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Abstract

Background: Chronic kidney disease has emerged as a strong cardiovascular risk factor, and in many current
guidelines, it is already considered as a coronary heart disease (CHD) equivalent. Routinely, creatinine has been
used as the main marker of renal function, but recently, cystatin C emerged as a more promising marker. The aim
of this study was to assess the comparative cardiovascular and mortality risk of chronic kidney disease (CKD) using
cystatin C-based and creatinine-based equations of the estimated glomerular filtration rate (eGFR) in participants of
population-based and disease cohorts.

Methods: The present study has been conducted within the BiomarCaRE project, with harmonized data from
20 population-based cohorts (n = 76,954) from 6 European countries and 3 cardiovascular disease (CVD)
cohorts (n = 4982) from Germany. Cox proportional hazards models were used to assess hazard ratios (HRs) for
the various CKD definitions with adverse outcomes and mortality after adjustment for the Systematic
COronary Risk Evaluation (SCORE) variables and study center. Main outcome measures were cardiovascular
diseases, cardiovascular death, and all-cause mortality.
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Results: The overall prevalence of CKD stage 3–5 by creatinine- and cystatin C-based eGFR, respectively, was
3.3% and 7.4% in the population-based cohorts and 13.9% and 14.4% in the disease cohorts. CKD was an
important independent risk factor for subsequent CVD events and mortality. For example, in the population-
based cohorts, the HR for CVD mortality was 1.72 (95% CI 1.53 to 1.92) with creatinine-based CKD and it was
2.14 (95% CI 1.90 to 2.40) based on cystatin-based CKD compared to participants without CKD. In general, the
HRs were higher for cystatin C-based CKD compared to creatinine-based CKD, for all three outcomes and risk
increased clearly below the conventional threshold for CKD, also in older adults. Net reclassification indices
were larger for a cystatin-C based CKD definition. Differences in HRs (between the two CKD measures) in the
disease cohorts were less pronounced than in the population-based cohorts.

Conclusion: CKD is an important risk factor for subsequent CVD events and total mortality. However, point
estimates of creatinine- and cystatin C-based CKD differed considerably between low- and high-risk
populations. Especially in low-risk settings, the use of cystatin C-based CKD may result in more accurate risk
estimates and have better prognostic value.

Keywords: Cohort study, Chronic kidney disease, Estimated glomerular filtration rate, Adverse outcome,
Creatinine, Cystatin C

Background
Chronic kidney disease (CKD) represents a global public
health problem and affects a large proportion of the adult
population worldwide [1, 2]. CKD has a complicated rela-
tionship with diabetes and hypertension and other associ-
ated diseases, and it is an independent risk factor for
cardiovascular diseases (CVDs) as well as for all-cause mor-
tality [1]. Outcomes of CKD include not only progression
to end-stage renal disease (ESRD) but also complications
such as hypertension, malnutrition, anemia, bone disease,
and a decreased quality of life [3, 4].
Also, subclinical CKD has been associated with a large

burden of disease and mortality [5]. This finding is clin-
ically important because early detection and treatment
of CKD can prevent or delay the progression of CKD
and its adverse health outcomes [6]. Meanwhile, it has
been demonstrated that the addition of a cystatin C-
based equation improves overall risk classification for
death, cardiovascular disease, and end-stage renal disease
[7]. However, different equations, based on creatinine or
cystatin C measurements, for estimating CKD seem to
have different performance characteristics in high-risk
and low-risk populations and subgroups such as older
adults or patients with diabetes [8, 9]. An analysis of the
clinical value in specific populations (e.g., for risk predic-
tion) such as high-risk and low-risk CVD populations,
older adults, or patients with diabetes would further help
to assess the performance of the various estimated glom-
erular filtration rate (eGFR) estimation equations.
The aim of the study was to assess the prevalence of

CKD using creatinine (Cr)- and cystatin C (cysC)-based
eGFR equations and their comparative risks for cardio-
vascular and mortality in participants of cohorts of the
MORGAM/BiomarCaRE consortium representing the
general population and cohorts with manifest CVD. We

also compared the strength of the associations and prog-
nostic values between population-based general and dis-
ease cohorts and in specific subgroups (e.g., older adults,
sex, participants with hypertension and diabetes).

