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Abstract 

Background:  Extracorporeal CO2 removal (ECCO2R) could be a valuable additional modality for invasive mechani‑
cal ventilation (IMV) in COPD patients suffering from severe acute exacerbation (AE). We aimed to evaluate in such 
patients the effects of a low-to-middle extracorporeal blood flow device on both gas exchanges and dynamic hyper‑
inflation, as well as on work of breathing (WOB) during the IMV weaning process.

Study design and methods:  Open prospective interventional study in 12 deeply sedated IMV AE-COPD patients 
studied before and after ECCO2R initiation. Gas exchange and dynamic hyperinflation were compared after stabiliza‑
tion without and with ECCO2R (Hemolung, Alung, Pittsburgh, USA) combined with a specific adjustment algorithm of 
the respiratory rate (RR) designed to improve arterial pH. When possible, WOB with and without ECCO2R was meas‑
ured at the end of the weaning process. Due to study size, results are expressed as median (IQR) and a non-parametric 
approach was adopted.

Results:  An improvement in PaCO2, from 68 (63; 76) to 49 (46; 55) mmHg, p = 0.0005, and in pH, from 7.25 (7.23; 7.29) 
to 7.35 (7.32; 7.40), p = 0.0005, was observed after ECCO2R initiation and adjustment of respiratory rate, while intrinsic 
PEEP and Functional Residual Capacity remained unchanged, from 9.0 (7.0; 10.0) to 8.0 (5.0; 9.0) cmH2O and from 3604 
(2631; 4850) to 3338 (2633; 4848) mL, p = 0.1191 and p = 0.3013, respectively. WOB measurements were possible in 5 
patients, indicating near-significant higher values after stopping ECCO2R: 11.7 (7.5; 15.0) versus 22.6 (13.9; 34.7) Joules/
min., p = 0.0625 and 1.1 (0.8; 1.4) versus 1.5 (0.9; 2.8) Joules/L, p = 0.0625. Three patients died in-ICU. Other patients 
were successfully hospital-discharged.

Conclusions:  Using a formalized protocol of RR adjustment, ECCO2R permitted to effectively improve pH and dimin‑
ish PaCO2 at the early phase of IMV in 12 AE-COPD patients, but not to diminish dynamic hyperinflation in the whole 
group. A trend toward a decrease in WOB was also observed during the weaning process.

Trial registration ClinicalTrials.gov: Identifier: NCT02586948.
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Background
Chronic obstructive pulmonary disease (COPD) is cur-
rently the fourth leading cause of death in the U.S. and 
is expected to become the third leading cause of death 
[1]. Value of non-invasive ventilation (NIV) for severe 
AE- COPD was formally demonstrated by randomized 
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clinical trials [2, 3]. While the hospital mortality of 
patients successfully treated with NIV has decreased over 
years, and is currently less than 10%, mortality in patients 
requiring IMV after NIV failure is close to 30% [4]. 
Among the techniques which could help to improve the 
prognosis of such patients, extracorporeal CO2 removal 
(ECCO2R) seems to be a very promising approach [5, 
6]. However, most of the studies focused on ECCO2R in 
NIV AE-COPD patients, with the aim to prevent intuba-
tion [7–9] or to provide an additional respiratory sup-
port after extubation [10]. Only a small number of IMV 
COPD patients were studied under ECCO2R, with the 
aim to facilitate extubation [10–13]. ECCO2R was initi-
ated early after intubation in 2 studies [12, 13], while the 
delay between intubation and ECCO2R initiation was 
higher than 15  days in another study [11]. We prelimi-
narily reported an ECCO2R-induced reduction in work 
of breathing and CO2 production in such a setting [14], 
confirming and extending previous observations [15].

In the present study, we hypothesized that the addition 
of ECCO2R at the early phase of IMV could both improve 
gas exchanges and could also permit to diminish respira-
tory rate (RR), therefore, minimizing dynamic hyperinfla-
tion in AE-COPD patients. Beyond efficacy assessments, 
we also planned to describe the complications or adverse 
events associated with the technique, since bleeding and 
clotting complications were frequently reported in AE-
COPD patients [7].

Materials and methods
Study design
This interventional open prospective study was planned 
to recruit 12 deeply sedated IMV AE-COPD patients in 
tertiary-level ICUs in France. An institutional ethic board 
(Comité de Protection des Personnes Ile-de-France VI, 
Paris, France) approved the protocol (protocole EPHEBE 
P141 203-ID CRB: 2015-A100446-43). Informed consent 
was obtained from patients’ legal representatives. The 
study was prospectively registered in ClinicalTrials.gov: 
Identifier: NCT02586948.

