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Abstract 7 

Tetrabutylammonium bis(trifluoromethanesulfonyl)imide (TBA TFSI) and 8 

tetrafluororate-based anion ionic liquids (ILs) were obtained simultaneously by using a 9 

fast, versatile, cheap, low cost, and one-pot process. The process relies on dissolving 10 

tetrabutylammonium tetrafluoroborate salt, an organic-based 11 

bis(trifluoromethanesulfonyl)imide, ILs, such as 1-ethyl-3-methylimidazolium, N-12 

trimethyl-N-butylammonium, 1-butyl-1-methylpyrrolidinium, 1-methyl-1-13 

propylpiperidinium derivatives in dimethylformamide. A further extraction process using 14 

water and ether allows the selective recovery of the TBA TFSI in the organic phase, and 15 

the organic-based tetrafluoroborate IL in the aqueous phase. All the ionic liquids 16 

synthetized were characterized using Infrared Spectroscopy and Nuclear Magnetic 17 

Resonance, and compared with commercially available samples. 18 
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1. Introduction 32 

Solvents define a major part of the performance of processes in the chemical 33 

industry, and have an impact on cost, safety, and health issues. The use of alternative 34 

solvents represents a major entry in the general green chemistry toolkit, and is the subject 35 

of an enormous research effort[1–8]. In this sense, an attractive alternative to conventional 36 

organic solvents is the use of ionic liquids, ILs, due to both their benign chemical features 37 

(non-flammable, non-volatile, and thermally stable over a wide range of temperatures)[9–38 
15] and their electrochemical characteristics. ILs have from moderate to high 39 

conductivities because they are liquids consisting of only ions and have good 40 

electrochemical stability (stable from -3.00 V to +1.7 V vs. Saturated Calomel Electrode 41 

(SCE) for reduction-oxidation processes)[16–20]. However, the processes and the reactant 42 

used for synthetizing ILs require a critical analysis from an environmental point of view. 43 

In most of the cases, it is not possible to obtain the IL with the desired anion in one single 44 

step, so two main different reaction pathways are used: 1) Lewis-acid-base reaction, or 2) 45 

anion metathesis[21–25]. Both types of reactions are performed from the halide salts of ionic 46 

liquids, producing a considerable amount of non-desired byproducts. In this regard, one 47 

important drawback associated with synthetic routes is to remove the impurities or 48 

byproducts of the ILs, which is a hard and tedious task (Scheme 1). Note that pure ILs 49 

are specially required for homogeneous catalysis, supporting electrolyte and electronic 50 

applications, such as  gating in transistors[26,27]. 51 

 52 

Scheme 1. Reaction pathways 53 

In this sense the tetrabutylammonium bis(trifluoromethylsulfonyl)imide (TBA TFSI) is 54 

one of the most promising IL for electronic applications, more exactly, for transistor 55 

design.  However, up until now, there are only three synthetic routes for obtaining TBA 56 

TFSI IL, and all of them generate a considerably amount of lithium salts or other 57 

byproducts [9,10,21,28] .      The aim of this work is to design a cleaner strategy for obtaining 58 

TBA TFSI by mixing an organic TFSI ionic liquid and a tetrabutylammonium 59 

tetrafluoroborate salt (TBA BF4) in dimethylformamide (DMF). This new synthetic route 60 
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will potentially allow two different ionic liquids, TBA TFSI and organic cation, C+ BF4
- 61 

to be produced after an ion exchange process. It is important to highlight that following 62 

this new approach, then main product (TBA TFSI) and the byproducts formed in the ion 63 

exchange process are also ILs, which will potentially have their own market. Finally, it is 64 

remarkable there is the higher recyclability of the solvents involved in the chemical 65 

process.  66 

 67 
Scheme 2. Chart of structures 68 

 69 

2. Experimental  70 

2.1 Chemicals 71 

Ionic liquids (1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIM 72 

TFSI), N-Trimethyl-N-butylammonium bis(trifluoromethanesulfonyl)imide (N1114 73 

TFSI), 1-Butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14 TFSI), 74 

1-Methyl-1-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13 TFSI)) were 75 

purchased from Solvionic and used without further purification. Tetrabutylammonium 76 

tetrafluoroborate (TBA BF4), Tetraethylammonium tetrafluoroborate (TEA BF4), 77 

Tetramethylammonium hexafluorophosphate (TMA PF6), Tetrabutylammonium bis 78 

(trifluoromethanesulfonyl)imide (TBA TFSI)) and N,N-dimethylformamide (DMF), 79 

99.8%, were supplied by Sigma-Aldrich and used as received (Scheme 2).  80 

 81 

2.2 Analysis and Product Characterization  82 

Products obtained were characterized by Nuclear Magnetic Resonance and Near Infrared 83 

Spectroscopy and compared with commercially available samples. 84 
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 85 

