaling 
coefficient 

2 - 6,7 

𝐾ref Reference temperature 303.15 K - 

1. Blanchard et al., (2009), 2. Peters (1983), 3. Hall et al. (2006), 4. Heneghan et al. (2016), 5. Brewin et al., 2015, 
6. Eppley (1972), 7. Goldman and Carpenter (1974). 
 

2.2 Numerical implementation of ZooMSS 460 

2.2.1 Boundary conditions for the size-spectrum model 

We do not explicitly resolve reproduction for any zooplankton or fish group, which affects 

how the boundary conditions of the smallest size class of each functional group is 

parameterised. Although reproduction in fish is a relatively simple process of production of 

eggs of roughly the same size (1 mg), and being sexually fertilised (Neuheimer et al., 2016), 465 

reproduction in the zooplankton is much more diverse, from alternating generations of sexual 

and asexual reproduction in salps and jellyfish (Fautin, 2002; Daponte et al., 2013), to the 

hermaphroditism of chaetognaths (Bone, 1991), and intersexuality in copepods (Gusmão and 
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McKinnon, 2009). Therefore, for simplicity, we assume constant recruitment for each 

zooplankton and fish group, which keeps the abundance of their smallest size classes fixed at 470 

a proportion of the total abundance in those size classes from other groups.  

For each zooplankton group, the abundance of the smallest size class at time 𝑡, 𝑁𝑖(𝑤𝑖, 𝑡), was 

fixed with respect to the total abundance of the other groups 𝑗 in that size class: 

𝑁𝑖(𝑤𝑖, 𝑡) =  𝑃𝑖 ∑ 𝑁𝑗(𝑤𝑖, 𝑡)

𝑗≠𝑖

, (E 15) 

where 𝑃𝑖  is the relative abundance of group 𝑖 in size class 𝑤𝑖, with respect to the total 475 

abundance of all other groups. For the smallest zooplankton group, heterotrophic flagellates, 

the abundance of their smallest size class was fixed to be 10% of the abundance of the 

phytoplankton community in the same size class. In keeping with ZooMSv1, the smallest size 

class abundance for the total fish community was fixed at the total zooplankton abundance 

in that size class, divided equally among the three fish groups. For all other zooplankton 480 

groups, except for salps and jellyfish, 𝑃𝑖  was fixed at 0.1. Salps and jellyfish are the two largest 

zooplankton groups, and 𝑃𝑖  was set at 0.01 to prevent these groups from dominating the 

biomass of the zooplankton community.  

2.2.2 Running ZooMSS 

Abundances of the zooplankton and fish groups were modelled with separate second order 485 

McKendrick-von Foerster equations, which we solved numerically using a second order semi-

implicit upwind finite difference scheme (Press et al., 2007). For numerical implementation, 

we discretised the zooplankton and fish community size ranges into equal 0.1 log10 size 

intervals. The model is initialised with the same zooplankton community in each 5° grid cell 

and integrated forward through time for 1000 years, with a half weekly time step. After 490 

experimenting with smaller and larger interval widths, we chose these values to discretise the 

weight and time intervals to ensure convergence in our numerical implementation, whilst 

minimising the time required to run the simulation. Large PPMRs and narrow feeding kernels 

have been shown to cause travelling waves across the spectrum through time (Datta et al., 

2011; Heneghan et al., 2016). With the very high PPMRs of some of the zooplankton groups 495 

represented here, we found that our model settles into repeating cycles of travelling waves 

of abundance from small to large body sizes through time. Therefore, we average the last 500 
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years of abundance, biomass and growth rates to obtain the long-term average results 

presented here.  

2.3 Model Assessment 500 

2.3.1 Assessing the emergent global distribution of total zooplankton biomass 

We use two different estimates of the global distribution of zooplankton biomass to assess 

our model estimates. The first is from Strömberg et al. (2009) who created a global map of 

zooplankton carbon biomass based on a theoretical trophic transfer model driven by net 

primary production and tuned to 4843 estimates of carbon biomass. The second global map 505 

is derived from all available zooplankton biomass estimates in the COPEPOD database 

(Supplementary Figure A3, n=196,707). As these estimates were measured and collected in 

different ways, we used a generalized additive model with zooplankton biomass as the 

response and a suite of predictors to standardize for measurement type and collection 

methods, and included satellite chlorophyll a and sea surface temperature as environmental 510 

predictors (see Supplementary Information Section A2 for more details). Because this 

statistical model was driven by data we called this approach the Empirical Model. Both 

approaches have strengths and weaknesses: the Strömberg Model is based on theory and 

relatively few observations, whereas the Empirical Model is based on many more 

observations but had to account for differences in sampling methods and types of biomass 515 

measurements. 