Patients
Consecutive COPD patients older than 18 yrs. hospital-
ized for hypercapnic respiratory failure requiring IMV 
were prospectively screened for inclusion in the study. 
Inclusion criteria were:

•	 AE of a known or suspected COPD
•	 Intubation (whatever the reason for intubation which 

had to be specified)
•	 MV since less than 72 h.
•	 Persistent respiratory acidosis and hyperinflation, 

while the patients were deeply sedated and paralysed

•	 Written inform consent obtained from patient’s legal 
surrogate

Criteria for persistent respiratory acidosis and 
hyperinflation were the combination of: pH < 7.30, 
PaCO2 > 55  mm Hg and intrinsic PEEP (PEEPi) (end-
expiratory occlusion) > 5 cmH2O, while on assist-con-
trolled volume ventilation with the following settings: VT: 
8  mL/kg of predicted body weight (PBW), RR: 12/min., 
applied PEEP: 0 cmH2O, I/E ratio: 1/3. Non-inclusion cri-
teria were as follows: Body Mass Index (BMI) > 35 kg/m2, 
PaO2/FiO2 < 200 mm Hg, history of haemorrhagic stroke, 
history of heparin-induced thrombocytopenia and any 
current severe bleeding. The protocol of the study was 
explained to the legal representatives and informed con-
sent was obtained from patients legal representatives. 
When possible, the same explanations were further pro-
vided to the patient himself after full recovery, for obtain-
ing a definitive post hoc written consent.

Medical devices
The Hemolung® ECCO2R system (Alung Technologies, 
Pittsburgh, PA) was used. It consists of an exchange 
cartridge (membrane surface 0.59 m2) which, in con-
nection with a controller and tubing, ensures ECCO2R 
of about 80  mL/min. at extracorporeal blood flow rates 
comprised between 350 and 550  mL/min. The vascu-
lar access is achieved by means of a double lumen 15.5 
F central venous catheter. The maximum duration of use 
of the circuit, as specified by the manufacturer, is 7 days. 
Anticoagulation was achieved by the mean of continuous 
unfractionated heparin infusion aiming to obtain daily 
therapeutic antiXa activities between 0.3 and 0.6 UI/mL. 
No systematic daily measurement of plasma free hemo-
globin was performed during the study.

The CareScape R860 ventilator (General Electric 
Healthcare) was used allowing continuous measurement 
of the native lung’s VCO2 and serial measurements of the 
functional residual capacity (FRC) (applied PEEP set at 
zero) or end-expiratory lung volume (EELV) (any posi-
tive applied PEEP) using the nitrogen washout/washin 
technique [16, 17]. A Nutrivent catheter (Sidam, Miran-
dola, Italy) was inserted for esophageal pressure meas-
urements, allowing the calculation of inspiratory work of 
breathing (WOB) during the weaning process as previ-
ously described [14].

Protocol of the study
Figure 1 illustrates the flowchart of the study.

After inclusion in the study, we first calculate the target 
PaCO2 (PaCO2target) corresponding to a pH value of 7.40, 
based on the Henderson-Hasselbach equation governing 
the relationship between PaCO2, pH and bicarbonates 
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plasma values. In cases of mixed respiratory and meta-
bolic acidosis, any PaCO2target below the normal PaCO2 
value was replaced by the 40 mmHg value.

The second step of the study was to measure the physi-
ological dead space (VD) using the Bohr-Enghoff equa-
tion: VD/VT = (PaCO2 – PECO2)/PaCO2.

The third step of the study was to start ECCO2R. After 
cannulation and initiation of the treatment, an increase 
in the sweep gas flow (using pure O2) generally up to 10 
L/min. induced a decrease in native lung’s VCO2. We 
checked for stabilization of the latter, with a delay of 1 h.

The fourth part of the study was then to adjust RR for 
reaching PaCO2target. For that purpose, we used the pro-
portionality equation between alveolar ventilation, native 
lung’s VCO2 and PaCO2: (VT – VD) × RR = (K × VCO2)/
PaCO2; 

expressed as:

assuming that VD was unchanged during the study.
The fifth part of the study was to perform final meas-

urements after waiting again for stability of the native 
lung’s VCO2, with a further delay of 1 h. If required, we 
adjusted the extracorporeal blood flow and/or sweep gas 
flow with the aim to keep unchanged the native lung’s 
VCO2 after the initial decrease.

