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Plan evaluation is a key step in the radiotherapy treatment workflow. Central to this step is the assess-
ment of treatment plan quality. Hence, it is important to agree on what we mean by plan quality and to
be fully aware of which parameters it depends on. We understand plan quality in radiotherapy as the
clinical suitability of the delivered dose distribution that can be realistically expected from a treatment
plan. Plan quality is commonly assessed by evaluating the dose distribution calculated by the treatment
planning system (TPS). Evaluating the 3D dose distribution is not easy, however; it is hard to fully eval-
uate its spatial characteristics and we still lack the knowledge for personalising the prediction of the clin-
ical outcome based on individual patient characteristics. This advocates for standardisation and
systematic collection of clinical data and outcomes after radiotherapy. Additionally, the calculated dose
distribution is not exactly the dose delivered to the patient due to uncertainties in the dose calculation
and the treatment delivery, including variations in the patient set-up and anatomy. Consequently, plan
quality also depends on the robustness and complexity of the treatment plan. We believe that future
work and consensus on the best metrics for quality indices are required. Better tools are needed in
TPSs for the evaluation of dose distributions, for the robust evaluation and optimisation of treatment
plans, and for controlling and reporting plan complexity. Implementation of such tools and a better
understanding of these concepts will facilitate the handling of these characteristics in clinical practice
and be helpful to increase the overall quality of treatment plans in radiotherapy.
� 2020 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 153 (2020) 26–33 This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Evaluation of treatment plans is a key step in the radiotherapy
process that determines the characteristics of the plan selected for
treatment and, consequently, how patients undergoing radiother-
apy are treated. The goal of plan evaluation is to assess a plan’s
quality using a number of qualitative and/or quantitative mea-
sures. The concept of plan quality can, however, encompass many
different characteristics of the treatment plan and there is no glo-
bal consensus on how exactly to define, measure, and report plan
quality. For this reason, the 3rd Physics ESTRO Workshop held in
Budapest in October 2019 included a track on ‘Plan quality assess-
ment’. The purpose of this work is to summarise the contents dis-
cussed during this Workshop and to provide the participants’
vision on this topic.

This work comprises three sections focused on different aspects
that affect the quality of treatment plans: dose metrics, plan
robustness and plan complexity. Finally, we present the working
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group’s overall conclusions on the subject of treatment plan qual-
ity assessment.
Dose metrics

The evaluation of the calculated dose distribution is a funda-
mental aspect of plan evaluation. It is critical to ensure high plan
quality during the treatment planning process and upon treatment
approval. However, this evaluation is not easy since there are mul-
tiple aspects that commonly play a role in the assessment of plan
quality. These include protocols, local requirements, historical cus-
toms and personal preferences, and they can affect any final
decision.

Prescriptions and treatment planning protocols should incorpo-
rate a prioritisation of the dose objectives and constraints on tar-
gets and organs at risk (OARs). This prioritisation should be
based on expert evaluation of the scientific literature, as done by
the DAHANCA group [1,2]. Such a prioritisation would help to stan-
dardise the decision-making process and reduce subjectivity when
clinical compromises are needed. It is important to be critical
towards historical customs and traditions, however. These must
always be supported by scientific evidence or at least be regularly
re-evaluated based on new experience. Inter-planner variability
may be another factor that affects the final treatment plan and
the resulting dose distribution. This can be reduced by using auto-
matic planning strategies [3,4]. In any case, personal preferences
based on subjective beliefs, such as attempting to make the dose
distribution ‘look’ nice (for instance prioritising conformity over
dose to OARs and normal tissues), should be avoided.

