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Abstract. We report the first-principles DFT calculation of the electron-hole
Lindhard response function of the (TMTSF)2PF6 Bechgaard salt using the real
triclinic low-temperature structure. The Lindhard response is found to change
considerably with temperature. Near the 2kF spin density wave (SDW) instability
it has the shape of a broad triangular plateau as a result of the multiple nesting
associated with the warped quasi-one-dimensional Fermi surface. The evolution
of the 2kF broad maximum as well as the effect of pressure and deuteration is
calculated and analyzed. The thermal dependence of the electron-hole coherence
length deduced from these calculations compares very well with the experimental
thermal evolution of the 2kF Bond Order Wave correlation length. The existence
of a triangular plateau of maxima in the low-temperature electron-hole Lindhard
response of (TMTSF)2PF6 should favor a substantial mixing of q-dependent
fluctuations which can have important consequences in understanding the phase
diagram of the 2kF SDW ground state, the mechanism of superconductivity and
the magneto-transport of this paradigmatic quasi-one-dimensional material. The
first-principles DFT Lindhard response provides a very accurate and unbiased
approach to the low-temperature instabilities of (TMTSF)2PF6 which can take
into account in a simple way 3D effects and subtle structural variations, thus
providing a very valuable tool in understanding the remarkable physics of
molecular conductors.

Keywords: Bechgaard salts, spin density waves, density functional theory, Lindhard
response function
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1. Introduction

At the simplest level of description the electronic
properties of quasi-one dimensional (1D) conductors
are governed by two antagonist interactions: inter-
chain transfer integrals (t⊥) and inter-site Coulomb
repulsions (Vij). The former tend to delocalize carriers
on neighboring chains leading to the formation of 2D
or 3D anisotropic metals. In contrast, the latter
tend to localize the carriers on individual chains
leading to the formation of 1D Luttinger liquids [1].
The pertinence of this basic approach is illustrated
by the isostructural series of quarter-filled Fabre
(TMTTF)2X and Bechgaard (TMTSF)2X organic
salts where TMTTF is tetramethyltetrathiafulvalene,
TMTSF is tetramethyltetraselenafulvalene and X is
a monovalent anion which in the present work is
PF−6 . The structure of (TMTSF)2PF6 is shown in
Fig. 1 [2] where slightly dimerized zig-zag stacks of
TMTSF donor molecules run along the a direction.
The organic stacks form (a,b) layers which delimit
cavities along c* which are filled with monovalent
(X−) anions. The temperature-pressure (T-P) phase
diagram of Fabre and Bechgaard salts incorporating
centrosymmetric anions such as PF6 (see Fig. 2) shows
that 1D hole localization in the donor stacks dominates
in the (TMTTF)2PF6 Fabre salt at ambient pressure,
while the intra-stack metallic hole delocalization is
the relevant aspect for the (TMTSF)2PF6 Bechgaard
salt [3]. The generalized phase diagram of Fig. 2
is also controlled by pressure since the inter-stack
transfer integrals, t⊥, are enhanced under applied
pressure. [4, 5, 6].

Earlier studies [7, 8] clearly pointed out the
difference between the inter-chain diffusive electron
transfer and coherent electron transfer mechanisms.
In the first case there is no coherence between Bloch
functions located on neighbouring chains. Thus,
in that case one has a true 1D metal where the
warping of the Fermi surface (FS) is not relevant
and there is no transverse plasma edge. In the
second case, the electronic wave function is 2D or
3D, delocalized over several chains, and t⊥ is a
relevant interaction. More precisely, for a non-
interacting electron gas the coherent regime occurs
for kBT< t⊥/π = kBTCO, where TCO is the 1D to
2D/3D crossover temperature [8, 9] and below TCO a
transverse plasma edge should be detected. It has been
predicted [10, 11] that the crossover transition TCO

between the diffusive and coherent regimes decreases in
the presence of sizeable intra-chain Coulomb repulsions
because the latter tend to localize the electron wave
packets so that the effective inter-chain tunneling
process should be reduced. This leads to a downward
renormalized TCO, at which temperature there is a
deconfinement transition from a 1D Luttinger liquid
to a 2D or 3D Fermi liquid [12]. However, beyond
this qualitative picture, there are many important
theoretical questions which should be elucidated in
order to quantitatively describe the deconfinement
transition [1]. These considerations should particularly
apply to quasi-1D organic metals. In (TMTSF)2PF6,
for instance, the 1D to 2D deconfinement temperature
TCO at ambient pressure is found to occur at ∼
100 K on the basis of the detection of a transverse
plasma edge when an electric field is applied along
b [6] as well as from the change of slope of the c*
transverse electrical conductivity [13]. As shown in
Fig. 2, TCO substantially increases under pressure.
In contrast with (TMTSF)2PF6, which exhibits intra-
stack metallic conductivity, a charge localization
occurs in (TMTTF)2PF6 below Tρ ∼ 230 K at ambient
pressure, as proved by the occurrence of an activated
intra-stack conductivity [14]. Due to this fact TCO is
renormalized to 0 K [3]. When pressurized, Tρ for
(TMTTF)2PF6 decreases (Fig. 2) and the behavior
typical of the Bechgaard salts is recovered [3].