Methods
Study populations and study design
The present study has been conducted within the MOR-
GAM/BiomarCaRE projects, described in detail previously
[10, 11], with harmonized data from 20 population-based
cohorts from 7 European countries and 3 CVD cohorts
from Germany. The harmonized data variables included
baseline information on sex, age, smoking status, hyper-
tension (defined as systolic blood pressure > 140mmHg or
anti-hypertensive medication), and diabetes (defined as
self-report or antidiabetic medication). In addition, total
cholesterol, C-reactive protein (CRP), N-terminal pro-B-
type natriuretic peptide (Nt-proBNP), and troponin I
were included, as well as study outcome information
(details below). Details of the studies are included in
Additional file 1, Table S1-S3, Box S1 [12–28] and
also can be found elsewhere [10, 11, 29].

Laboratory measurements
In the population-based cohorts of the MORGAM/Bio-
marCaRE study, creatinine was measured with the
kinetic alkaline picrate Jaffe method with the isotope
dilution mass spectrometry (IDMS) traceable (NIST
SRM 967) Abbott Architect Assay CREATININE on the
Architect c8000. Cystatin C was measured with the im-
munoassay cystatin C on an Abbott Diagnostics ARCH
ITECT. All analyses were done at the BiomarCaRE
central laboratory at Mainz and after the move in the
Medical University Center Hamburg-Eppendorf in
Hamburg. The intra- and inter-assay coefficients of
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variation (CVs) were measured using samples of
medium concentrations (creatinine: medium= 1.39–2.44
mg/dL, high = 2.25–7.3mg/dL; cystatin C: high = 2.95–
4.77mg/L). The intra-assay CVs for creatinine ranged
from 0.09 to 5.2% and for cystatin C from 0.78 to 4.0%, re-
spectively. The inter-assay CV for creatinine ranged from
2.3 to 8.1% and for cystatin C from 1.8 to 12.5% for the
measurements in the population-based cohorts. In the dis-
ease cohorts, creatinine was measured locally immediately
by standardized routine methods in the respective labora-
tories of the participating centers.
In addition, total cholesterol was measured locally by

routine methods and subject to a central quality control in
the general population cohorts (details under https://www.
thl.fi/publications/monica/tchol/tcholqa.htm). C-reactive
protein was measured on an Abbott Architect c8000
system and the CRP Vario immunoassay (intra-assay CV
0.87–3.79%, inter-assay CV 2.57–4.71%, using samples of
low concentration (2.8–4.2mg/L)). N-terminal pro-B-type
natriuretic peptide (NT-proBNP) levels were measured on
an ELECSYS 2010 or a Cobas e411 using an electrochemi-
luminescence immunoassay (ECLIA, Roche Diagnostics)
(intra-assay CV 1.48–7.04%, inter-assay CV 4.74–9.18%
using samples of low concentration (115.6–166.4 pg/mL)).

Assessment of chronic kidney disease
Kidney function was assessed by means of eGFR based
on the latest equations from the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI), and included
creatinine and cystatin C [7].
eGFRcrea according to the Chronic Kidney Disease

Epidemiology Collaboration (CKD-EPIcrea) equation
[30]: eGFR= 141 ×min (Cr/k, 1)a×max (Cr/k,
1)−1.209 × (0.993)age × (1.018 if female) × (1.159 if black) where
k is 0.7 for females and 0.9 for males, a is − 0.329 for females
and − 0.411 for males, min indicates the minimum of Cr/k
or 1, and max indicates the maximum of Cr/k or 1.
Cystatin C-based eGFR according to CKD-EPI collab-

oration [31]: eGFR (CKD-EPIcysC) = 127.7 × (cysC)−1.17 ×
age−0.13 × (0.91 if female) × (1.06 if black).
CKD stage 3–5 was defined as eGFR of less than 60

mL/min/1.73 m2. In equations, Cr is given in mg/dL,
cysC in mg/L, age in years, weight in kg, and eGFR in
mL/min/1.73 m2. Only participants with measurements
of creatinine and cystatin C were included in the final
statistical analysis.