Study endpoints
The primary outcome measure was PEEPi, measured 
during a prolonged expiratory pause at inclusion in the 
study and after initiation of ECCO2R combined with RR 
adjustment. We choose PEEPi as the primary outcome 

RR = (K × VCO2) /[PaCO2target × (VT−VD)]

measure because we assumed that improvement in arte-
rial pH and PaCO2 would be obvious and that the medi-
cal device would be powerful enough for achieving both 
improvements in respiratory acidosis and in dynamic 
hyperinflation. Secondary end-points measured within 
the same time frame were: plateau pressure, peak pres-
sure (Ppeak), FRC, PaCO2, PaO2, arterial pH, hemoglobin 
saturation (SatHbO2), extracorporeal VCO2, standard 
hemodynamic parameters. We also calculated VT/TE as a 
major determinant of dynamic hyperinflation.

Based on recorded files, WOB at the end of the wean-
ing process was measured just before extubation with 
and without ECCO2R under low Pressure Support 
Ventilation as previously described [14]. As a supple-
mental analysis, we also pooled the WOB results of the 
present study with previously published results of 2 pilot 
patients obtained using the same experimental design 
[14]. ECCO2R-related adverse events were recorded dur-
ing the whole ICU-stay. This included severe hemolysis 
defined as a serum free hemoglobin level higher than 
500 mg/L and/or association to jaundice, hemoglobinuria 
or impaired renal function. Time on ECCO2R, time on 
IMV, length of stay in ICU and in hospital and mortality 
at 28 days were recorded.

Sample size calculation and statistical analysis
Considering results obtained in preliminary pilot 
patients, we hypothesized a mean value of PEEPi at inclu-
sion of 9 cmH2O along with an average reduction of 2 
cmH2O of PEEPi after initiation of ECCO2R combined 
with RR adjustment (SD pooled = 1.9- slightly below the 
average reduction). Based on these assumptions, with 12 
evaluable patients, a paired t-test would reach a statistical 
power of 90% to conclude to the statistical significance 
of the difference before/after ECCO2R at the (two-sided) 
alpha level = 0.05 (nQuery MOT1 module).

Demographics and clinical characteristics of included 
patients at inclusion were described as follows: quantita-
tive and qualitative variables were tabulated with medi-
ans, interquartile range (IQR) and range (min; max), 
and counts and proportions, respectively. We secondly 
described primary and secondary endpoints, at each time 
point, with the same statistical indicators. Results are 
expressed in the results sections as median (IQR). Due to 
study size, a non-parametric approach was adopted. For 
principal analysis on primary endpoint, we implemented 
Wilcoxon signed-rank test to compare PEEPi at inclu-
sion and PEEPi after initiation of ECCO2R combined 
with RR adjustment. Regarding secondary endpoints, 
we performed the same test as for primary endpoint. For 
endpoints assessed several times, graphs representing 
variable distributions at each timepoint helped interpret-
ing statistical parameters and tests. In this exploratory 

Fig. 1  Flowchart of the study. PaCO2target: PaCO2 corresponding to 
a pH value of 7.40, based on the Henderson-Hasselbach equation, 
governing the relationship between the PaCO2, pH and bicarbonates 
plasma values. In cases of mixed respiratory and metabolic acidosis, a 
PaCO2target value of 40 mmHg was retained. RR: respiratory rate
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trial, statistical significance for p-values was fixed to 0.05 
for all statistical tests. We summarized SAEs by number 
(frequency) of patients to whom SAE occurred. The soft-
ware used for analyses of data was SAS (r) Proprietary 
Software 9.4. (SAS Institute Inc., Cary, NC).

Results
Twelve patients were recruited during an 18-month 
period in 2 centers. Table  1 shows characteristics at 
inclusion. Causes of AE were viral pulmonary infections 
in 5 patients, bacterial pulmonary infection in 4 patients, 
pneumothoraxes in 2 patients (all with successful pleural 
drainage at the time of measurement), and exacerbation 
in a post-surgical context for the last patient.