According to the present DFT calculations the
transfer integrals for (TMTSF)2PF6 at 300 K along
the a, b and c* directions are ta ≈ 210 meV, teffb ≈
28 meV and tc∗ ≈ 0.8 meV, respectively (teffb is the
effective transfer integral along b according to the tight-
binding model of Yamaji [15, 16]). As expected from
the crystal structure (Fig. 1), these values imply a
highly anisotropic system. However, these transfer
integrals are rather similar to those calculated for
(TMTTF)2PF6 under the same conditions: ta ≈ 180
meV, teffb ≈ 24 meV and tc*≈ 0.5 meV at 300 K.
Thus, the differences in the phase diagram between
the Bechgaard and Fabre salts should be attributed
to the presence of stronger Coulomb repulsions in
the TMTTF vs. TMTSF stacks. Such difference is
clearly evidenced by the observation of 4kF Wigner-
type charge density wave (CDW) instabilities in salts
with uniform TMTTF stacks but 2kF Peierls-type
CDW instabilities in salts with uniform TMTSF
stacks (kF is the Fermi wave vector of the donor
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Figure 1. Crystal structure of the (TMTSF)2PF6 Bechgaard salt: (a) Quasi-planar organic molecules stack along the a axis and
are separated along the c* direction by PF−6 anions. (b) Projection of the (TMTSF)2PF6 structure along the stack direction.

Figure 2. Generalized phase diagram for the Fabre (S-X) and
Bechgaard (Se-X) salts where X is a centrosymmetric anion.
The pressure scale corresponds to (TMTTF)2PF6. Vertical
arrows place (TMTTF)2Br and (TMTSF)2PF6 at atmospheric
pressure in the phase diagram. CO, SP, AF, SDW and SC refer
to charge ordered, Spin-Peierls, antiferromagnetic, spin density
wave and superconducting ground states. QCP is a quantum
critical point between the SP and AF ground states. Tρ indicates
the onset temperature for charge localization (Loc in the Figure)
as detected in the conductivity measurements. TCO is the
crossover temperature from a 1D (in the stack direction (a) to a
2D (in the (a, b) donor layer) delocalized electron gas according
to ref [6]. On the right hand scale there is also a crossover to
a 3D delocalization regime along c* through the anion cavities
at a temperature of the order of tc∗ . The value of the nesting
breaking term t′b introduced in the text is also indicated.

stacks 1D electron gas) [17]. The strong intra-stack
Coulomb repulsions in the 1D electronic regime of
(TMTTF)2PF6 at high temperature lead to a 4kF hole
localisation on the bonds of the donor zig-zag chains.
Note that the charge localization on the donor dimers
of the Fabre salts can be viewed as being stabilized
by the response of the 4kF CDW instability of the
TMTTF stacks to the 4kF potential set by the anion
sublattice [18, 19, 20]. Charge localization induces
a spin-charge decoupling so that the spin degrees of
freedom drive anti-ferromagnetic (AF) or spin-Peierls
(SP) low-temperature orders in the Fabre salts as
shown in Fig. 2.

In contrast, (TMTSF)2PF6 is a room temperature
metallic conductor whose electronic dimensionality
changes from 1D to 2D at TCO ∼ 100 K at ambient
pressure. Thus, below TCO the warping along b* of the
open sheets at ±kF= ±a*/2 FS should be thermally
relevant. In this context, it was suggested [16] that
a 2kF FS nesting process could be responsible for
the stabilization of the 2kF spin density wave (SDW)
insulating ground state detected below TSDW= 12 K
at ambient pressure. This mechanism was sustained
by the NMR measurement of a SDW modulation
component of 0.20-0.24b* [21, 22] which agrees with
the best nesting wave vector [23] of a FS modeled
according to the tight-binding pseudo-orthorhombic
approximation of Yamaji [15, 16]. After this
agreement was noticed, FS nesting effects became the
key ingredient to elucidate the low-temperature (low-
energy) physics of the Bechgaard salts. In particular,
a significant decrease of TSDW was observed under
pressure (Fig. 2) and, when the metallic state is
restored above ∼ 9.5 kbar, (TMTSF)2PF6 becomes
superconducting at TS ≈ 1.2 K [24]. This effect is
ascribed to the suppression of the FS nesting when
pressure enhances the magnitude of the so-called FS
nesting breaking or (unnesting) term along b* (t′b,
estimated to be 14-22 K at ambient pressure in
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the pseudo-orthorhombic approximation, see below
in Sect. 3 and Fig. 2). The drastic effect of the
t′b on the SDW phase diagram was quantitatively
analyzed using an orthorhomic approximation of the
electronic structure of Bechgaard salts [15, 16, 25, 26].
Note also that when the low-temperature metallic
state is restored and when the inter-layer transport
becomes coherent, a 2D to 3D electronic crossover is
expected. The detection of a weak transverse Drude
edge below 10 K in metallic (TMTSF)2ClO4 Bechgaard
salt at ambient pressure [27] corroborates that the 3D
electronic crossover temperature is of the order of tc∗
and occurs above the superconducting transition.

Remarkably, in the 3D metallic state when
superconductivity vanishes under a high magnetic field,
a cascade of induced SDW ground states has been
detected when the applied magnetic field along c*
exceeds a threshold related to the FS nesting breaking
term along this direction, t′c. These field induced SDW
phases (FISDW) are due to the quantization of the
2D orbital movement in pockets remaining because
of the imperfect FS nesting along b*. Thus, the
occurrence of FS nesting breaking terms is needed
to account for the occurrence of FISDW phases. A
quantitative analysis of the FISDW instability has
been performed from the calculation of the Lindhard
function in the presence of a magnetic field within
the orthorhomic approximation of the electronic
structure [16, 28, 29, 30]. However the interpretation
of additional observations, such as the reversal of sign
of the quantum Hall effect between different FISDW
phases, requires the existence of additional FS nesting
breaking terms which were introduced in an ad hoc
manner in the calculation of the Lindhard function [31]
and whose origin needs to go beyond the orthorhombic
approximation.