To that purpose, the use of class solutions in treatment planning
is highly recommended and local planning protocols should be
adapted to each institution’s specific requirements, be evaluated
periodically and incorporate dynamic development [5]. Addition-
ally, it is highly recommended to standardise the collection of
patient data such as co-morbidities, systemic treatments, toxici-
ties, local control and survival in a database, regardless of their
inclusion in clinical trials. This will help build clinical knowledge
based on earlier experiences. The consistency of such data is cru-
cial and any potential sources of bias, such as how the dose distri-
bution is normalised [6–8] and what calculation algorithm and
dose quantity is used [9] should be carefully considered and
reported.

The evaluation of the calculated dose distribution is often based
on dose volume histograms (DVHs), which collapse the 3D dose
information in 2D metrics (dose and volume), losing the informa-
tion on its spatial distribution. Due to this limitation, a slice-by-
slice inspection of the dose distribution is recommended to iden-
tify potential aspects for further improvement [7]. The target cov-
erage is commonly evaluated by comparing DVH metrics as well as
hot and cold regions to protocolised goal values [6–8]. Regarding
OARs, studies on clinical tolerances based on DVH metrics have
been collected by Emami et. al. [10] and updated in the QUANTEC
series of publications by Bentzen et al. [11]. These tolerances rely
on a single DVH endpoint and were based on an arbitrary level of
acceptable toxicity. This can be problematic since dose metrics
are often highly correlated and a single dose metric might not
encapsulate the full causal dose response relationship. Existing
mathematical methods such as principal component analysis,
which can disentangle the collinearity effects of dose metrics
[12], can help overcome these problems. Another issue is the fact
that, when QUANTEC data were collected, the use of 3D TPSs was
not fully implemented and data analysis capacities of computers
were limited.

Instead of evaluating the target coverage and the risk of toxicity
through a single dosimetric endpoint, the tumour control probabil-
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ity (TCP) and normal tissue complication probability (NTCP) can be
calculated from biological models [13,14], which are usually based
on the DVH information. Most of these tolerances and NTCP mod-
els were generated using data from one or few centres and should,
therefore, be used with caution. If possible, a local validation of the
NTCP model should be conducted but, as a minimum, an under-
standing of the underlying model cohort and the limitations of
the model is required [15]. It is also important, when possible, to
minimise OAR doses below model tolerances to facilitate potential
reirradiations in case of tumour relapse [16].

Derived DVH dose metrics can also be useful to objectively
quantify the quality of a dose distribution regarding target irradia-
tion [17] and have been adopted in radiotherapy guidelines. These
metrics include homogeneity, conformity and gradient indices and
some of them indirectly ensure low doses to the normal tissues.
They are used in some protocols that require specific dose distribu-
tions (e.g., stereotactic treatments and brachytherapy) and differ-
ent definitions are used depending on the clinical purpose and
the considered protocol, each one with its own strengths and
drawbacks. Homogeneity indices are usually based on ratios of
two or three points in the target DVH, such as different definitions
of maximum, minimum and prescribed dose [7,8]. More complex
indices can take into account all the points in the DVH curve and
quantify the dose dispersion around the average dose [18,19]. Con-
formity indices (CI) involve ratios of volumes treated at a given iso-
dose to the target volume [20]. The RTOG CI [21] is criticised for
not taking into account the location and shape of the prescription
isodose with respect to the target volume. To overcome this limi-
tation, other indices have been proposed, such as the Paddick CI,
which combines conformity and target coverage [22]. A steep dose
fall-off is important in order to decrease toxicity in tissues sur-
rounding the target, especially in treatments involving high doses
per fraction. Dose gradient indices quantify this property [23].

It can be practical to collapse all this information into an overall
plan score or single plan quality index (PQI), as recently pointed
out by Giglioli et al. [24]. PQIs are obtained by weighing DVH val-
ues and DVH-derived metrics based on patient group specific pro-
tocols and they facilitate comparisons while minimising
subjectivity. Large efforts have been made by several authors to
define a composite score or figure of merit for quantifying overall
plan quality [25–29] and there is a commercial tool available
[30,31]. These quality indices are practical as decision-support sys-
tems when comparing plans for the same patient [32] and have
also been used for evaluating plan quality across different patients
and platforms [24] and in treatment planning competitions [33–
35]. However, which parameters to consider and their weights is
not a straightforward decision and involves a certain degree of sub-
jectivity. Hence, careful evaluation is required in comparisons
across different patients and technologies. PQIs are the basis of
the cost functions used in plan optimisers and in automatic plan-
ning strategies; therefore, these aspects should be carefully consid-
ered when plans are evaluated and when automatic planning
models are trained [36].