After initiation of ECCO2R, the RR adjustment algo-
rithm (aiming to improve arterial pH value) resulted in 
RR decrease in 5 patients, in RR increase in 5 patients, 
while RR was maintained unchanged in the remaining 
2 patients (Fig.  2). As a consequence, median minute 
ventilation was not modified, from 6300 (5112; 6900) to 
6300 (4800; 6725) mL/min., p = 0.8457. PEEPi after ini-
tiation of ECCO2R and RR adjustment was not signifi-
catively different from basal values: 8.5 (7.0; 10.0) to 8.0 
(5.5; 9.5) cmH2O, p = 0.1191. Other respiratory param-
eters (mechanical ventilator settings, other parameters 
of hyperinflation, ABG values and native lungs VCO2 
values) before ECCO2R initiation and after ECCO2R 
initiation combined with RR adjustment are mentioned 
in Table  2, in Additional file  1: Fig.  S1 (gas exchanges 
parameters) and Additional file  1: Fig. S2 (ventilatory 
parameters). In the 7 patients with pure respiratory aci-
dosis before ECCO2R initiation, we found that the RR 
adjustment in addition to ECCO2R led to increase in 
arterial pH from 7.27 (7.25; 7.30) to 7.40 (7.35; 7.43). 
Median extracorporeal blood flow was 460 (430; 505) 
mL/min., with a median sweep gas flow of 10 (10; 10) L/
min. Median extracorporeal VCO2 was 85 (80–89) mL/
min. No variations in hemodynamic parameters were 
observed without or with ECCO2R.

Median ECCO2R duration was 5.55 (3.10; 7.25) days. 
Median sweep gas flow was 10 L/min. from day 1 to day 
6. Additional file 1: Fig. S3 illustrates the course of total 
PEEP and EELV under ECCO2R until day 4. Of note, 
an external positive PEEP (generally between 5 and 8 
cmH2O) was set after stopping deep sedation beyond the 
first days of IMV, to favor the synchronization between 
the patient and the mechanical ventilator and to counter-
act flow limitation. Additional file 1: Fig. S4 illustrates the 
course of ABG parameters and Additional file 1: Fig. S5 
illustrates the course of hematological parameters under 
ECCO2R until day 7. Mainly, a mild thrombocytopenia 
was observed in the whole group.

Inspiratory WOB measurements with and without 
ECCO2R were possible in only 5 patients during the 
weaning process, due to premature cessation of ECCO2R 
before readiness of patients to perform a low Pressure 
Support Ventilation trial in 6 patients (mainly in rela-
tion with hemorrhagic and thrombotic complications) 
and due to accidental removal of the Nutrivent probe 
in one patient. WOB measurements were performed in 
conscious patients while breathing at a low pressure sup-
port level with ECCO2R and after switching the sweep 
gas flow from current value to 0 L/min. for a 1 h period. 
Results are indicated in Table 3. Results adding the previ-
ously published results of 2 pilot patients using a similar 
design are presented as Additional file 1: Table S1.

Three patients died in-ICU and 9 were success-
fully discharged from ICU and hospital. The causes of 
death were one hemorrhagic stroke during ECCO2R 

Table 1  Characteristics of the 12 patients at inclusion

Results are expressed as median (IQR) or number of patients (%)

Clinical variable Result

Age (years) 65 (56.5; 73.5)

Female/male: n/n 4/8

SAPS II 33 (28.5; 39.5)

Body mass index (kg/m2) 25.2 (23.7; 28.3)

NIV failure as the reason for intubation: n (%) 12 (100%)

Home NIV before admission: n (%) 3 (25%)

Long-term oxygen therapy before admission:
n (%)

2 (17%)

Fig. 2  Respiratory rate before ECCO2R initiation and after ECCO2R 
initiation and adjustment aiming to improve arterial pH value. D0: 
first day with ECCO2R, after adjustment of respiratory rate aiming to 
improve arterial pH value
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therapy and 2 septic shocks in relation with venti-
lator-associated pneumonia. The median IMV total 
duration was 8 (6; 18) days. The median IMV dura-
tion after ECCO2R initiation was 6 (4; 16.5) days. The 
median ICU-stay duration was of 14.5 (8–22.5) days. 
The median hospital length of stay was 39 (18.5; 73) 
days. A ventilator-associated pneumonia was diagnosed 
in 4 patients. Three hemorrhagic complications were 
observed during ECCO2R therapy, including one fatal 
hemorrhagic stroke (in the absence of any unfraction-
ated heparin overdosing or thrombocytopenia). Three 
thrombotic complications were observed (2 ECCO2R 
catheter thrombosis, one ECCO2R circuit thrombosis). 
No patient suffered from severe clinical hemolysis. We 
didn’t observe air bubble in the circuit in any patient.