Outcome definitions
The following outcomes were included in the analysis:
(1) cardiovascular mortality (fatal myocardial infarction,
fatal stroke, cardiac death, unclassified death) and (2)
cardiovascular disease which was defined in the
population-based studies as the first fatal or non-fatal
coronary heart disease event or cerebral infarction. The

coronary event included acute definite or possible myo-
cardial infarction or coronary death, unstable angina
pectoris, cardiac revascularization, or unclassifiable
death. Definition of CVD disease outcomes was based
on data harmonized in the MORGAM project. For
population-based cohorts, participants with prevalent
CVD at baseline were excluded from this outcome ana-
lysis (note that these participants are still included in
the supplementary tables). For the disease cohorts, sub-
sequent CVD was defined as CVD as the main cause of
death and non-fatal stroke or myocardial infarction. (3)
Total mortality as an endpoint was defined as death
due to any cause during the follow-up time. More
details of the event classification are provided elsewhere
[11, 32] and in the MORGAM manual [29]. The follow-
up started at the date of baseline examinations.
Duration of follow-up in each cohort is described in
Additional file 1, Table S1.

Statistical analysis
The study populations were described with respect to
baseline sociodemographic and medical characteristics.
The prevalence of CKD was calculated and displayed
across specific age categories. Cox proportional hazards
models were used to assess hazard ratios (HRs) for the
various CKD definitions with adverse cardiovascular out-
comes and mortality after adjustment for the SCORE
variables (age, sex, smoking status, systolic blood pres-
sure, total cholesterol) [33, 34] and also study cohort.
The proportional hazards assumption was checked
graphically and based on the multivariable model. Be-
sides overall results, analyses were also done according
to age (< 65, ≥ 65 years), sex, history of hypertension,
and diabetes at baseline. In addition, the area under the
curve (AUC) with 95% CI and the net reclassification
improvement (NRI) [35] for events and non-events by
adding creatinine-based and cystatin C-based CKD to
the ESC score variables’ adjusted model were calculated
according to the risk strata of < 1%, 1 to < 5%, 5 to < 10,
and ≥ 10% of estimated 10-year risk for the various
events. Finally, we used a restricted cubic spline regres-
sion with 3 degrees of freedom for multivariate analysis
within the context of the Cox proportional hazards
models. SAS version 9.4 (SAS Institute Inc., Cary, NC)
and R version 3.5.1 (R Foundation for Statistical Com-
puting) were used for all analyses. We used our own
routines in SAS and R as well as the R package “rms” for
spline regression modeling. We ran most of the analyt-
ical steps in both programs, underpinned by the 4-eye
principle, to assure the quality of the results.

Results
A total of 20 population-based cohorts with 75,367
participants (median age 50 years, 50.9% men, 4.4%
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diabetes) and with an average follow-up between 2.82
and 23.47 years were included in the study. In addition,
three disease cohorts with 4982 patients with manifest
CVD (median age 63 years, 75.6% men, 18.7% diabetic)
and an average follow-up time between 0.47 and 9.37
years, respectively, were available within the MORGAM/
BiomarCaRE consortium for this analysis (for details, see
Table 1). Further details of the included cohorts, their
main baseline characteristics, and details of renal func-
tion are displayed in Additional file 1, Tables S1-S3. In
the population-based cohorts, the incidence of cardio-
vascular disease (non-fatal and fatal CVD events com-
bined), cardiovascular mortality, and total mortality,
respectively, was 8.2, 4.2, and 10.9 per 1000 person years,
whereas it was 21.2, 6.9, and 17.9 in the diseased co-
horts, respectively (Table 1).
The distribution of the eGFR as calculated with

measurements of creatinine and cystatin C is shown in
Additional file 1, Fig. S1 for the population-based co-
horts in total (panel A) and also stratified according to
age (Fig. S1 panels B and C) and in Additional file 1, Fig.
S2 for the disease cohorts, also in total and stratified

according to age. Notably, especially in the population-
based cohorts, the distribution in the older population
(Fig. S1 panel C) is quite different between the two
eGFR formulas.
The overall prevalence of CKD stage 3–5 by CKD-

EPIcrea and CKD-EPIcys eGFR, respectively, was 3.3% and
7.4% in the population-based cohorts and 13.9% and
14.4% in the disease cohorts. In males and females, the
prevalence of CKD showed a steep increase with age. In
the population-based cohorts, prevalence was higher
based on CKD-EPIcysC (Fig. 1), whereas patterns were
different based on CKD-EPI in the disease cohorts
(Fig. 2).
Figure 3 shows the association (HR and 95% CI) of

both CKD-EPI equations with CVD mortality, fatal and
non-fatal CVD events, and total mortality after adjust-
ment for the ESC score variables for the population-
based cohorts in total, and stratified according to age
(cut point 65 years), sex, and hypertension and diabetes.
The area under the curve (AUC) and net reclassification
index (NRI) for events and non-events are also provided
(details in Additional file 1, Tables S4 for population-