In summary, although FS nesting effects are the
key ingredient to elucidate the low-temperature/low-
energy physics of the Bechgaard salts, this quantitative
analysis has been performed using an orthorhombic or
pseudo-orthorhombic model of the electronic structure
because of the difficulty to handle analytic calculations
within the real triclinic structure of these salts.
Present-day density functional theory (DFT)-based
approaches are reliable enough to explore many aspects
of the electronic structure of molecular conductors [32,
33, 34, 35]. Thus, here we revisit the FS nesting
mechanism using an unbiased DFT approach and the
real triclinic 3D crystal structure of the Bechgaard
salt (TMTSF)2PF6. However as it is not easy to
clearly appreciate nesting effects from the simple visual
inspection of the FS we calculate and analyze the first-
principles 3D electron-hole response function of this
paradigmatic low-dimensional material and study in
detail its temperature and wave vector dependence.

2. Computational details

The DFT calculations [36, 37] were carried out using
a numerical atomic orbitals approach, which was
developed for efficient calculations in large systems
and implemented in the Siesta code [38, 39]. We
have used the generalized gradient approximation
(GGA) to DFT and, in particular, the functional
of Perdew, Burke and Ernzerhof [40]. Only the
valence electrons are considered in the calculation,
with the core being replaced by norm-conserving
scalar relativistic pseudopotentials [41] factorized in
the Kleinman-Bylander form [42]. The non-linear core-
valence exchange-correlation scheme [43] was used for
all elements. We have used a split-valence double-ζ
basis set including polarization functions [44]. The
energy cutoff of the real space integration mesh was
350 Ry. The Brillouin zone (BZ) was sampled
with the Monkhorst-Pack scheme [45] using grids of
(45×45×18) k-points to build the charge density. The
Lindhard response function,

χ(q) = −
∑
i,j

∑
k

fF (εi(k))− fF (εj(k + q))

εi(k)− εj(k + q)
, (1)

where fF is the Fermi function and εi(k) are the band
eigenvalues, was obtained from the computed DFT
band eigenvalues εi(k) (i.e. in this work the TMTSF
HOMO-based bands of the system). The integral
over k-points of the BZ was approximated by a direct
summation over a dense, regular grid of points. As the
Lindhard function is more sensitive to the accuracy
of the BZ integration than the total energy, especially
in very anisotropic systems, and/or in the presence of
hot spots in the band structure (e.g. saddle points
with the corresponding van Hove singularity in the
DOS), the k-points grid used for its calculation must
be more dense than in the standard self-consistent
determination of the charge density and Kohn-Sham
energy. The calculations are done, nevertheless, using
the eigenvalues obtained in the DFT calculation for
the coarser grid, and interpolating their values in the
denser grid, using a post-processing utility available
within the Siesta package. In this work, for the
calculation of the Lindhard response function, the
BZ was sampled using a grid of (400×400×16) k-
points. The partially filled bands were those taken
into account in the calculations. The DFT calculations
reported here have been performed using three different
crystal structures: (i) protonated (TMTSF)2PF6-H12

at 4 K [46] and ambient pressure, (ii) protonated
(TMTSF)2PF6-H12 at 1.7 K and 7 kbar [47], and
(iii) 98 % deuterated (TMTSF)2PF6-D12 at 4 K
and ambient pressure [48]. Note that the thermal
dependences of the Lindhard functions reported below
are due to the Fermi function in Eq. 1.
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3. Electronic Structure
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Figure 3. Calculated band structure (a) and Fermi surface (b)
for (TMTSF)2PF6 using the 4 K crystal structure. The energy
zero corresponds to the Fermi level. Γ = (0, 0, 0), X = (1/2, 0,
0), Y = (0, 1/2, 0), Z = (0, 0, 1/2) and M = (1/2, 1/2, 0) in
units of the triclinic reciprocal lattice vectors.

The calculated band structure near the Fermi level
for the 4 K crystal structure of (TMTSF)2PF6 is shown
in Fig. 3a. The two bands are almost exclusively
built from the HOMO of TMTSF and because of
the stoichiometry they contain one hole so that the
upper band is half-filled. The total dispersion of
these bands is 1.23 eV and the dimerization gap at
X is 96 meV. The two bands exhibit quite different
dispersion along the b* inter-chain direction, the upper
one being considerably flatter. These features agree
with other reported band structures [49, 23, 5, 50].
Fitting the DFT results to the tight-binding model
of Yamaji [15, 16] leads to the following values of
the transfer integrals along the a, b and c* directions
for the PF6 salt at 4 K: ta ≈ 256 meV, teffb ≈
38 meV and tc∗ ≈ 0.5 meV, respectively. Thermal
contraction from 300 K to 4 K leads to increases of
23% and 33 % for ta and teffb and a decrease of
37% for tc∗ , respectively. In the same temperature
range the variation is considerably smaller for the
isostructural (TMTTF)2PF6 Fabre salt: 13% and 11%
increase for ta and teffb , respectively, and 5% decrease
for tc∗ . Another interesting quantity is the so-called
nesting breaking (or unnesting) parameter [16, 15, 26]
mentioned above,

t′b =
1

2
√

2

t2b
ta

(2)

which measures how much the actual FS differs from
the perfect nesting condition within Yamaji’s tight-
binding model. Using the above transfer integrals t′b
for (TMTSF)2PF6 is estimated to be -1.9 meV (21.7
K) (see Fig. 2).