Discussion
We report a physiological and clinical evaluation of a 
low-to-middle extracorporeal blood flow veno-venous 
ECCO2R system in 12 very severe AE-COPD patients 
studied shortly after intubation. Severity of the patients 
was assessed by the combination of respiratory acidosis 
and elevated intrinsic PEEP under pre-specified respira-
tory settings aimed to avoid excessive dynamic hyper-
inflation in deeply sedated IMV patients. Moreover, 
all patients were intubated after NIV failure. Dynamic 
hyperinflation was also assessed by FRC and EELV meas-
urements using the nitrogen washin-washout method, 
providing original results in this specific COPD popu-
lation. Indeed, such patients were not included or were 
excluded from previous studies [18]. As expected, we 
observed very high baseline FRC values as compared to 
published reference values measured in the supine posi-
tion [19].

Initiation of ECCO2R was associated with a median 
extracorporeal CO2 removal amount of 85  mL/min., 
corresponding to 42% of the pre-ECCO2R whole body 
CO2 production. Accordingly, there was a decrease in 
native lungs’ CO2 elimination, which, in conjunction 
with RR adjustment, permitted to improve arterial pH 
and to obtain a median absolute decrease in PaCO2 of 
19 mmHg. This could be beneficial at the early stage of 
IMV in AE COPD patients, mainly by minimizing the 
deleterious effects of acute hypercapnia on ventilator 
demands, therefore, allowing to shorten deep sedation 
periods and to rapidly initiate the IMV weaning pro-
cess. We didn’t observe any ECCO2R-induced deleteri-
ous effect on oxygenation, as sometimes mentioned in 

Table 2  Respiratory parameters before ECCO2R and after ECCO2R initiation combined with RR adjustment

RR respiratory rate, VT tidal volume, PBW predicted body weight, PEEPi intrinsic Positive End Expiratory Pressure, Pplateau plateau pressure, Ppeak peak pressure, FRC 
functional residual capacity, VT/TE ratio of tidal volume by expiratory time;  PaCO2 arterial partial pressure in carbon dioxide, PaO2 arterial partial pressure in oxygen, 
SatHbO2 Oxygen hemoglobin saturation, VCO2resp native lungs’ CO2 elimination

Results are expressed as median (IQR)

Without ECCO2R ECCO2R with RR adjustment p

RR (/min.) 12 (12; 12) 12 (11; 14) 0.4236

VT (mL/Kg PBW) 8.0 (8.0;  8.0) 8.0 (8.0;  8.0) 1

FiO2 32.5 (30; 40) 35 (30; 40) 0.75

PEEPi (cmH20) 8.5 (7.0; 10.0) 8.0 (5.5; 9.5) 0.1191

Pplateau (cmH20) 15.5 (14.0; 17.5) 16.0 (14.0; 17.5) 0.6323

Ppeak (cmH2O) 42.0 (37.5; 49.5) 41.5 (37.5; 51.5) 0.6323

FRC (mL) 3544 (1908; 4849) 2830 (2066; 3818) 0.3013

VT/TE (mL/sec.) 140 (114; 153) 140 (107; 149) 0.8457

PaCO2 (mmHg) 68 (63; 76) 49 (46; 55) 0.0005

PaO2 (mmHg) 73 (60; 85) 78 (69; 94) 0.1831

pH 7.25 (7.23; 7.29) 7.35 (7.32; 7.40) 0.0005

SatHbO2 (%) 93 (88; 95) 96 (95; 97) 0.0337

VCO2resp (mL/min.) 203 (150; 243) 121 (101; 155) 0.0015

Table 3  Work of  breathing (WOB) measurements in  5 
patients with and without ECCO2R

ECCO2R+ treatment with ECCO2R while breathing at a low pressure support 
level, ECCO2R− after switching the sweep gas flow to 0 L/min. for 1 h, WOB: work 
of breathing expressed as Joules per liter of minute ventilation (J/L) or as Joules 
per breath (J/breath), VCO2tot whole body CO2 elimination, VCO2resp native 
lungs CO2 elimination

Results are expressed as median (IQR)