Table 1 Baseline characteristics of the study populations

Population-based cohorts Disease cohorts

Number of cohorts, n 20 3

Number of subjects, n 75,367 4982

Men, n (%) 38,350 (50.9%) 3766 (75.6%)

Age at baseline, years

Median (Q1, Q3) 50.0 (41.0, 59.0) 63.0 (54.0, 69.0)

Proportion ≥ 65 years 13.1% 42.6%

Daily smokers, n (%) 24,077 (31.9%) 892 (17.9%)

Diabetes, n (%) 3286 (4.4%) 930 (18.7%)

Hypertension, n (%) 30,811 (40.9%) 3514 (70.5%)

Body mass index (kg/m2), mean (SD) 26.9 (4.6) 27.6 (4.1)

Total cholesterol (mmol/L)* 5.7 (5.0, 6.5) 4.9 (4.1, 5.7)

CRP (mg/L)* 1.3 (0.6, 2.9) 1.5 (0.4, 5.1)

Nt-proBNP (pg/mL)* 45.9 (24.2, 86.3) 308.0 (116.0, 803.0)

Troponin I (ng/L)* 2.3 (1.4, 3.7) 10.4 (4.6, 29.7)

eGFR (mL/min/1.73m2)*

CKD-EPIcrea 97.6 (85.9, 107.6) 82.7 (68.7, 94.6)

CKD-EPIcysC 92.5 (76.4, 111.5) 91.1 (69.1, 116.2)

CKD stage 3+, n (%)

CKD-EPIcrea 2450 (3.3%) 691 (13.9%)

CKD-EPIcysC 5562 (7.4%) 719 (14.4%)

Endpoints (n, incidence rate per 1000 person years (95% CI))

Cardiovascular disease 6850, 8.2 (95% CI 8.0–8.4) 371, 21.2 (95% CI 19.2–23.5)

Cardiovascular mortality 3796, 4.2 (95% CI 4.1–4.3) 132, 6.9 (95% CI 5.8–8.2)

Total mortality 9840, 10.9 (95% CI 10.6–11.1) 343, 17.9 (95% CI 16.1–19.9)

*Median (interquartile range, Q1, Q3)

Rothenbacher et al. BMC Medicine          (2020) 18:300 Page 4 of 13



Fig. 1 Prevalence of CKD based on different eGFR estimating equations in the population-based cohorts (histograms represent prevalence in %
and bars 95% CIs)

Fig. 2 Prevalence of CKD based on different eGFR estimating equations in the disease cohorts (histograms represent prevalence in % and bars 95% CIs)
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Fig. 3 Association of CKD with various endpoints in population-based cohorts (squares represent HR and 95% CIs)
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based cohorts). For example, the HR for CVD mortality
was 1.72 (95% CI 1.53 to 1.92) with CKD-EPIcrea and it
was 2.14 (95% CI 1.90 to 2.40) based on CKD-EPIcysC
after adjustment for covariates. In general, the HRs were
higher for cystatin C-based eGFR compared to
creatinine-based eGFR for all three outcomes, especially
evident for total mortality. Mainly, the NRIne was always
larger for CKD-EPIcysC for all three outcomes. It was
notably high for the age strata ≥ 65 years for cardiovas-
cular mortality and total mortality (4.2% and 6.5%,
respectively) and highest for the stratum diabetes for
total mortality (NRIne 9.4%).
Figure 4 shows the association of CKD with the

various outcomes in the diseased cohorts (details in
Additional file 1, Table S5 for disease cohorts). For ex-
ample, the HR for CVD mortality was 3.33 (95% CI 2.14
to 5.19) with CKD-EPIcrea and 3.20 (95% CI 2.04 to 5.01)
based on CKD-EPIcysC after adjustment for covariates.
Especially for mortality, HRs were more often higher for
CKD-EPIcrea. For both CKD variables in disease cohorts,
NRIne was highest in the strata female sex, but the pat-
terns were less clear than those in the population-based
cohorts.
Details of reclassification in both types of cohorts are

shown in Additional file 1, Table S6. In the population-
based cohorts, a large proportion (47.4%) of the CKD-crea-
defined cases were re-graded by the CKD-cysC-defined
CKD to no CKD. The pattern, in general, was similar to the
diseased cohorts, although the much lower numbers of the
disease cohorts have to be considered.
Figure 5 shows adjusted HR for creatinine-based eGFR