2.3.2 Assessing emergent global distributions of zooplankton abundance 

The global distribution of each zooplankton functional group emerges from the model based 

on their relative fitness in the environmental conditions of each grid cell. To assess the 

emergent distributions of the individual functional groups against global patterns of empirical 520 

abundance, we used general linear models to model the relationship between in situ sample 

data, and environmental variables and sample equipment. Similar to our comparison of the 

model’s biomass with the model from Strömberg et al., (2009), we compared the emergent 

distributions of abundance from ZooMSS with the empirical distributions from the 

generalised linear models, using Pearson’s correlation coefficient and the root mean square 525 

error. 
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To build the generalised linear models of zooplankton abundance, we compiled zooplankton 

taxonomic data from multiple sources to create a database of 640,184 observations of 

zooplankton matching 7 of the taxonomic groups in ZooMSS (see Figure A3 in Supplementary 

Information, for maps of data distribution). These groups were: euphausiids, omnivorous 530 

copepods, carnivorous copepods, larvaceans, chaetognaths, salps and jellyfish. The database 

was compiled from the COPEPOD database (O’Brien 2014), the Continuous Plankton Recorder 

(Richardson et al. 2006), the Integrated Marine Observing System (Eriksen et al. 2019, IMOS 

2019), the Jellyfish Database Initiative (Condon et al. 2014) and the Warreen Data (Baird et al 

2011). Data that did not match the 7 groups were discarded and remaining data were quality 535 

controlled to remove samples with missing or incorrect metadata (e.g. time, date, GPS 

location). GEBCO bathymetry and satellite-derived sea surface temperature and chlorophyll 

a climatologies from MODIS-Aqua was matched to each sample.  

Using this database of seven zooplankton groups we compiled, we generated a linear model 

in R v3.5.3 (R Core Team 2019) for each zooplankton group to quantify global patterns and 540 

compare with ZooMSS. The same initial model was used for all groups. Predictors used in the 

initial model were environmental variables sea surface temperature (SST; °C), chlorophyll a 

(mg m-3), bathymetry (m), day of year (days), sample depth (m), hour of the day (h), mesh size 

(µm) and device type (Net or CPR). Natural splines using the splines package were fit to 

bathymetry and SST, and a harmonic function was fitted to cyclical variables of day of year, 545 

and hour of the day. Day of year was standardised to the Northern Hemisphere, so the middle 

of summer was the same day of year in both hemispheres. Non-significant predictors were 

removed, and model residual plots were inspected. After viewing residual plots, we log- 

transformed the response for each zooplankton group (abundance) and chlorophyll a – to 

improve assumptions of homogeneity of variance and normality. We tested a model using 550 

the Gamma family with a log-link, however the models did not converge. We do not have the 

original sample volumes for all the datasets, so we were unable to use counts as the response 

and volume as an offset in the model. Figures of the final statistical models for each of the 

seven functional groups can be found in the Supplementary Material A3 (Supplementary 

Figures A6-A12). 555 
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2.3.3 Assessing modelled zooplankton growth rates 

Energy transfer through the zooplankton from phytoplankton to fish is driven by growth rates 

of the different zooplankton functional groups. To assess whether the model produced 

realistic rates of energy transfer through the zooplankton groups, we compared modelled 560 

growth rates with empirical rates from Hirst et al. (2003) and Kiørboe and Hirst (2014). 

Evaluating growth rates in the model also allows us to assess whether a simple Type 1 

functional response is a reasonable parameterisation of zooplankton feeding rates at this 

temporal and spatial scale. 

2.4 Sensitivity analysis 565 

We conducted two sensitivity analyses. First, to assess the robustness of the model to our 

parameterisation of the abundances of the smallest zooplankton size classes, we conducted 

a sensitivity analysis of the total biomass of the zooplankton community when 𝑃𝑖  was varied 

by ±50% from chosen values. Second, to assess the sensitivity of fish community biomass to 

the composition of the zooplankton, we calculated the change in total fish biomass when each 570 

of the zooplankton functional groups (excluding flagellates and ciliates) were removed 

individually. As part of this second analysis, we also assessed the sensitivity of total fish 

biomass when zooplankton were represented as a single functional group, with a fixed PPMR 

of 1000 (Kiørboe, 2008; Ward et al., 2012), a carbon content of 10% (Pauly and Christensen, 

1995) and a feeding kernel width of 1.3 (Andersen et al., 2016b).  575 

3 Results 

3.1 Model assessment 
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3.1.1 Global zooplankton biomass  

 

Figure 5 Comparison of the global zooplankton carbon biomass (mg C m−3) from the size-580 

spectrum model, with maps derived from observations. a) ZooMSS total zooplankton carbon 

biomass map (mg C m−3); b) Global annual average (1998–2005) zooplankton carbon biomass 

map (mg C m−3), reproduced from Strömberg et al., (2009) (called the Strömberg Model); c) 

Correlation plot between a) and b) with Pearson’s correlation (r) and root mean square error 

(RMSE) reported; d) Global zooplankton carbon biomass map based on an empirical statistical 585 

model using 196,707 observations from the COPEPOD database (called the Empirical Model, 

see Supplementary Information Section A2 for more information); e) Correlation plot 

between a) and d) with Pearson’s correlation (r) and root mean square error (RMSE) reported. 