2.2.1 Nuclear Magnetic Resonance (NMR) 86 

Synthetized ionic liquids and commercially available samples of the synthesized ionic 87 

liquids were characterized by 1H NMR, 13C NMR and 19F NMR. Measurements were 88 

performed in a Bruker DPX360 (360 MHz) (Billerica, MA, USA) spectrometer, and 89 

Bruker DPX250 (250 MHz) with a Quattro Nucleus Probe (QNP). Proton chemical shifts 90 

were reported in ppm (δ) (CDCl3, δ = 7.26 or CD3CN, δ = 1.94). Carbon chemical shifts 91 

are reported in ppm (δ) (CDCl3, δ = 77.2 or CD3CN, δ = 1.32). The J values are reported 92 

in Hz. Fluor chemical shifts are reported in ppm (δ) (CDCl3).  93 

 94 

2.2.2 Infrared Spectroscopy (IR) 95 

Near infrared spectra were recorded in attenuated total reflectance (ATR) mode on a 96 

Model Tensor 27 spectrophotometer from Bruker that was governed via the software 97 

OPUS 5.5, also from Bruker. 98 

 99 

 100 

3. Results and discussion  101 

 102 

Scheme 3 describes the simple ionic exchange process between TBA BF4 (organic salt) 103 

and EMIM TFSI (ionic liquid).  An equimolar amount of the above-mentioned salt and 104 

IL are dissolved in dimethylformamide (DMF) by stirring the mixture for five minutes at 105 

room temperature. After that the DMF solution was poured into a separator funnel, which 106 

contained the same amount of water and ether. Due to the fact that neither EMIM TFSI 107 

nor TBA BF4 is soluble in water, an ion exchange process takes place. Hence, in the 108 

organic phase, after washing and drying this phase with water and anhydrous sodium 109 

sulphate, the desired IL (tetrabutylammonium bis(trifluoromethanesulfonyl)imide) is 110 

obtained with an 89% yield.  Moreover, the byproduct of the ion exchange between 111 

tetrabutylammonium tetrafluoroborate and 1-ethyl-3-methylimidazolium 112 

bis(trifluoromethanesulfonyl)imide, EMIM BF4, is easily recovered from the aqueous 113 

phase after several washings with dichloromethane.  Distillation of dichloromethane 114 

enables EMIM BF4 to be obtained in a 66.7% yield. It is important to highlight that the 115 

one-pot synthetic process above described enables two highly pure ionic liquids to be 116 

obtained following several principles of Green Chemistry, such as high atom economy, 117 
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the utilization of by-products, recovery of the solvents, as well as recyclability of the 118 

reactants.  119 

 120 

 121 

  122 

 123 

 124 

 125 

 126 

 127 

 128 

 129 

Scheme 3. Ionic exchange for EMIM TFSI and TBA BF4 130 

 131 

Standard spectroscopy techniques were used as useful tools to identify and characterize 132 

the products formed. Quick comparisons between the spectroscopic features of pure 133 

reactants, compounds obtained, and pure commercial available samples of the compounds 134 

obtained verified the exchange process. [28–30] Figure 1 (a-b) shows the different IR spectra 135 

for the TBA BF4 and EMIM TFSI reagents, and the synthesized ionic liquids, TBA TFSI 136 

and EMIM BF4. All frequencies described in IR for the EMIM+, TBA+cations, and TFSI-, 137 

BF4
- anions are summarized in Table S1. The stretching/bending vibrations for the cation 138 

part could be distinguished, focusing between 2880 - 2970 cm-1 for TBA+ cation and 139 

between 2950 - 3165 cm-1 for EMIM+. Furthermore, the imidazolium ring of EMIM+ 140 

shows characteristic vibrations between 1300 – 1600 cm-1.  In the anion part, the spectra 141 

for BF4
- is easily described as it shows a huge peak at 1050 cm-1; however, in the case of 142 

the TFSI- anion  the spectra show four different peaks that describe the stretching and 143 

bending for CF3, SO2, and S-N-S bonds.  144 

 145 

 146 
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Figure 1. IR spectra of ionic exchange process between TBA BF4 and EMIM TFSI a) before mixing and b) after a 149 
mixing and a purification process 150 

 151 

On the other hand, figure 2 and 3 show the 1H-NMR spectrum for EMIM BF4, EMIM 152 

TFSI, TBA BF4 and TBA TFSI. It is easy to distinguish between cation EMIM+ and TBA+ 153 

because they have very different kind of protons in their structure; TBA+ presents 4 154 

different signals of its alkyl protons, whereas EMIM+ has 6 different proton types, which 155 

appear at a higher chemical shift because of the resonance of the imidazolium ring. 156 

Moreover, the EMIM+ cation described an ion-pair formation equilibrium with BF4
- and 157 

TFSI- anions in dilute low dielectric solutions, such as chloroform[31]. Hence, 1H-NMR 158 

a) 

b) 
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describes two concurrent sets of signals due to the presence in the sample of freely 159 

dissolved ions and ion-pair aggregates, these signals are different depending on anion.    160 