(left side) and for cystatin C-based eGFR (right side) for
total mortality in the population-based cohorts overall
(panel A) and after stratification for age (panel B age up
to 64 years, panel C age 65+ years). Although the in-
crease of the HR with decreasing eGFR is steeper with
the cystatin C-based eGFR, this difference is mainly
driven by the trend in the population up to 65 years.
Furthermore, a clear increase of the HRs is evident
below 60mL/min/1.73m2, even in the age strata 65+
years, pointing to the validity of the current threshold
for CKD stage 3+. Additional file 1, Fig. S7 shows the re-
sults for mortality in the disease cohorts showing similar
patterns for creatinine- and cystatin C-based eGFR.
Additional file 1, Fig. S8 shows the AUC for cystatin C-
and creatinine-based eGFR with consistently higher
AUC values for the cystatin C-based eGFR definition in
both cohorts in all strata.

Discussion
This large cohort study conducted within the framework
of the MORGAM/BiomarCaRE consortium clearly dem-
onstrated that CKD is an important risk factor for subse-
quent CVD events and total mortality, both in low- as

well as high-risk populations. However, especially in the
(low-risk) population-based cohorts, it was evident that
analysis of the creatinine- and cystatin C-based eGFRs
and their consequences differed considerably. Cystatin
C-defined CKD showed a higher prevalence especially in
older adults, and cystatin C-based eGFR was associated
with higher CVD risk estimates. It seemed also to be as-
sociated with better risk classification, especially evident
for mortality in older adults. Notably, this difference was
not obvious in the relatively older, high-risk disease
cohorts. Furthermore, we found evidence that the con-
ventional threshold of CKD (60 mL/min./1.73m2) seems
valid also for participants aged 65 years and older,
although the increase in the estimated risk was less steep
compared to the younger participants. Notably, higher
eGFR-creatinine (≥ 90 mL/min/1.73 m2) was associated
with higher hazard ratio of adverse events, while higher
eGFR-cysC was not. Compared to a creatinine-based
definition of CKD, the cystatin C-based definition of
CKD seemed to have a higher specificity, a measure espe-
cially important in populations with low prevalence of
CKD and therefore resulted in many fewer false positives.

Prevalence of CKD and differences of eGFRs
Based on a recent review, the prevalence of CKD stage
3–5 varied considerably in studies from 19 general
populations from 13 European countries and was be-
tween 1.0 and 5.9% in the adult population. Many fac-
tors including measurement issues certainly contribute
to this variation besides differences in comorbidity
[36]. These numbers are in line with our estimates in
the population-based cohorts. Estimates of cystatin C
CKD were in general slightly higher, but striking dif-
ferences occurred especially in the older adults. In the
population-based cohorts, cystatin C-based CKD
prevalence was much higher in older adults, whereas
in the diseased cohorts CKD-EPIcrea resulted in a higher
CKD prevalence in participants aged 65 years or older,
especially in females.
Cystatin C is more sensitive than creatinine especially