ECCO2R+ ECCO2R− p

WOB (J/L) 1.10 (0.8; 1.40) 1.50 (0.9; 2.80) 0.0625

WOB (J/min.) 11.70 (7.50; 15.00) 22.60 (13.90; 34.70) 0.0625

WOB (J/breath) 0.59 (0.39; 0.79) 0.94 (0.56; 1.29) 0.0625

RR (/min.) 19 (19; 20) 24 (24; 25) 0.1250

VCO2tot (mL/min.) 308 (307; 347) 321 (312; 417) 0.3125

VCO2resp (mL/min.) 242 (240; 280) 321 (312; 417) 0.0625
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COPD patients [9, 10, 20]. However, severely hypox-
emic patients were excluded from our study. Moreover, 
we used a low-to-middle blood flow ECCO2R device, 
therefore, minimizing the ECCO2R-induced imbalance 
between native lung’s VO2 and VCO2 [20]. We also found 
a higher SatHbO2 under ECCO2R, which could at least 
in part be explained by a left shift of the O2 dissociation 
curve due to a decrease in arterial PaCO2 and to a parallel 
increase in arterial pH. Although probably too complex 
for a general clinical use, the algorithm for RR adjust-
ment performed well for arterial pH improvement. Such 
a result was favored by the hemodynamic stability of the 
patients during ECCO2R initiation associated with stabil-
ity in whole body CO2 production. By choice, we didn’t 
retain an algorithm based on VT reduction. This was 
based on the fact that the absolute value of physiologi-
cal dead space for CO2 depends of the absolute value of 
VT, therefore, allowing easier calculations when keeping 
a fixed absolute VT value [21].

However, despite the use of quasi-maximal extracor-
poreal blood and sweep gas flows, the algorithm led to a 
decrease in RR in only 5 patients. This explains that no 
improvement in PEEPi, as the primary outcome measure, 
was observed in the whole group. The clinical correlate 
is that the ECCO2R system was not able in our group of 
very severe IMV COPD patients to both improve respira-
tory acidosis and improve dynamic hyperinflation. How-
ever, it’s obvious that alternative adjustments algorithms 
would have been associated with different results. As an 
example, it could have been possible to first reduce RR 
and VT after ECCO2R initiation while keeping PaCO2 at 
the same level. Such a strategy very probably would have 
been associated with a significant decrease in PEEPi. 
Moreover, in the clinical setting, clinicians will have 
the possibility to tailor personalized strategies: by sim-
ply choosing different PaCO2 target and by calculating 
individual RR adjustment, clinicians have the possibility 
to arbitrate between respiratory acidosis and dynamic 
hyperinflation respective improvements. It’s also likely 
that ECCO2R systems allowing higher extracorporeal 
CO2 removal amounts could have been associated with 
higher improvements in hyperinflation parameters and in 
respiratory acidosis. Altogether, this illustrates the need 
for clinicians to develop clinical strategies of ECCO2R 
initiation in deeply sedated IMV COPD patients. Such 
strategies should be based on the severity of patients, 
mainly assessed by parameters of dynamic hyperinfla-
tion and respiratory acidosis. Based on animal and clini-
cal studies, clinicians should also take into account the 
performances of the different ECCO2R devices and their 
effects on native lungs respiratory CO2 elimination [22, 
23]. Providing such strategies could have important 
implications for the care of patients and for the design of 

future RCTs aiming to prove important clinical benefits 
of ECCO2R in very severe AE-COPD patients. In addi-
tion, we have to mention that our algorithm is not per se 
suitable for awake patients. This point is important, since 
ECCO2R can be proposed in AE-COPD patients at high 
risk of NIV failure, or in cases of difficult IMV weaning. 
Finally, such low-to-intermediate extracorporeal blood 
flow devices could be viewed as more suitable for para-
lyzed moderate ARDS patients with minimal CO2 pro-
duction rather than for very severe AE-COPD patients.

In line with PEEPi results, FRC and VT/TE were not sig-
nificantly improved in the whole group. One could ques-
tion the validity of FRC measurements in patients treated 
by ECCO2R, since ECCO2R can modify the native lung’s 
respiratory quotient [20]. However, the nitrogen fraction 
calculation is based on direct measurements of both O2 
and CO2 fractions when FiO2 is lower than 65%, as indi-
cated by the manufacturer [16]. Since our study included 
only non-severely hypoxemic patients, with FiO2 < 65%, 
we are confident in the validity of our results. Also, the 
course of FRC results was coherent with PEEPi results.