Drude analysis of infrared measurements for
(TMTSF)2PF6 leads to ta ≈ 0.25 eV and tb′ ≈
22 meV (at 30 K) (b′ is the intra-layer transverse
direction perpendicular to a) [51]. ta is in excellent
agreement with our calculated value, 0.256 eV. tb′ is
slightly smaller than our teffb value. Note however
that the measurement of the conductivity anisotropy
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Figure 4. 2D (a) and 3D (b) plots of the Lindhard function of
(TMTSF)2PF6 in the (a*,b*) reciprocal plane at 200 K. (c)-(e)
3D plots at 100 K, 50 K and TSDW = 12 K, respectively.
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Figure 5. Thermal dependence of the: (a) longitudinal a* scans across the Lindhard function of (TMTSF)2PF6 at 0.23 b* [i.e.
(xa*, 0.23b*) scans] and (b) transverse b* scans at 0.5a* [i.e. (0.5a*, xb*) scans]. The red dashed line in the temperature scale
indicates the temperature at which the single maximum leads to a tilted segment of maxima in (b). In part (a) the two kinks
observed at 0.35a* and 0.63a* correspond to the crossing of the singularity lines mentioned in the text which separate the light blue
and the dark blue regions in Fig. 8b.

in the SDW phase of (TMTSF)2PF6 leads to tb′ ∼
35-28 meV [52] which is close to teffb . Finally, the
work of Zamborszky et al. [52] led to tc∗ ≈ 0.8
meV which is comparable to our tc∗ ≈ 0.5 meV
value. Using an average of the first-principles teffb

values for 300 K and 4 K (33 meV), one estimates a
1D-2D deconfinement temperature for non-interacting
electrons (kBTCO= teffb /kBπ) of 90 K, which is close
to the experimental determination of 100 K [6, 13].
Finally, the energy 4t′b of remaining pockets due to
nesting breaking effects in the SDW phase can be
obtained from the difference between the direct SDW
gap from optical measurements (2∆= 100 K) [53] and
twice the activation gap of the conductivity (2∆th= 41
K [52]-48 K [54]). From this difference one obtains t′b ≈
14 K, which is not far from the 21.7 K value estimated
from Eq. 2.

The reasonable agreement between calculated and
experimentally estimated transfer integrals shows that
DFT calculations provide reliable electronic structure
parameters for (TMTSF)2PF6 so that the Lindhard
function calculations for this salt should be meaningful.
The calculated FS for (TMTSF)2PF6 at 4 K is shown
in Fig. 3b. In the absence of anion ordering transitions
the shape of this FS is common to all Bechgaard salts
with the only difference of slight variations in their
warping. However these subtle differences are at the
heart of their different low-temperature physics and the
calculation of the 3D Lindhard function (see Sect. 4)
is the best quantitative approach to understand it.

4. Analysis of the Lindhard function of
(TMTSF)2PF6

In this section we will explore the temperature
and wave vector dependencies of the first-principles

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 50 100 150 200 250 300 350

-1
(n

m

Temperature (K)

)

0.0

0.2

0.4

0.6

1/ 2k
F

0.8

1.0

1.2

1.4

1.6

0 50 100 150 200 250 300 350

-1
-1

a

eh//(q0)

eh//(X)
-1

-1

BOW

-1

Figure 6. Comparison of the thermal dependence of the inverse
electron-hole coherence length ξ−1

eh‖ calculated at the q0 and

X points with the inverse BOW correlation length ξ−1
BOW of

(TMTSF)2PF6 measured in ref. [55].

Lindhard function for (TMTSF)2PF6 and later
(Sect. 5) these results will be compared with those
based on the orthorhombic or pseudo orthorhombic
approximation as well as with the experimental
information. Shown in Fig. 4 are intensity plots of
the Lindhard function at 200 K (a) and (b), 100
K(c), 50 K(d) and TSDW= 12 K (e) in the (a*, b*)
reciprocal plane. As shown in these plots the response
is very anisotropic. In addition, we have verified that
the response does not vary with the inter-layer c*
wave vector component (this is not the case in other
Bechgaard salts like the ClO4 and NO3 salts. [56]).
At 200 K (Fig. 4a) the intensity of the response,
which varies significantly along the a* direction (see
also the a* scans in Fig. 5a) is centered around q1D=
0.5a*. This chain component amounts to the 2kF wave
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Figure 7. Thermal dependence of the scans across q1-q2
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for (TMTSF)2PF6. In (a) we present a legend for the scans
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direction. Note the tilted plateau which continuously develops
upon cooling in (b) and (c). The red dashed line in the
temperature scale indicates the temperature at which the single
maximum leads to a tilted segment of maxima. The kinks
observed for q1-q2 ∼ 0 and q3-q1 ∼ 0 and 0.4 correspond to the
crossing of singularity lines mentioned in the text which separate
the light blue to dark blue regions in Fig. 8b.

number of the quasi-1D electron gas in a dimerized
quarter-filled (hole) band structure. Fig. 4a shows that
the 200 K response is slightly modulated along the b*
direction. The magnification along b* in Fig. 4b reveals
the presence of two broad maxima at about ± 0.23b*
which are more clearly visualized on the b* scans of
Fig. 5b.