Texture analysis was recently proposed to characterise the spa-
tial dose distribution. This is known as dosiomics [37–42] and is a
powerful technique for characterising spatial and statistical distri-
butions of pixel/voxel intensities in an image through the identifi-
cation of patterns and voxel correlations. Dosiomics is a promising
method for parameterising regions of interest and for producing
intensity, textural and shape-based dose features that might be
able to describe the dose distribution better than DVH-based met-
rics, as well as to potentially improve the predictive performance
of TCP and NTCP models. Moreover, dosiomics can provide novel
quality metrics from the extracted features, facilitating a more
accurate evaluation and further standardisation of treatment plan
quality. Feature extraction methodologies are comparable with
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those used by radiomics but they involve 3D dose matrices instead
of diagnostic images (CT, MRI, etc.). Among the radiomic features
defined in the Image Biomark Standardization Initiative [43], the
most promising features for dosiomic studies belong to the first
order and textural families (local intensity, intensity-based statis-
tics, grey level co-occurrence matrix, grey level size zone matrix,
etc..). A standardisation and stability analysis of the selected dosio-
mic features is mandatory [44], as well as a feature redundancy
investigation to select the dosiomic features that are independent
of DVH-basedmetrics and which can thus provide additional value.
Not only anatomy-based ROIs (e.g. delineated target volumes and
OAR) should be considered for the dosiomic feature extraction;
instead, dedicated dosiomic regions of interest from which to
extract the features (isodose volumes, intersections of anatomy-
based ROIs, regions of low bath dose, etc.) may offer a better eval-
uation of the 3D dose distribution. There is also a need for dosiomic
features to have a clear clinical interpretation because ‘black box’
features would be difficult or impossible to prioritise against other
metrics.

Ideally, the quality of a dose distribution should be linked to
evidence-proven clinical outcomes and should be personalised to
account for patient-specific data such as tumour characteristics,
complementary treatments, and risk factors. However, this is a
truly complex problem involving a large amount of data and it is
not well known yet how to carry out this personalisation. This pro-
vides a compelling challenge not only for TPS manufacturers but
for the whole scientific community. In general, we believe that
more effort is warranted by:

� TPS manufacturers, to implement additional tools for evaluating
dose distributions, such as radiobiological models, as well as to
facilitate the future implementation of new spatially correlated
tools, such as dosiomics, and by

� the scientific community, to collect structured data on dose
indices, patient and tumour characteristics and follow-up data
on tumour control, toxicities and survival. Future analysis of
the data with appropriate tools such as Big Data Analytics and
artificial intelligence (AI) could help personalise radiotherapy
treatments and further link the quality of a dose distribution
to the patient’s clinical outcome.

Robustness

The traditional method to achieve target coverage and OARs
sparing has been the definition of adequate margins around the
clinical target volume (CTV) and OARs to obtain the planning target
volume (PTV) and organ at risk planning volume (PRV). Several for-
mulas have been proposed for the definition of these margins for
the PTV [45,46] and PRVs [47,48].