In c) and e), the black dashed line is the one-to-one line, and the blue solid line is the line of 

best fit. 590 

There is reasonable agreement in the spatial pattern between the global zooplankton 

biomass map from ZooMSS and that from the Strömberg and Empirical Models, with 

correlation coefficients of 0.85 and 0.9 respectively and RMSEs of 0.88 and 0.86 respectively 

(Figure 5). ZooMSS captures the global-scale patterns of total zooplankton biomass, showing 

lowest levels of biomass in the oligotrophic ocean gyres, and highest levels in upwelling 595 

regions and coastal shelves. The distribution of global biomass in ZooMSS and the Strömberg 

and Empirical Models is similar to that of satellite-derived chlorophyll a at this scale.  

When comparing values from the ZooMSS model global biomass with the Strömberg model, 

two data groups are evident (Figure 5c): one above the line of best fit, which mainly contains 
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grid cells in ZooMSS in coastal and upwelling where zooplankton biomass is high; and one 600 

below the line of best fit, which has grid cells from oligotrophic regions where zooplankton 

biomass is low. At this scale, this variation between the biomass in ZooMSS and the Strömberg 

Model could be caused by the difference in underlying environmental drivers from the 

Strömberg study (which uses net primary production to drive zooplankton biomass) and our 

study (which uses chlorophyll a concentration) or from differences in the structure of the two 605 

models. In the comparison between the biomass from ZooMSS and the Empirical Model, 

there were no similar groups obvious (Figure 5 e). 

In terms of absolute zooplankton biomass, the biomass ranges in ZooMSS (3–300 mg C m−3) 

is generally higher than from the Strömberg Model (0.5–30 mg C m−3, Figure 5 b). The 

Strömberg zooplankton biomass is calculated from a simple trophic model, where the total 610 

zooplankton biomass depends on the trophic transfer efficiency between phytoplankton and 

zooplankton and tuned to a relatively small dataset on zooplankton biomass (n=4,843). It 

appears that the zooplankton biomass estimates from ZooMSS are shifted vertically from the 

Strömberg Model, evident in the relative position of the 1:1 line (Figure 5c). By contrast, the 

biomass range in ZooMSS (3–300 mg C m−3) is fairly close to that from the Empirical Model 615 

(50–300 mg C m−3) based on a much larger global dataset of biomass measurements 

(n=196,707) than that of Strömberg et al. (2009). On the other hand, because the minimum 

values in ZooMSS are much lower (~3 mg C m−3) than from the Empirical Model (~70 mg C 

m−3), ZooMSS might underestimate zooplankton biomass when zooplankton biomass is low – 

i.e. in low chlorophyll a areas.  620 

Overall, the large correlations and RMSEs between the pattern of global zooplankton biomass 

in ZooMSS and the Strömberg and Empirical Models, and the fact that ZooMSS absolute 

biomass range falls within estimates from the two models based on data, is evidence that the 

model produces reasonable estimates of the distribution of global zooplankton biomass. 

3.1.2 Global zooplankton functional group abundances 625 

The numerical model shows good agreement with the spatial pattern of abundance from the 

statistical models, indicating that ZooMSS is capturing the broad patterns of zooplankton 

community composition (Figure 6). Correlations were positive for six of the seven groups.  The 
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best performing groups were jellyfish, omnivorous copepods and euphausiids (r = 0.91, 0.82 

and 0.79 respectively), followed by chaetognaths, carnivorous copepods and larvaceans (r = 630 

0.39, 0.29 and 0.25 respectively). Salps were the only group that showed a negative 

correlation with ZooMSS. This could be due to limitations in the statistical model rather than 

ZooMSS, as we had fewer data than the other groups and the available data was clustered 

around Australia and the Southern Ocean (see Figure A3 in Supplementary Information).  

For all groups, ZooMSS predicted that abundance increases with chlorophyll a concentration, 635 

with highest abundances in coastal and upwelling grid cells and lowest abundances in 

oligotrophic open ocean grid cells where chlorophyll a is lowest. The effect of temperature 

was secondary to chlorophyll a in ZooMSS, and so emergent abundance distributions agree 

well with empirical distributions when empirical abundance is strongly driven by chlorophyll 

a, such as for omnivorous copepods, euphausiids and jellyfish. However, when a group’s 640 

empirical distribution was strongly driven by temperature the model’s distribution was poorly 

correlated, or even negatively correlated in the case of salps.  