Upon cooling down to 100 K (Fig. 4c) there is a
net increase in the intensity maxima of the Lindhard
response. Figs. 5a and b show that the intensity
increase concentrates around a broad maximum in
±q0 = (0.5, ±0.23). In addition, when T decreases
the global shape of the Lindhard response becomes
sinusoidally modulated along a* (Fig. 4c). As a
consequence, the response along a* remains broader at
the X (0.5, 0) and M points (0.5, 0.5) and sharpens in-
between these points near q0. This is quantitatively
illustrated by Fig. 6 giving the thermal dependence
of the half-width at half-maximum (HWHM) of the
response function along a* at the X and q0 points.
This quantity corresponds to the inverse electron-hole
coherence length in the chains direction (1/ξeh) which
will be discussed and confronted with the experimental
information in Sect. 5. Upon cooling 1/ξeh(X) stays
roughly constant while 1/ξeh(q0) gently decreases but
does not vanish at low temperature. Finally, note
also that the HWHM of the q dependence of the
Lindhard function along b* (Fig. 5b) leads to an inverse
electron-hole inter-stack transverse coherence length of
about 0.12-0.09 Å−1 between 200 K and 100 K. The
inverse of this quantity, which is nearly constant when
varying the temperature, is of the order of the inter-
stack distance b. This means that, since the electron-
hole pairs remain basically confined on the stack, it
can be reasonably considered that the high-temperature
electron-hole response is essentially 1D. However, this
picture must be modified below 100 K because the shape
of the Lindhard function drastically changes.

Fig. 4d shows a 3D plot of the intensity of
the Lindhard function at 50 K. The asymmetric
development of arcs of intensity can be clearly
distinguished. More precisely, the maximum of the
electron-hole response adopts a boomerang-like shape
limited by the q1 ∼ q0, q2 and q3 wave vectors whose
components, schematically represented in Fig. 7a, will
be carefully scrutinized below. The change of shape of
the Lindhard response is illustrated by the diagonal q1-
q2 and q1-q3 scans crossing q1D shown in Figs. 7b and
c, respectively. It can be clearly seen the progressive
growth of intensity singularities at q2 and q3, away from
0.5a*, which upon cooling give rise to a continuum
of intensity maxima transforming at low-temperature
into a tilted segment joining q1. The q2-q3 scans
(Fig. 7d), which are out of the q1D direction, clearly
illustrate the progressive development of the q2 and q3
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Figure 8. Magnified section of the Lindhard functions at 5 K for 98% deuterated (TMTSF)2PF6-D12 at Patm (a), protonated
(TMTSF)2PF6-H12 at Patm (b), and protonated (TMTSF)2PF6-H12 at 7 kbar pressure (c). The X→ Γ and M→Y arrows are only
used to indicate the associate directions. In (b) the q1, q2 and q3 points used in the text are labelled.

maxima which limit the arc of intensity depicted in
Fig. 7a. These maxima begin to be detected below
100 K (Fig. 7d). Upon further cooling the q2 and q3
maxima transform into singularities at q2 = (0.52, 0.30)
and q3 = (0.53, 0.14) reciprocal positions. As a result, a
tilted plateau of intensity maxima develops around 15-
20 K and the Lindhard function exhibits well defined
singularities at the q0, q2 and q3 wave vector positions
when the SDW transition occurs (TSDW= 12 K, see
Fig. 4d). At TSDW the maximum of the Lindhard
response occurs at the q0 wave vector. However around
10 K the q0 maximum shifts to q1 = (0.48, 0.23)
(Fig. 5a) and the absolute maximum of intensity of
the Lindhard response shifts to q2 (see Figs. 7b).

Fig. 8b represents the curved and tilted triangu-
lar plateau of maxima of the Lindhard response de-
limited by the q1, q2 and q3 wave vectors in proto-
nated (TMTSF)2PF6-H12 at 5 K and ambient pres-
sure. This is compared with the 5 K Lindhard func-
tion calculated under the same conditions for deuter-
ated (TMTSF)2PF6-D12 (Fig. 8a) and protonated
(TMTSF)2PF6-H12 at 7 kbar (Fig. 8c) [47] respec-
tively. The main differences between these Lindhard
functions (see also Fig. 9 where we directly plot the
differences) are:

(a) At ambient pressure the intensity of the
triangular plateau maximum decreases by a few
per cent from deuterated (TMTSF)2PF6-D12 to
protonated (TMTSF)2PF6-H12, and

(b) The intensity of the triangular plateau max-
imum for protonated (TMTSF)2PF6-H12 decreases
from ambient pressure to 7 kbar.

However, Figs. 8 and 9 show that the position of
the q1, q2 and q3 singularities do not appreciably shift
within 0.01a* and 0.01b*. Nevertheless, the intensity
of the q2 singularity for which the response is maximal
at 5 K decreases from 2.81 a.u. in (TMTSF)2PF6-D12

to 2.72 a.u. in (TMTSF)2PF6-H12 at Patm (i.e.∼ 3%)
and then to 2.64 a.u, in (TMTSF)2PF6-H12 at 7 kbar
(i.e. an additional ∼ 3%).