However, there are several limitations that affect the PTV defi-
nition: it relies on the so-called static dose cloud approximation
and does not guarantee optimal management for PTVs extending
into air. Moreover, whether or not the CTV receives the prescribed
dose depends also on the specific dose distribution rather than
only on geometric margins. Dose distributions are neither perfectly
conformal to the PTV nor equally conformal on all sides of the CTV
and non-conformity results in an inherent dosimetric margin [49].
In those regions where the prescription isodose line extends
beyond the CTV less or no margin needs to be added to account
for treatment uncertainties. In addition to conformity, the required
margin also depends on the steepness of the dose fall-off near the
target because a naturally gradual fall-off may require a smaller
margin than a sharp fall-off. As Stroom et. al. underlined, the PRV
concept has even more limitations and it seems necessary to
develop alternative ways to include geometric uncertainties of
28
OARs in treatment planning [48]. All these concerns about the
use of PTV and PRV are even more important in proton therapy.

Robust optimisation follows a different approach, addressing
uncertainties explicitly, without the need for margins. Thus,
instead of optimising a single scenario (i.e., patient in a fixed nom-
inal position and considering PTV and PRV margins) dose distribu-
tions are optimised for n scenarios. Each scenario represents a
possible treatment course (i.e. all the treatment fractions) and
should include the specification of all the errors that are needed
to calculate a final dose distribution. In the context of random
setup errors in a fractionated treatment, this would also include
the setup errors for all individual fractions. The plan can then be
optimised considering all of the n scenarios at once (often in the
worst-case scenario, minimax approach) or a combination of dif-
ferent scenarios, each one assigned a certain probability (proba-
bilistic approach).

Regardless of whether the plan has been optimised in the ’clas-
sical’ way (i.e., PTV-based) or with robust optimisation, it is always
possible to make an a posteriori assessment of the plan’s robust-
ness. With robustness evaluation one can evaluate how the dose
distribution changes compared to the nominal dose by recalculat-
ing the plan obtained in different error scenarios. This offers the
possibility of quantifying the uncertainties in DVHs and other dose
metrics due to e.g. variations in patient set-up and anatomy
[50,51].

It has been shown that robust optimisation can potentially
solve the PTV/PRV limitations and improve CTV coverage and
OAR sparing [52–54] both for photon and proton treatments. The
problem of PTV expansion into air is also solved since variations
concerning the CTV are explicitly accounted for in the calculation.
Robust optimisation and evaluation are generally posed as n-
dimensional problems; for instance, n = 1 can take into account
the set-up error, n = 2 the range uncertainty for protons, n = 3
the breathing phases of a 4DCT and n = 4 possible anatomical
changes (such as cavity filling and tumour shrinkage) to reduce
the need for re-planning. In general, robust optimisation reduces
doses to normal tissues that would be unnecessarily irradiated
with the PTV-margin concept and leads to delivered dose distribu-
tions with a higher probability of acceptable target coverage and
OAR sparing [52–54].

Only a few years since it was first implemented in a commercial
TPS in 2014, robust optimisation has become a standard tool in
proton therapy and is also gaining interest in photon therapy. A
treatment plan that is both ‘good’ (i.e., with a clinically acceptable
nominal dose distribution), and ‘robust’ will yield a dose distribu-
tion that is suitable for all or the majority of the error scenarios
considered by the optimiser. There are different paradigms to
translate this notion into mathematical terms. Broadly, these
approaches can be categorised as (i) the probabilistic (stochastic)
approach, which optimises the expected delivered dose distribu-
tion, and (ii) the minimax approach, which optimises the dose dis-
tribution for the worst error considered [55]. Probabilistic
optimisation requires associating an occurrence probability to each
considered uncertainty scenario. Gaussian probability densities are
commonly assumed as a first approximation, which yields treat-
ment plans that are also robust against other probability density
functions [56]. Worst-case methods can focus on (i) composite
worst-case scenario (composite worst-case), (ii) worst-case scenar-
ios for each objective considered independently (objectivewise
worst-case) and (iii) worst-case scenarios for each voxel consid-
ered independently (voxelwise worst case) and no particular
method has yet proven to be superior to the others in all circum-
stances [57].