Although the model was generally able to capture patterns in the empirical distributions of 

abundance, the reported absolute abundances from the model were much greater than those 

from the statistical models. With the exception of jellyfish, the root mean square errors 645 

(RMSE) between abundances from ZooMSS and the statistical maps were all greater than 2, 

indicating that the average difference between the absolute abundances from ZooMSS and 

the statistical models was more than 2 orders of magnitude. For jellyfish, the RMSE was 0.53, 

indicating over a three-fold difference between the model jellyfish abundances and those 

reported from the statistical model. 650 
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Figure 6 Assessing emergent abundance distributions from the size-spectrum model. The 

abundance distributions from the statistical models (left column, log10(ind m-3); see 

Supplementary Information Section A3 for more information), the emergent zooplankton 

distributions from ZooMSS (centre column, log10(ind m-3)), and correlation plots (right 655 

column) between the two, with Pearson’s correlation (r) and root mean square error (RMSE) 

reported, for: a-c) Larvaceans, d-f) Omnivorous Copepods, g-i) Carnivorous Copepods, j-l) 

Euphausiids, m-o) Chaetognaths, p-r) Salps and s-u) Jellyfish. In each row, the dots in the 

correlation plot represent the abundance of that row’s zooplankton group, in a 5 grid square, 

from the statistical model (x-axis) and ZooMSS (y-axis). The blue line in each correlation plot 660 

is the line of best fit, from a linear model of empirical versus ZooMSS abundances.  

3.1.3 Zooplankton growth  

Figure 7 Zooplankton mass-specific growth rates (d−1) as a function of body size (g C) for a) 

Microzooplankton (heterotrophic flagellates and heterotrophic ciliates), b) Filter Feeders 

(larvaceans and salps), c) Omnivores (omnivorous copepods and euphausiids) and d) 665 

Carnivores (jellyfish, carnivorous copepods and chaetognaths). For each group, dots are 
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empirical mass-specific growth rates (d−1) from Hirst et al. (2003) and Kiørboe and Hirst 

(2013), and lines represent modelled mass-specific growth rates. 

 

The model’s mass-specific growth rates agree well with observed rates from Hirst et al. (1998) 670 

and Kiørboe and Hirst (2013) (Figure 7). For all groups, modelled growth rates fell within the 

range of observed growth rates, and, with the exception of large flagellates (Figure 7 a), model 

growth rates do not exceed the empirical data for any functional group. However, modelled 

growth rates for ciliates, larvaceans and jellyfish are slower than most of the empirical 

observations for those groups (Figure 7 a, b, d). These results indicate that overall, our model 675 

is not overestimating growth rates and resulting energy flow through the zooplankton to 

higher trophic levels. 

There were some differences between the scaling of growth and body size between the 

model and empirical observations; with the exception of salps and larvaceans, modelled 

growth rates decline less with body mass than observations do. Moreover, changes in 680 

modelled growth rates with body size are linear for the model zooplankton groups, with the 

exception of the carnivorous zooplankton, which are more variable (Figure 7 d).   

 

3.2 Sensitivity analyses 

3.2.1 Model sensitivity to boundary conditions for each group 685 

Table 4 Median and maximum changes (%) in total zooplankton biomass when the relative 

abundance of the smallest size class of each zooplankton group (𝑃𝑖) is varied by +50% or        

−50%, one at a time. 

 −50% 𝑃𝑖  +50% 𝑃𝑖  

 Total Zooplankton 
Biomass 

Median  Maximum  Median Maximum 

Flagellates −5% +13% +4% +14% 

Ciliates −2% +3% +<1% +13% 

Larvaceans −4% +5% +3% +39% 

Omnivorous 
Copepods 

−5% +38% +12% +27% 

Carnivorous 
Copepods  

+5% +31% +3% +15% 

Chaetognaths −<1% +15% +<1% +5% 

Euphausiids +1% +9% +<1% +11% 

Salps  +1% +15% +<1% +15% 

Jellyfish −<1% +<1% +<1% +9% 



32 
 

 
 690 
 

 

Zooplankton model biomass was robust to changes in the boundary conditions of all 

zooplankton groups. Total zooplankton biomass was altered by less than the change in 𝑃𝑖  for 

all of the zooplankton groups, with total zooplankton biomass varying ≤15 % for flagellates, 695 

ciliates, chaetognaths, salps, euphausiids and jellyfish and by <40 % for all groups (Table 4). 

The median change in total zooplankton biomass was ≤ ±5 % when 𝑃𝑖  was changed by 

±50 % for all groups, with the exception of omnivorous copepods, which saw a median 

increase of 12% in total zooplankton biomass when that group’s 𝑃𝑖  was increased by 50 %.  

 700 

3.2.2 Sensitivity of fish biomass to different zooplankton groups 

 

Figure 8 Distribution of the change in fish biomass when a) Larvaceans, b) Omnivorous 

copepods, c) Carnivorous Copepods, d) Chaetognaths, e) Euphausiids, f) Salps and g) Jellyfish 

are omitted from the model one at a time, compared to total fish biomass when all 705 
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zooplankton groups are present, across the 5° regions of the global ocean. The dashed red 

line shows the median change in fish biomass, and the solid black line at 0 % shows no change 

in total fish biomass.  