5. Discussion

5.1. Shape of the Lindhard function and its relation
with the topology of the Fermi surface

The main result of the present work is the first-
principles determination of the Lindhard response of
the (TMTSF)2PF6 Bechgaard salt based directly on
the real triclinic low-temperature crystal structure. At
high temperature (i.e. above ∼100 K) this function
basically exhibits a line maximum at q1D= 0.5a*
(Figs. 4a, 4b and 5a), which corresponds to the
2kF critical wave vector of the 1D band structure,
as expected for an electron-hole instability of 1D
conductors [16, 26]. However, this line of maxima
is found to be slightly modulated in intensity along
b* and exhibits a broad maximum at q0 (Fig. 5b)
which corresponds to the best nesting wave vector of
the thermally broadened warped FS (see below). The
shape of the Lindhard response changes appreciably
below ∼100 K (Fig. 4) with the onset of a q2-q0-q3
curved arc of maxima, where the a* component of
the q2 and q3 singularities differs from q1D= 0.5a*.
The intensity of the q2 and q3 singularities grows
upon cooling (Fig. 7d) and below 20-15 K leads to
the appearance of a tilted plateau of maxima with
a triangular or, more accurately, a boomerang shape
(Fig. 8). A triangular-like maxima of the Lindhard
function at 0 K was previously obtained analytically
through inclusion of a nesting breaking term t′b in
the quasi-1D electron dispersion built from single
sinusoidal intra- (ta) and inter-chain (tb) couplings and
assuming an orthorhombic lattice (when tb= 0 the
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Figure 9. Magnified section of the differences in the Lindhard functions at 5 K between 98% deuterated (TMTSF)2PF6-D12 at Patm
and protonated (TMTSF)2PF6-H12 at Patm (a), 98% deuterated (TMTSF)2PF6-D12 at Patm and protonated (TMTSF)2PF6-H12

at 7 kbar pressure (b), protonated (TMTSF)2PF6-H12 at Patm and 7 kbar pressure (c). The X→ Γ and M→Y arrows are only used
to indicate the associate directions. These sections clearly show the sinusoidal singularity lines whose intersection occurs at the q1,
q2 and q3 singularity wave vectors.

Figure 10. Schematic illustration of the three nesting vectors
at the origin of the arcs of the Lindhard function.

Lindhard function diverges at 0 K) [25, 29, 57]. To have
the boomerang shape additional inter-chain couplings
must be introduced for either the orthorhomic [58]
and triclinic [59] lattices. These calculations also show
that the q0 (which shifts to q1 upon cooling), q2 and
q3 singularities are the crossing point of sinusoidal
lines of singularities whose analytical expression can be
obtained [58, 59]. Such sinusoidal lines of singularities
are clearly revealed in our low-temperature calculations
(Figs. 4e and Fig. 8) and in the intensity differences of
Fig. 9. However, no ad hoc FS nesting breaking terms
are introduced in the first-principles Lindhard function
which only relies on the actual crystal structure of the
material.

The progressive growth of a plateau of singularities

in the Lindhard response below 100 K is consistent
with the 1D to 2D electronic dimension crossover
observed by optics and transport measurements at
TCO ∼ 100 K [6, 13]. In this context the warping
of the open FS becomes progressively relevant upon
cooling below TCO. In the case of a mainly
sinusoidal component of the dispersion of the open
FS, the best nesting condition should lead to a main
singularity in the Lindhard response. However in
our case the best nesting wave vector q0 is already
detected above TCO so that TCO appears to be
more likely at the temperature below which two
additional nesting wave vectors q2 and q3 begin to
be detected. Fig. 10 presents the first-principles
FS surface of (TMTSF)2PF6 calculated using the
4 K crystal structure. This figure shows that the
warped open FS exhibits three good nesting wave
vectors for the q1, q2 and q3 wave vectors which are
associated with singularities in the Lindhard function.
The occurrence of several FS nesting processes means
that the FS has definitely not a regular sinusoidal
shape. This is the reason why several additional inter-
chain interactions having different kb dependencies
must sizeably contribute to the band dispersion.
In other words to account for the first-principles
results one must go beyond the pseudo-orthorhombic
approximation [15, 16] which is based on a sinusoidally
shaped FS. This process is carried out in an unbiased
way in the DFT calculation.
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5.2. Relationship with the 2kF density wave
instabilities

The electron-hole Lindhard response of a quasi-
1D metal exhibits a maximum for the 2kF chain
component wave vector of the associated 1D electron
gas. Divergence of this maximum upon cooling
is the prerequisite to achieve a 2kF density wave
instability. In the presence of a sizeable electron-
phonon coupling a 2kF charge density wave (CDW)
instability is generated together with, when the phonon
field modulates the bond distances, a 2kF bond order
wave (BOW) instability. In the presence of exchange
interactions due to sizeable on-site electron-electron
repulsion, a 2kF SDW instability can occur [15].
Surprisingly, (TMTSF)2PF6 concomitantly exhibits
2kF CDW/BOW and 2kF SDW instabilities at high-
temperature.

Weak 1D SDW fluctuations have been detected
by NMR below 200 K in (TMTSF)2PF6 [60]. These
fluctuations, which are less correlated than those
measured in the Fabre salts, grow upon cooling. NMR
measurements show also the development of a (3D?)
regime of critical fluctuations below ∼ 25 K [60, 61].
However, specific heat measurements provide evidence
for a very narrow regime of 3D fluctuations starting
0.3 K above TSDW= 12 K [62]. Note also that optical
measurements provide evidence for the development
of a (3D ?) pseudo-gap below 15 K, few K above
TSDW [63]. Quasi-1D 2kF BOW fluctuations are
detected by X-ray diffuse scattering measurements
below about 175 K [64]. In contrast with the SDW
fluctuations, the intensity of the 2kF BOW fluctuations
saturate below about 100 K (i.e. TCO) and vanish
below 50 K [20, 55]. This vanishing can be understood
as resulting from the increase of the lattice rigidity
caused by the strengthening of the linkage of the PF6

anions with the methyl terminal groups of the TMTSF
through hydrogen bonding [48].