We must bear in mind that the terms ‘robust optimisation’ and
‘robust analysis’ encompass several different methodologies and
metrics, and there is no consensus on which ones should be imple-
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mented or exactly how they should be used [55,58–61]. Robust-
ness evaluation tools are in their infancy and many metrics can
be used that provide global (DVHs, variations in dosimetric indices,
etc.) or local (2D dose distribution) information.

A message that clearly emerges from the literature is that
there can be significant differences, both in terms of target cov-
erage and OAR sparing, between the nominal dose distribution
approved by the clinician and the dose distribution in the dif-
ferent scenarios evaluated in the robustness analysis. This is
true both for photon and proton plans, which is why robustness
analysis should not be restricted to the proton therapy world
alone.

In order to make robustness analysis clinically useful, it is extre-
mely important to define a benchmark for the robust analysis tools
and agree on what constitutes a safe degree of variability. Is it
acceptable, for instance, if in the worst-case scenario the D1% to
the spinal cord increases by 20 Gy compared to the nominal dose,
even though it remains within tolerance? Calibration of robust
evaluation methods against existing PTV-based methods could be
a solution for this [58]. Another important consideration must be
made when robustness is applied to OAR dose constraints in addi-
tion to target coverage. The OAR constraints reported in the QUAN-
TEC papers [11] are all based on nominal DVHs and no robust
analysis was considered in the setting of those constraints. There-
fore, the request that these OAR constraints are fulfilled in many, if
not all, the considered scenarios may be too restrictive and com-
promise target coverage.

Robustness methods address variations in the patient’s anat-
omy throughout the course of treatment, but the uncertainty in
volume delineation is typically not considered. Automatic contour-
ing algorithms that improve inter-observer consistency are cur-
rently available for clinical use, especially for organs at risk [62].
Volume delineation still constitutes an important potential source
of uncertainty in radiotherapy, however. Interestingly, robustness
methods could also be applied to delineation uncertainties, but
convincing applications of robust optimisation in this context are
limited [55].

Given the potential of these new tools and their current avail-
ability in treatment planning systems, it is important to reach con-
sensus on which methods are the most appropriate for both robust
optimisation and evaluation. Retrospectively analysing plan
robustness for patients already treated with protons (with follow
up data on toxicity and tumour control) could be an interesting
solution. These data could be useful for establishing appropriate
references for robustness parameters, as proposed by Malyapa et.
al. [61]. We believe the same should be done for typical IMRT
and VMAT plans in different treatment sites in order to enable a
transition to margin-less robust optimisation and evaluation in
the photon world.

In this context we consider it essential to:

� Implement more and faster tools in TPSs to facilitate both
robust optimisation and robust evaluation of treatment plans.
These tools should preferably include not only the worst-case
scenario, but also the probabilistic approach and be available
for both proton and photon planning.

� Further perform robust optimisation and evaluation of clinical
plans, also for photon beam therapy.

� Establish a common benchmark for plan robustness evaluation
that is used for both particle and photon beam therapy and
allows a fair comparison of the robustness of proton and photon
plans.

� Reach consensus in the scientific community on which methods
and metrics are the most appropriate for robust optimisation
and analysis, e.g. to quantify the degree of robustness of a given
plan.
29
� Generate databases of clinical data and robustness parameters
and share these data among different centres. This will enable
tumour control and OAR toxicity to be correlated with the
results of robustness evaluations.

Plan complexity

Modern modulated radiotherapy techniques involve modula-
tion of many machine parameters, placing high demands on treat-
ment machines and TPSs. This increase in modulation of machine
parameters is commonly referred to as an increase in treatment
plan complexity. More complex plans have larger uncertainties in
dose calculation and treatment delivery [63–65] compared to
non-modulated plans.

It is challenging to agree on a unique definition of complexity,
even among scientists [66]. We understand the complexity of a
radiotherapy treatment plan as an estimation of the degree of dose
uncertainty as a result of its calculation and delivery, which
depends on all the machine parameters that make up the treat-
ment plan.