 

Across the global ocean, total fish biomass was sensitive to the presence of different 710 

zooplankton groups (Figure 8). Removing omnivorous copepods or euphausiids caused 

declines of up to 80 % in total fish biomass, with median global declines of 59.3 % for 

omnivorous copepods and 46.5 % for euphausiids (Figure 8 b, e). When larvaceans were 

removed fish biomass declined by up to 50 %, however, the median global decline in the 

absence of larvaceans was limited to 4.5 %, as the regions that had declines in fish biomass 715 

were balanced by the 50% of grid squares that had little change or  a slight increase in fish 

biomass (Figure 8 a). Removing carnivorous copepods saw the greatest median increase in 

global fish biomass of 18.5%, with some grid squares recording increases in fish biomass of 

over 70% (Figure 8 c). The removal of chaetognaths, salps and jellyfish caused changes in total 

fish biomass across the global ocean of over ±25 % (Figure 8 d, f, g). However, for each of 720 

these three groups there was little change in total fish biomass for at least 35 % of the global 

ocean when they were removed, and the global median change in fish biomass was at most 

±1 %.  

4 Discussion 

Here, we described the Zooplankton Model of Size Spectra version 2 (ZooMSS), the first 725 

functional size-spectrum model of the global marine ecosystem that includes the body size, 

carbon content and size-based feeding characteristics of nine major zooplankton groups. The 

model requires only sea surface temperature and chlorophyll a concentration as inputs, and 

the spatial variation of the zooplankton community biomass and structure emerges based on 

the functional traits of the zooplankton groups. Our model strongly suggests that zooplankton  730 

play a key role in regulating the biomass of fish in the ocean, and demonstrates how various 

zooplankton groups support energy transfer to higher trophic levels. The ability of ZooMSS to 

reproduce empirically-derived spatial patterns of global zooplankton biomass and abundance 

as well as growth rates gives confidence that the model provides a reasonable framework for 

further exploration of the role of zooplankton in the ocean.  735 
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4.1 Importance of resolving zooplankton groups for higher trophic levels 

Accounting for functional diversity in marine models is important to better understand the 

unique role of zooplankton in mediating energy from phytoplankton to fish across the global 

ocean (Mitra et al., 2014). In current global marine models focussed on higher trophic levels, 740 

the functional diversity of zooplankton is typically ignored, with zooplankton usually grouped 

together with phytoplankton as a single resource for small fish (e.g., Blanchard et al., 2009, 

2012; Law et al., 2009; Datta et al., 2010), or taken as external inputs from nutrient-

phytoplankton-zooplankton-detritus models (e.g., Maury, 2010; Christensen et al., 2015; 

Petrik et al., 2019). In marine models focussed on lower trophic levels, more progress has 745 

been made in resolving the functional traits of different plankton groups (e.g., Ward et al., 

2012, 2014; Prowe et al., 2018). However, these models do not resolve higher trophic levels 

such as fish, because they are not built to assess the unique and dynamic role of zooplankton 

in mediating energy from phytoplankton to higher trophic levels. By resolving the functional 

traits of nine major zooplankton groups, our model has the unique ability to explore the 750 

impact of shifts in the phytoplankton and zooplankton community on higher trophic levels 

across global environmental gradients. 

Our results from the sensitivity analysis where we removed each zooplankton group one at a 

time indicate that not all zooplankton groups are equal, and that their role in mediating 

energy from phytoplankton to higher trophic levels depends on their body size, carbon 755 

content and size-based feeding behaviour. When omnivorous zooplankton (omnivorous 

copepods and euphausiids) were removed from the model, it reduced fish biomass by up to 

80%. Omnivorous zooplankton are thus important for promoting fish biomass, a likely 

consequence of their high PPMR, wide range of body sizes and high carbon content, which 

means they efficiently transfer carbon to higher trophic levels. By contrast, when carnivorous 760 

zooplankton (carnivorous copepods, chaetognaths and jellyfish) were removed from the 

model, it increased fish biomass by up to 20%. Carnivorous zooplankton thus reduce fish 

biomass, a likely effect of their very low PPMR and diet of other zooplankton, which cause 

longer and more inefficient food chains where these groups dominate. When filter-feeding 

zooplankton (larvaceans and salps) were removed from the model, there were small declines 765 

by up to 5% in fish biomass. 
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Larvaceans and salps share similar body size ranges with omnivorous copepods and 

euphausiids, but have much larger predator–prey mass ratios, meaning they can also access 

picophytoplankton for food. These groups are a direct energy pathway from 

picophytoplankton to higher trophic levels, and so could be important for the productivity 770 

and efficiency of oligotrophic waters where picophytoplankton dominate (Brewin et al., 