 161 

 162 

 163 

 164 

 165 

 166 

 167 

 168 

 169 

 170 

 171 

 172 

 173 

 174 

 175 

 176 

Figure 2. 1H NMR of EMIM BF4 and EMIM TFSI ILs 177 

 178 
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 180 
Figure 3. 1H NMR of TBA BF4 salt and TBA TFSI IL 181 

 182 

Furthermore, the combined use of 13C NMR and 19F NMR allow the nature of the counter 183 

anion present to be identified in the ILs formed. Figure 4 shows the 13C NMR for the 184 

TBA+ cation paired with TFSI- and BF4
-.  An extra signal (C5) TBA TFSI, which is related 185 

to CF3 group. Table S2 summarizes the 1H-NMR and 13C-NMR signals for TBA TFSI. 186 
19F NMR data are reported in Figure S1,  according to previously published data-) [32–34] 187 

two different signals are observed for BF4
- and TFSI- anions at 152.4 and 79.9 ppm, 188 

respectively.  189 

 190 
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 195 
Figure 4. 13C NMR for TBA BF4 and TBA TFSI  196 

 197 

The current methodology can be extended to other similar 198 

bis(trifluoromethanesulfonyl)imide based ionic liquids by a simple mixture with TBA 199 

BF4. Table 1 summarizes the yields obtained after the ionic exchange and phase 200 

separation process described in Scheme 3, when N-Trimethyl-N-butylammonium 201 

bis(trifluoromethanesulfonyl)imide (N1114 TFSI), 1-Butyl-1-methylpyrrolidinium 202 

bis(trifluoromethanesulfonyl)imide (Pyr14 TFSI), 1-Methyl-1-propylpiperidinium 203 

bis(trifluoromethanesulfonyl)imide (PP13 TFSI) are used  as reagents. Notice that in all 204 

cases are obtained TBA TFSI is obtained a good yield, whereas the by-product (BF4
- 205 

based ionic liquid) is obtained in moderate yields.  However, the ionic exchange process 206 

is strongly dependent on the length of the alkyl chain present in the tetraalkylammonium 207 

salt, as it was previously described in the literature [9]   Hence, no ionic exchange products 208 

were obtained when Tetraethylammonium tetrafluoroborate (TEA BF4) or salt is used as 209 

starting material. This fact can be rationalized by taking into account the different 210 

hydrophobicity of both cations, TEA+ and TBA+; therefore, it is soluble in aqueous phase.  211 

 212 

 213 
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Reactive + TBA BF4 Products + TBA TFSI TBA TFSI Yield (%) C+ BF4
- Yield (%) 

  
73.4 31.2 

  
67.3 35.4 

  
71.2 41.4 

 215 

Table 1.  Ionic liquid yields obtained after ionic exchange and purification processes. 216 

 217 

The purity of the ionic liquids synthetized following this methodology are determined   218 

employing the 1H NMR data using of 13C satellites of imidazolium N-methyl group as 219 

internal standard[35] as well as the integration of similar protons in non-imidazolium ILs. 220 

In the case of TBA TFSI the purity of IL obtained was from 96.2% to 99.3 % depending 221 

on the type of C+TFSI used as reagent. For the rest of the ILs obtained as a byproducts 222 

purities obtained were the following: 99.2% for Pyr14 TFSI, 93.5% for PP13 TFSI, 98.0% 223 

for N1114 TFSI and 99.1% for EMIM TFSI. Finally, it is remarkable that a comparison in 224 

terms of atom economy between our methodology and a classical one starting from 225 

similar products reveals that are very similar in both cases (c.a. 80 %). However, the 226 

byproducts obtained using our methodology are also ILs and the solvent used are 227 

recyclable, whereas in the case the classical route the byproduct obtained is a salt (lithium 228 

bromide). 229 

 230 

4. Conclusions 231 

 232 

In the current manuscript we have been able to design a new synthetic route for 233 

synthetizing the tetrabutylammonium bis (trifluoromethanesulfonyl) imide ionic liquid 234 

(TBA TFSI) following a sustainable one-pot methodology based on an ion exchange 235 

process with purities from 96 to  99 %. It is important to highlight tetrafluoroborate based 236 

ionic liquids are also obtained as a secondary product with purities from 98 to 99 %.  In 237 

terms of cost-effectiveness analysis, our exchange ionic approach is a low-cost alternative 238 

since the products obtained at the end (ILs) have increased their value by ca 40% in 239 

comparison with the starting IL and salt used. Moreover, ca 80% of the solvent and 240 
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reagents used can be recycled and reused at the end of the process. Hence, the above 241 

described methodology allows the previous synthetic methodologies reported in the 242 

literature to be improved, avoiding the use of multistep processes, non-desirable 243 

byproducts, as well as strong experimental conditions. 244 

 245 
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