Several complexity metrics have been proposed in the literature
for MLC-based treatments. Initially, they were based on fluence
maps, but these maps are not always available. Furthermore, the
same fluence maps can be produced through different variations
of machine parameters depending on the optimisation and
sequencing algorithms used, which cannot be taken into account
by fluence-based metrics [67]. Therefore, fluence-based metrics
have been gradually replaced by metrics that directly depend on
the treatment plan parameters. Different complexity metrics focus
on different aspects of plan complexity [68], such as aperture mod-
ulation [67,69], the size and irregularity of beam apertures [67,70–
73] and modulation of specific machine parameters, e.g. the dis-
tance travelled by the leaves [74] and the variations in dose rate
and gantry speed [75,76]. A detailed explanation of complexity
metrics can be found in two recent reviews [77,78].

A certain degree of complexity in treatment plans is necessary
because it is often required to achieve an acceptable dose distribu-
tion. However, many investigators have reported that a high
degree of plan complexity may affect the accuracy of dose calcula-
tion and treatment delivery [69,71,72,74,75,79,80]. This is because
more complex plans typically involve smaller and more irregular
beam apertures, larger tongue-and-groove effects and larger mod-
ulation of machine parameters. Such complexities affect the uncer-
tainties in dose calculations due to limitations in the calculation
algorithm or in the beam model, e.g. in the MLC configuration
[81]. They also influence the sensitivity of the delivered dose to
small deviations in machine parameters during treatment delivery
(even within their tolerances) and to variations in patient geome-
try, e.g. respiratory motion [82]. Plan complexity can be inter-
preted as an assessment of the robustness of treatment plans to
all these uncertainties. Additionally, highly complex plans require
longer beam-on times, which can increase the risk of intra-
fraction movements in some treatment sites [83]. A high degree
of plan complexity may therefore compromise the overall accuracy
and quality of the treatment. Consequently, high degrees of plan
complexity should be avoided to maximise accuracy and robust-
ness of radiation treatments. AAPM pointed out the need to quan-
tify plan modulation [84] and to adapt tolerance limits to the
degree of plan complexity [65].

It is known that ‘dosimetric’ plan quality is often not correlated
to plan complexity [85–87] and that similar dose distributions are
achievable with more or less complex treatment plans because
inverse optimisation can introduce unnecessary complexity
[70,85,88]. For these reasons, many investigators have recom-
mended incorporating complexity metrics into the cost function
used by optimisation algorithms [69,70,79,86,89]. This is particu-
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larly relevant in automated planning, where there is an added risk
of inadvertently increasing plan complexity [90–92]. There is no
consensus on which complexity metric should be used. Many of
them are correlated and multiple metrics can be used to account
for the different uncertainties and sources of plan complexity
[68]. A very comprehensive table was recently provided by Antoine
et al. [78], summarising the main proposed complexity metrics
that could be used. Several different metrics may have a similar
impact in reducing plan complexity and further studies are needed.
In our opinion, the more relevant aspects in plan complexity are
the degree of aperture modulation and the irregularity of the beam
apertures. Hence, a combination of metrics addressing these two
aspects could be used to control plan complexity during the opti-
misation process. Additionally, it would be desirable that TPSs
clearly describe the metrics that they use and report the obtained
values to facilitate the management of plan complexity in clinical
practice.

Information on the complexity of treatment plans can be help-
ful to evaluate trade-offs between dosimetric performance and
plan complexity. Additionally, a plan complexity metric can serve
as a plan verification tool aimed at reducing the QA workload,
e.g. because plans with a low degree of complexity may not
require as much verification as highly complex plans [77,78].
This can be important for the QA of online adaptive radiotherapy,
where measurement-based verifications are not feasible and
complexity metrics can facilitate a fast verification of the adapted
plans [93].