2010). On the other hand, these groups are gelatinous, meaning they are a less nutritious 

energy source for higher trophic levels and is part of the reason why median global fish 

biomass did not decline as much when these groups were removed from our model, 

compared to omnivorous copepods and euphausiids. 775 

Increasing functional complexity in models is important for improving our understanding of 

key ecosystem processes in the marine environment. For instance, trait diversity in 

phytoplankton has a key role in ocean biogeochemistry (Fuhrman 2009), productivity (Chen 

et al., 2019) and carbon export (Guidi et al., 2012), and there are a growing number of models 

that demonstrate the importance of trait diversity in structuring the phytoplankton 780 

community across environmental gradients (Acevedo-Trejos, 2015, 2018; Basu and Mackey, 

2018; Dutkiewicz et al., 2019). Similarly, we have shown here that resolving zooplankton 

functional complexity is important to better understand how ecosystem efficiency is affected 

by shifts in phytoplankton community structure from oligotrophic ocean gyres to eutrophic 

coastal and upwelling systems (Hansen et al., 1994; Boyce et al., 2015). 785 

4.2 Model evaluation 

To evaluate the performance of ZooMSS, we focussed on comparing emergent properties of 

the model’s zooplankton, with empirical observations of total zooplankton biomass across 

the global ocean, as well as the distributions of abundance for seven of the zooplankton 

groups, and empirical growth rates for all zooplankton groups. Across the three approaches 790 

the model performed well, reproducing the global distribution of zooplankton biomass and 

most of the zooplankton functional group abundances, as well as producing growth rates that 

were within the range of empirical observation for all zooplankton groups.  

The global distribution of total zooplankton biomass from ZooMSS was strongly correlated 

with the empirical estimate from Strömberg et al., (2009), our estimate from the COPEPOD 795 
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database (see Supplementary Information) and also agrees with other model predictions of 

the distribution of zooplankton and fish biomass (Jennings et al., 2008; Ward et al., 2012; 

Harfoot et al., 2014; Petrik et al., 2019). What is more, total zooplankton biomass from 

ZooMSS falls within the range of the two empirical estimates.  

The emergent distributions of abundance for six of the seven zooplankton groups that were 800 

assessed had a positive correlation with distributions that were derived from data. However, 

there was a difference in the ranges of absolute zooplankton biomass and abundance 

between the model and the empirical estimates, with ZooMSS projecting higher  abundances 

than the empirical estimates. This would be explained first by the fact that parameters for 

ZooMSS were selected from the literature, and were not tuned to estimates of abundance 805 

and biomass from the sample data. Moreover, there is a significant difference between 

sample data used to derive the empirical distributions, and how biomass and abundance are 

calculated from the ZooMSS. The empirical models were constructed using sample data taken 

with dozens of different gears and mesh sizes, over the past 60 years. However, there are 

many mesh sizes and gear types not suitable to capture smaller zooplankton, biasing sampled 810 

abundances and biomass to larger zooplankton (Everett et al., 2017). At the same time, large 

zooplankton can actively avoid sample nets and avoid detection, thus leading to samples that 

underestimate the number of large zooplankton (Richardson et al., 2006). This means that 

the samples—and therefore the distributions predicted by the empirical models—are only 

capturing a fraction of the actual total zooplankton. By contrast, biomass and abundance from 815 

ZooMSS was obtained by summing all zooplankton. This means we are counting 100% of the 

zooplankton from the size-spectrum model, while the sampled distributions from the 

empirical models only capture some fraction of total zooplankton.  

Mass-specific growth rates from ZooMSS agreed well with observed rates from Hirst et al. 

(2003) and Kiørboe and Hirst (2013). However, there were two main discrepancies. The first 820 

is that for zooplankton groups other than salps and larvaceans, modelled growth rates decline 

less with body size compared to observations. The reason for this discrepancy could be in the 

difference between how growth rates are calculated for salps and larvaceans and the rest of 

the zooplankton groups; the prey size range for salps and larvaceans is fixed no matter the 

predator body size, meaning that growth rates for these groups scale with body size based on 825 
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search volume only, which has a mass-specific scaling that is less than zero. By contrast, the 

other zooplankton groups have prey size ranges that shift with increasing predator size—prey 

get larger as predators get larger—and this could be offsetting the lower search rate for larger 

predators, as well as the lower abundance of larger prey.  

The second discrepancy was that for carnivorous groups, the model had non-linear variation 830 

in growth rates with body size that was not evident in the empirical data. This variation in 

specific growth rates with body size for carnivores is caused by the variability in the density 

of their prey. Microzooplankton, filter feeders and omnivorous zooplankton all primarily eat 

phytoplankton, which is modelled as a static resource across time and body size, so their 

growth rates are largely driven by predator search volume and size selectivity, not variability 835 

in their prey. However, carnivorous zooplankton only eat other zooplankton, which have 

varying abundance with time and body size, so variation in their growth rates is caused not 

only by search volume and size selectivity, but also by changes in their prey through time. 