We previously reported an ECCO2R-induced benefit in 
terms of breathing pattern and of work of breathing in 2 
IMV AE-COPD at the end of the weaning process [14]. 
Using the same design, we observed similar trends in 5 
patients. Considering a possible lack of statistical power 
due to the number of patients, we pooled the results 
of the 2 studies and observed significantly less WOB 
(expressed either in Joules per min, per liter of ventilation 
or per breath) under ECCO2R. However, since we cannot 
exclude selection bias, these results are presented with 
great caution and should not be extrapolated to clinical 
practice. Such results obtained in non-sedated patients 
only suggest that ECCO2R could favor a more rapid lib-
eration of IMV, as compared to standard care of IMV 
AE-COPD patients [5, 6, 15]. Moreover, the fact that effi-
ciency of ECCO2R was observed several days after initia-
tion, could open the way for further studies of different 
clinical strategies for ECCO2R weaning.

The median duration of ECCO2R was near to the maxi-
mal duration of the circuit as indicated by the manufac-
turer. Such result is important to consider for the choice 
of ECCO2R devices and circuits in COPD patients. We 
observed one fatal intracerebral bleeding. Such fatality, 
along with other hemorrhagic complications and throm-
bosis, illustrate the need to improve the knowledge of 
the interaction between ECCO2R circuits, anticoagula-
tion regimen and coagulation system of the patients. 
Indeed, hemorrhagic complications can be favored by 
an usual mild thrombocytopenia as observed in our 
study and by other factors such as the occurrence of an 
acquired Willebrand disease, as previously preliminary 
reported with the Hemolung system [24] and such as a 
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severe endothelial dysfunction, as recently reported by 
our group [25]. Moreover, fewer side effects could also be 
expected with higher extracorporeal blood flow devices, 
as recently shown in ARDS patients [26]. Nevertheless, 
the in-hospital mortality rate was found to be lower than 
the mortality rate observed in IMV AE-COPD patients 
by Burki et al. with the same device, which could suggest 
a benefit to initiate ECCO2R early in the course of IMV in 
COPD patients [11].

One of the main limitations of the study was a too opti-
mistic hypothesis at the time of conception of the study, 
leading to an overestimation of the ability of Hemol-
ung device for CO2 removal in such severe AE-COPD 
patient [11, 14]. Another limitation was the choice to use 
standardized mechanical ventilator settings, as part of 
our usual respiratory bundle in such severe AE-COPD 
patients. It is, therefore, conceivable that more personal-
ized settings could have been more appropriate for cer-
tain patients. One other limitation was the assumption 
of an unchanged VD/VT during all points of the study. 
Indeed, there was a possibility of individual decrease (or 
increase) in VD/VT in patients with decrease (or increase) 
in RR. Such variations in VD/VT after limited modifica-
tions in ventilatory settings have been reported previ-
ously in AE-COPD patients [27]. However, there were no 
differences in the whole group between PEEPi, plateau 
pressure, Ppeak and EELV values at baseline and after ini-
tiation of ECCO2R combined with RR adjustments. The 
lack of standard of care control group was also a limit of 
the study for evaluating dynamic hyperinflation indepen-
dently of ventilation on a more prolonged time. Accord-
ingly, the different initial time points were separated by 
a delay of 1 h. Therefore, we cannot exclude that a more 
delayed ECCO2R-induced improvement in regional ven-
tilation could have occurred and allowed decreasing RR, 
I/E ratio or VT, all important determinants of dynamic 
hyperinflation. We didn’t observed severe hemolysis in 
contrast to other reports [26, 28]. However, the observa-
tion is limited by the lack of systematic daily plasma free 
hemoglobin measurement, which is now a standard prac-
tice in our centers. The low inclusion rate of the study 
and the fact that WOB measurements were not pos-
sible for the majority of included patients are also clear 
limitations.

Conclusions
Using a formalized protocol of RR adjustment, ECCO2R 
permitted to effectively improve pH and diminish PaCO2 
at the early phase of IMV in 12 AE-COPD patients, but 
not to diminish dynamic hyperinflation in the whole 
group. Such results could support the clinical implemen-
tation of fine-tuned algorithms derived from our proto-
col taken into account the 2 main goals of ECCO2R at the 

early phase of IMV, i.e., controlling both hyperinflation 
and respiratory acidosis.
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