For the reasons discussed above, plan complexity is a relevant
aspect when evaluating treatment plan quality. The quality of a
treatment plan depends not only on the calculated dose distribu-
tion (dosimetric performance), but also on the accuracy of the dose
calculation and beam delivery. Therefore, plan quality must incor-
porate an assessment of plan complexity. Plan complexity has been
discussed in the literature mainly for photon radiotherapy based
on conventional linear accelerators, but we believe that some of
these complexity metrics would be valid for other techniques such
as robotic radiosurgery (CyberKnife) and similar concepts that
reduce complexity and increase efficiency could also be applied
to proton therapy.

Many commercial TPSs offer the possibility to control the num-
ber of MUs or the treatment time of the plans they produce. Some
TPSs incorporate methods to restrict complexity during optimiza-
tion, e.g. the aperture shape controller (ASC) tool in the Eclipse
TPS [94] and the modulation factor (MF) in the TomoTherapy Hi-
Art treatment system [95–97], but most TPSs still do not directly
incorporate advanced complexity metrics [77]. Thus, unnecessary
plan complexity is sometimes a consequence of inverse planning
and better tools are needed to handle plan complexity [98]. To that
aim, we encourage TPS manufacturers to:

� Minimise and better control plan complexity by incorporating
complexity metrics into the optimisation algorithms. In our
opinion, a combination of metrics focused on aperture modula-
tion and aperture irregularity could be used, but further studies
are necessary.

� Include tools for scoring and reporting on different aspects of
the complexity of treatment plans to facilitate the handling of
plan complexity during the treatment planning process.

In our opinion, implementation of such tools in TPSs will be
useful for reducing and rationalising the complexity of clinical
plans and their associated uncertainties, as well as for facilitating
a better evaluation of the overall quality of radiotherapy treatment
plans.
30
Plan quality

The quality of a radiotherapy treatment plan should indicate its
clinical suitability, which can be assessed from the delivered dose
distribution that can realistically be expected. To that purpose, the
existing uncertainties in the calculation and delivery of the plan
and their impact on the delivered dose must be accounted for. Plan
quality is typically assessed by evaluating to what degree a ‘nom-
inal’ calculated dose distribution fulfils the desired dose objectives
specified in the radiation oncologist’s prescription. It is important
to bear in mind, however, that the dose ‘on the screen’ is not the
dose actually delivered to the patient. Differences may arise due
to limitations in the models and algorithms implemented in treat-
ment planning systems [99], which can be even more relevant for
navigated plans in Pareto fronts using multi-criteria optimisation
(MCO)[100,101]. Differences can also be due to uncertainties in
the delivery of the treatment plan [102,103], including those asso-
ciated with the treatment unit as well as with patient set-up, intra-
fraction motion, and variations in the patient’s anatomy [104].

As discussed in the previous sections, the impact of these uncer-
tainties on the dose delivered to the patient depends on the robust-
ness and complexity of treatment plans. Despite that, plan quality
is commonly quantified solely in terms of the calculated dose dis-
tribution in a single scenario [25,27–30], with few exceptions
where aspects related to plan robustness, complexity, and treat-
ment efficiency were considered [59,105–108]. In our opinion,
when only the calculated dose distribution in the nominal situa-
tion is examined this should be clearly acknowledged and
reported; in these cases, terms such as ‘dosimetric plan quality’
or ‘dosimetric performance’ could be used to differentiate them
from overall plan quality.

In conclusion, the dose distribution delivered to the patient
depends not only on the calculated dose distribution but also on
the robustness and complexity of the treatment plan. Therefore,
all these characteristics need to be taken into account when plan
quality is evaluated. Plan quality should be linked to clinical out-
come and we believe that, to that aim, collecting structured data
on dose metrics, robustness and complexity as well as clinical
information from patients is essential. A better understanding of
these concepts and further implementation of appropriate tools
in commercial TPSs will facilitate the handling of these character-
istics in clinical practice and be helpful for increasing the overall
quality of treatment plans in radiotherapy.
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