4.3 Caveats and next steps  

4.3.1 Spatial and temporal dynamics 840 

The spatial and temporal resolution of ZooMSS means that the model is designed to explore 

steady-state conditions of the marine ecosystem across global environmental gradients. For 

this reason, we focused on traits such as body size, predator–prey mass ratio and carbon 

content because, at this spatial and temporal scale, these traits are important for how energy 

moves through the marine food web (Hansen et al., 1994; Jennings et al., 2001; Woodward 845 

et al., 2005; Andersen et al., 2016a; McConville et al., 2017). However, this also means that 

we have made simplifying assumptions about dynamic processes such as reproduction and 

movement. This is in contrast to other fish-focussed global models, which although they 

resolve zooplankton simplistically, do resolve explicit reproduction (Blanchard et al., 2011; 

Carozza et al., 2016; Petrik et al., 2019) or movement (Cheung et al., 2011; Maury, 2010). 850 

By fixing abundances of the smallest size classes for all functional groups, we assume constant 

recruitment, which means we are not explicitly resolving reproduction. This could have a 

stabilising effect on the dynamics of the model, and our sensitivity analysis of total 

zooplankton biomass to changes in the boundary conditions of each zooplankton group 

indicates that our results are reasonably robust to the implicit parameterisation of 855 
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reproduction as constant recruitment. Zooplankton reproductive strategies are extremely 

complex, however a first step toward resolving reproduction in the zooplankton would be to 

follow the formulation of the community size-spectrum model framework (Andersen et al., 

2016b), where reproductive complexity is ignored. For each functional group recruitment 

could then be represented as a fraction of assimilated energy flowing from mature size classes 860 

to the smallest size class for that group.  

Finally, the spatial resolution of our model (5) is coarser than other global marine ecosystem 

models, which tend to use a 1 resolution (Tittensor et al., 2018). We use a 5 resolution 

because it allowed us to run the model quickly, while still being able to assess the emergent 

patterns of zooplankton biomass and abundance across the global ocean. Similar to most 865 

global fish-focused models run with a 1 or less resolution (but see Maury, 2010), each 5 grid 

cell is run independently, which means we do not take into account the movement of 

plankton or fish between adjacent grid squares. This could introduce a possible bias due to 

movement of plankton by currents in some regions or apex predators by active transport, 

which in the real world could cause discrepancies between plankton and fish abundance in 870 

certain areas. However, given the coarse resolution of our model output we expect this to 

have a minor impact, since most zooplankton are short-lived (less than a few weeks) and are 

unlikely to move outside of the large grid cells over their lifespan. Further, we have not 

included fish species in the model, but only used three broad, size-based groups to represent 

all epipelagic fish, which precludes a good understanding of how fish might move among grid 875 

cells during large-scale movements and seasonal migrations. The 5 cells also mean that many 

fish would remain within a single grid cell during their life, particularly for the small and 

medium fish communities. In future models, passive movement by currents and active 

movement due to behaviour of fish could be implemented using existing advection and 

diffusion algorithms (Maury, 2010; Castle et al., 2011; Watson et al., 2014). 880 

4.3.2 Phytoplankton production and dynamics 

Similar to existing global marine ecosystem models (Blanchard et al., 2009; Maury, 2010; 

Christensen et al., 2015; Jennings and Collingridge, 2015; Carozza et al., 2016; Petrik et al., 

2019), ZooMSS does not incorporate phytoplankton dynamics, instead representing primary 

producers as a static abundance spectrum with slope, intercept and maximum size 885 
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determined by annual average chlorophyll a concentration. Satellite chlorophyll a represents 

in situ phytoplankton biomass, and so in a sense implicitly incorporates the processes of 

nutrient cycling and predation on the phytoplankton. Moreover, since ZooMSS was able to 

reproduce global zooplankton biomass and growth rates in the range of empirical estimates, 

we believe a static resource for zooplankton that does not explicitly resolve phytoplankton 890 

dynamics and nutrient cycling in each grid cell is a reasonable compromise between realism 

and model complexity at this stage. 

Looking forward, resolving phytoplankton dynamics and the feedbacks between 

phytoplankton and zooplankton is critical to better resolving zooplankton in marine 

ecosystem models. In any region, primary production sets the limits to growth for higher 895 

trophic levels. Limited primary production also induces competition amongst zooplankton 

competing for a finite resource. This competition would have implications for the stability of 

different zooplankton groups from oligotrophic to eutrophic regions that are not resolved in 

the current model. In any region primary production depends on nutrient supply. In coastal 

and upwelling regions, a high supply of new nutrients from ocean mixing sustain productive 900 

systems, while in the open ocean nutrient recycling from zooplankton back to phytoplankton 

through the microbial loop plays a key role in nutrient supply for primary production (Azam 

et al., 1983). Finally, seasonal cycles of boom and bust in the phytoplankton is a major driver 

of variation of zooplankton reproduction, as many zooplankton groups time their 

reproduction to coincide with phytoplankton blooms (Falkowski et al., 1988; Atkinson, 1996).  905 