X-ray diffuse scattering experiments allow to
measure the inverse of the correlation length of the
BOW fluctuations in the chain direction, ξ−1BOW . The
thermal dependence of this quantity is plotted in
Fig. 6. This figure clearly shows that ξ−1BOW behaves as
the inverse intra-chain electron-hole coherence length
of the Lindhard function measured at the q0 point,
ξ−1eh (q0). This quantitative agreement means that the
first-principles Lindhard response brings very relevant
information concerning the density wave instability
of the Bechgaard salts. Fig. 6 also shows that
the inverse electron-hole coherence length ξ−1eh (q0)
decreases weakly upon cooling. It is only below 50
K that the inverse of this quantity exceeds λ2kF = 2a
and thus that the 2kF electron-hole modulation wave is
spatially defined (above this temperature when ξeh(q0)
< λ2kF the electron-hole excitations are thermally

incoherent). An interesting question is to understand
why ξeh remains small for a quite large temperature
range. This could be due to the presence of many
deviations to a single FS nesting process (Fig. 10).

When the electron-phonon drives the Peierls
instability, as found in the blue bronze [65] and in the
transition metal trichalcogenides [66], it is possible to
observe the critical growth of ξBOW with respect to a
sizeably T dependent ξeh which exceeds λ2kF [67] for
a large temperature range. The fact that ξBOW ≈ ξeh
in the data of Fig. 6 proves that the electron-phonon
coupling is not critical for (TMTSF)2PF6. In contrast,
the on-site electron-electron coupling should be critical
to achieve the SDW ground state of (TMTSF)2PF6

if one expects a critical growth of ξSDW over ξeh for
temperatures lower than 50 K. This is apparently what
is observed by NMR below ∼ 25 K with the critical
growth of gaussian fluctuations [61, 60]. Apparently
the enhancement of ξSDW over ξeh with temperature
is small because the SDW pseudo-gap is only detected
a few K above TSDW [63].

5.3. Relationship with the 2kF SDW ground state

In the weak coupling limit and random phase
approximation (RPA) the maximum of the Lindhard
function selects the critical wave vector of the SDW
modulation which develops at TSDW [16, 68]. Our
first-principles calculation gives a maximum at 12 K for
q0 = (0.5, 0.23), which accounts for the experimental
determination. The SDW modulation wave vector
has been experimentally determined by fitting the
NMR line-shape for (TMTSF)2PF6 assuming that the
a* component of the modulation is q1D= 2kF= 0.5
a*. Using this assumption it is found that the b*
transverse SDW modulation component lies in the
range 0.20± 0.05 b* [21] / 0.24± 0.03 b* [22]. Both
determinations correspond, within experimental errors,
to the present Lindhard function maximum q0= (0.5,
0.23) at TSDW= 12 K.

However, the first-principles calculation brings
more information. In particular, it shows that for
temperatures below 20-15 K (i.e. slightly above
TSDW ) the Lindhard response of (TMTSF)2PF6

exhibits a sizable q2 - q0 / q1 - q3 triangular maximum.
Furthermore, the maximum of the response shifts from
q0 to q1 and then to q2 around 10 K. This means that
within the RPA scenario the SDW modulation wave
vector should shift from q0 to q1 and then to q2 when
TSDW decreases under pressure. The shift from q0
to q1 has been predicted from calculations performed
within the orthorhombic approximation [16, 25, 29].
Our calculation of the Lindhard response at 5 K for
(TMTSF)2PF6 under 7 kbar predicts a q2 absolute
maximum and thus, within the RPA approximation,
the stabilization of a q2 SDW modulation at 7 kbar
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(where TSDW= 4 K).
In addition, the presence of a wide range of

close maxima means that different sets of modulations
could be simultaneously (locally) present without any
prohibitive cost in magnetic energy. In other words,
the SDW ground state could be very fallible, which
provides a suitable explanation for the origin of the
glassy behavior observed inside the SDW ground
state [69]. Along this line it is interesting to remark
that the commensurate modulation wave vector qc=
(1/2, 1/4) belongs to the triangular plateau close
to the q1-q2 singularity line of intensity maximum.
Thus the finding in ref. [70] of a local commensurate
lock-in modulation in the 4 K sub-SDW phase of
(TMTSF)2PF6 can be simply rationalized by the
present calculation.

The presence of a triangular q2 - q0 / q1 - q3
plateau of maxima in the electron-hole response due to
a continuous range of FS nesting wave vectors, means
that (TMTSF)2PF6 should be subject to a large panel
of 2D magnetic spatial fluctuations. Considering them
on the same footing means that one must go beyond
a simple RPA approximation of the standard Peierls
scenario which selects a single 2kF critical wave vector
for which the Lindhard function diverges in order to
describe the SDW ground state. In particular a more
elaborate mechanism, taking into account the q2-q1-
q3 triangular set of fluctuations, could be responsible
for the 1st order nature of the SDW transition of
(TMTSF)2PF6 [71], since it has been established that
enhanced fluctuations [72, 73] should induce a first
order transition.

Another feature which can be discussed in the
context of the present calculation concerns the (T,P)
SDW phase diagram. In this respect note that (i)
(TMTSF)2PF6-D12 is equivalent to the application of
a negative pressure of 5 kbar in (TMTSF)2PF6-H12

at Patm [48] and, (ii) there is a strong reduction of
TSDW to about 4 K and coexistence between the SDW
modulation and superconductivity in (TMTSF)2PF6-
H12 at 7 kbar [74]. The finding in our calculations
that the q2 maximum of the Lindhard response at
5 K decreases by 3% from (TMTSF)2PF6-D12 to
(TMTSF)2PF6-H12 at Patm and by the same amount
in (TMTSF)2PF6-H12 from Patm to 7 kbar shows
that within the RPA approximation, the decrease of
TSDW under pressure can be simply rationalized by
the decrease of the Lindhard response. However at
the presence stage of our investigation we cannot still
provide a clear-cut explanation of the weak decrease
of the Lindhard response because the triangular
shaped maxima is not substantially modified from
(TMTSF)2PF6-D12 to (TMTSF)2PF6-H12 at 7 kbar
(Figs. 8 and 9). This means that nesting breaking
effects and additional components to the FS warping

contributing to the triangular shape of the maxima of
the Lindhard function [25, 58] do not significantly vary
under pressure. Another argument corroborating this
finding is that the first-principles calculation leads to
the estimation of a quite weak increase of the nesting
breaking term t’b as given by Eq. 2, i. e. from 35.6 meV
in (TMTSF)2PF6-D12 to 36.8 meV in (TMTSF)2PF6-
H12 at Patm and then to 37.3 meV in (TMTSF)2PF6-
H12 at 7kbar. Thus, the present data suggests that
the strong reduction of the SDW conductivity gap
under pressure [52] should be primarily attributed to
the decrease of the optical direct SDW gap related to
intra-site Coulomb repulsion more than to the increase
of the nesting breaking term t’b, as previously assumed
in the literature [15, 16, 53, 25].

6. Concluding remarks

The thermal dependence of the electron-hole Lindhard
response of the Bechgaard salt (TMTSF)2PF6 has been
calculated from first-principles using its real triclinic
structure. This calculation can be contrasted with
earlier calculations based on the quasi-orthorhombic
approximation of the electronic structure. Contrary
to the assumptions in the literature concerning the
existence of a single q singularity, our calculation
reveals the presence of a low temperature triangular
plateau of maxima of the Lindhard response (Fig. 8).
This plateau originates from a continuum of FS nesting
wave vectors (Fig. 10) which in the first-principles
calculation only depend on the details of the low-
temperature crystal structure. Indeed our calculation
predicts that at Patm the absolute maximum of the
response at TSDW accounts for the experimental
observation of the q0 SDW modulation. However the
calculation also predicts a shift of the SDWmodulation
wave vector from q0 to q1 and then to q2. The
calculated Lindhard function at 7 kbar shows that
the q2 SDW modulation should be stabilized and
thus could coexist with superconductivity instead of
q0-q1 modulations as previously assumed [74]. The
existence of a large plateau of maxima implicates
that the (TMTSF)2PF6 Bechgaard salt is subject to
considerable q2-q1/q0-q3 dependent SDW fluctuations
at low-temperature through all the pressure range of
the experiments, a feature that was previously ignored
in the literature.

Although the mechanism of superconductivity
in organic conductors is still the object of a
long debate [75], experimental evidence has been
accumulated in favor of a pairing mechanism due to
incipient SDW fluctuations in the Bechgaard salts [76].
Theoretical analysis has recently pointed out that
superconductivity should emerge from an extended
quantum critical region of the phase diagram which
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is a function of nesting deviation of the FS [77, 78].
In this context the real shape of the electron-hole
instability in the P-T region near the superconducting
transition TS , together with its relationship with the
FS nesting properties, as directly given in the first-
principles approach, should be incorporated to improve
theoretical treatments.

The modification of the Lindhard response under
magnetic field, and the presence of FS breaking
effects are important ingredient to calculate a FISDW
diagram [16, 57]. The FISDW phase diagram of the
literature has been constructed for an orthorhombic
model taking into account one nesting breaking term
t’b. Our results show that one must go beyond
this approximation. Only a recent publication builds
the FISDW phase diagram by taking into account
the various inter-chain interaction of the triclinic
lattice [59]. Note that these inter-chain components,
which are responsible of subtle modification of the
shape of the FS, must be taken into account to
explain subtle physical effects such as the sign reversal
of the quantum Hall effect [31]. The shape of the
FS of the Bechgaard salts also induces a quite large
range of additional physical phenomena which can be
revealed by the so-called rapid magnetic oscillation
phenomena [16]. Such effects have been recently
reviewed and analyzed within the orthorhombic band
dispersion approach for which nesting deviations can
be simply modeled [79]. Our study shows that the
FS of the real triclinic structure is considerably more
complex than that previously considered so that how
such effects can modify the present theory of rapid
magnetic oscillations is a challenging question.

Although there is no doubt that the model
calculations will continue to provide important insights
into the remarkable low-temperature physics of the
Bechgaard salts, the first-principle approach provides
an accurate and unbiased complement to these
approaches. It can also take into account in a simple
way the 3D effects [56] which are considerably more
difficult to model in analytical approaches.
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