These linkages and feedbacks between nutrient cycles, phytoplankton dynamics and 

zooplankton need to be considered if we wish to move beyond the current static 

representation of the plankton in this model. Processes of nutrient uptake, growth and 

mortality are strongly size-structured in the phytoplankton, and these size-based 

relationships have been used to resolve the dynamics of the phytoplankton over large spatial 910 

scales (Follows et al., 2007; Fuchs and Franks, 2010; Ward et al., 2012, 2014; Cuesta et al., 

2018). Future model developments could focus on resolving the size-structured functional 

traits of phytoplankton nutrient uptake, growth and mortality, or alternatively to shift from 

using unlimited phytoplankton biomass to limited primary production to fuel higher trophic 

levels. 915 
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4.3.3 Fitting the model to data 

Emergent patterns of biomass and abundance from the model generally agree with empirical 

patterns, and the ZooMSS model estimate of absolute global zooplankton biomass falls within 

the range of two empirical estimates. However, ZooMSS’s absolute abundances are up to 

several orders of magnitude higher than empirical estimates. Part of this discrepancy is 920 

because the sample data used to fit empirical abundance estimates are obtained with 

methods that are not able to capture all zooplankton (Richardson et al., 2006), whereas 

reported numbers from the model include all individuals across the entire size range of 

zooplankton. However, the magnitude of the difference between the model’s abundance 

estimates and the empirical estimates highlights that the model’s parameters were not tuned 925 

to sample data, rather the functional traits incorporated into ZooMSS, were parameterized 

using values from the literature.  This is in contrast to other global marine ecosystem models, 

which calibrate their parameter values so that their reported values are in the range of 

empirical estimates (Christensen et al., 2015; Carozza et al., 2017). For zooplankton, that kind 

of calibration presents unique challenges given the homogeneity of sampling methods used 930 

to obtain empirical estimates of biomass and abundance. However, empirical maps of 

zooplankton abundance fit with sample data have been useful for constraining and assessing 

previous ecosystem model estimates (Everett et al., 2017), which means that the statistical 

models developed here could also be useful to constrain zooplankton abundance in future 

iterations of ZooMSS. In the meantime, reported absolute abundances from this model 935 

should be read with these uncertainties in mind. 

4.3.4 Temperature 

Effects of sea surface temperature were incorporated in the model as a multiplier on growth, 

mortality and diffusion terms, with the same temperature scaling (Q10) used for all functional 

groups. We made this assumption because, despite studies elucidating temperature scaling 940 

for different zooplankton species (Hansen et al., 1997; Kiørboe and Hirst, 2014), we are 

unaware of any meta-analyses for temperature dependence of different processes for the 

broader taxonomic groups we use here. However, this means that changes in chlorophyll a, 

and the resulting shifts in the size structure of the phytoplankton community was the main 

driver of biomass and abundance for all zooplankton groups, and so the model does not 945 

capture the unique temperature response of different functional groups. This is highlighted 
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in the contrast between the empirically derived abundance distributions, and the emergent 

distributions from ZooMSS; the emergent distributions of abundance from the model are 

driven by chlorophyll a, with more zooplankton abundance in high chlorophyll a waters and 

less in oligotrophic waters. Emergent abundance distributions agree well with empirical 950 

distributions when empirical abundance is strongly driven by chlorophyll a. However, when a 

group’s empirical distribution was more strongly affected by temperature the model’s 

distribution was poorly correlated. This highlights the pressing need for greater synthesis of 

the extensive experimental zooplankton data on the rate of life processes at different 

temperatures to inform modelling efforts. 955 

4.4 Concluding remarks 

ZooMSS is the first functional size-spectrum model of the global marine ecosystem to resolve 

the functional traits of multiple zooplankton functional groups. Using body size ranges, size-

based feeding behaviour and carbon content of nine of the most abundant zooplankton 

groups, ZooMSS is capable of replicating global patterns in total zooplankton biomass and 960 

abundance, and resolving growth rates for different zooplankton groups. By showing how 

unique zooplankton groups have different impacts on fish biomass across the ocean, ZooMSS 

provides new insights into the role of different zooplankton in supporting higher trophic level 

biomass, and is a first step towards better resolution of zooplankton in marine ecosystem 

models using the functional size-spectrum framework. In an era of environmental change, 965 

and given the pivotal role zooplankton play in food webs, improving the representation of 

zooplankton in ecosystem models will be critical to predict fisheries productivity and carbon 

cycling in the future ocean. 

 

Code availability 970 

ZooMSS was written in R version 3.5. Scripts to run the model, as well as global forcings for 

sea surface temperature and chlorophyll a, are available for download at  

https://github.com/MathMarEcol/ZoopModelSizeSpectra.  
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