in the detection of early kidney dysfunction among
various patient groups such as diabetes, in sarcopenia,
and also in the older adults. Potential confounders for
creatinine-based eGFR are muscle mass, dehydration,
dietary factors, and other comorbid diseases. As sug-
gested in other studies that have included older adults,
the creatinine-based definition of CKD in high-risk
groups may result in a higher prevalence estimate be-
cause of the association of creatinine levels with many
comorbid conditions such as muscle mass, frailty, or
diabetes [37, 38]. Cystatin C-based eGFR is less influ-
enced by age or ethnicity, but other factors such as
obesity, inflammation, and smoking as well as intake of
glucocorticoids may affect serum values.
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Fig. 4 Association of CKD with various endpoints in disease cohorts (squares represent HR and 95% CIs)
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Differences in risk estimation for various outcomes
Our results show that in middle-aged low-risk popula-
tions, cystatin C-based CKD classification had a stronger
association with risk of CVD morbidity and especially
mortality, as seen in other studies [7, 39, 40]. CKD
should be considered as an equally relevant risk factor
for mortality and end-stage renal disease for patients
with, as well as those without, hypertension. Notably,
associations were even stronger in patients without
hypertension [41]. For patients with diabetes, the relative
risks were much the same as for non-diabetic persons,
pointing to the importance of CKD for adverse out-
comes [34]. As suggested in other studies, in patients
with diabetes, the use of a cystatin C-based CKD defin-
ition offered better clinical utility for risk prediction than
creatinine-based equations [8]. In addition, a systematic
review including 23 studies came to the conclusion that
cystatin C-based eGFR represents measured GFR well in
patients with diabetes [9]. The observation in our spline

plots that higher creatinine-based eGFR again showed
an adverse association with the outcomes has been
shown previously [7, 42]. It probably reflects the associa-
tions with comorbid conditions such as lower muscle
mass, frailty, or diabetes and implies that creatinine-
based eGFR, especially in elderly, has severe limitations,
particularly when it exceeds 100mL/min/1.73m2 [43].
Thus, it should be investigated further as it was also very
obvious in subjects aged 64 or younger in our analysis.
Furthermore, especially in younger and low-risk

populations, the cystatin C-based eGFR may deliver
more valid results [7] compared to creatinine-based
eGFR, an observation in line with our data. In high-
risk populations or older adults, this may be different
[44]. However, evidence from studies including older
adults is so far inconsistent. A study including 1639
British men aged 71 to 92 years [45], a study includ-
ing 1741 participants with CKD and a mean age of
73 years [44], and a study conducted in older adult

Fig. 5 Spline regression representing creatinine (left side)- and cystatin C (right side)-based eGFR associated with hazard ratio (HR) for mortality
after adjustment for SCORE variables and study cohort for all and after stratification for age in the population-based cohorts (for details, see the
“Methods” section)
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women (mean age 75.2 years) [46] showed no benefit
from using cystatin C-based eGFR equations when
compared to creatinine-based ones. However, the
large study of Shlipak and colleagues, including 11
cohorts of the general population (with a mean age of
60 years) and 5 cohorts with CKD (mean age 55
years), found that cystatin C-based eGFR could better
categorize risk than creatinine-based eGFR, especially
around the threshold of 60 mL/min/1.73m2 [7], in line
with recommendations of KDIGO [5]. However, the
younger age in that study has to be considered.

Implications
All methods to estimate GFR are associated with system-
atic and random error; however, on a positive note, they
have less time-to-time variability than measured GFR
[47]. Furthermore, it is important to consider the under-
lying risk profile of the population on the impact of the
relative risk estimates. Especially in low-risk settings,
cystatin C-based eGFR seems more accurate and delivers
fewer false positives. The lower risk estimates associated
with CKD in the diseased cohorts probably reflect the
higher prevalence of comorbid conditions and the higher
baseline risk within this population. As suggested by
some authors, both CKD-EPI equations may have simi-
lar accuracy but show bias in opposite directions and the
combination of both may deliver the best results in older
adults [48, 49]. However, currently, measurement of
cystatin C is more expensive than creatinine. Therefore,
further research should focus on the cost-effectiveness
of cystatin C-based measurements of CKD, especially in
low-risk settings and older populations with the aim of
finding ways to reduce the costs of measurement within
routine medical care.

Strength and limitations
We included a large number of general population-
based studies which had been assembled within the
MORGAM/BiomarCaRE consortium, used harmonized
data, and could rely on centralized measurements for
creatinine and cystatin C. However, unfortunately, cysta-
tin C measurements had not been standardized to the
global WHO reference material, which however should
not affect internal validity of results, but external compar-
ability. We also had cohorts of patients with prevalent
CVD available, although the numbers of included partici-
pants were much lower compared to the population-based
studies and they only came from Germany. Unfortunately,
the laboratory measures of the disease cohorts had been
measured at each study center. Furthermore, we relied on
one single measurement to define CKD, and therefore,
some of the participants would not have been classified as
having CKD if measured twice and if a time period of 6
months had been applied to define the chronicity of CKD.

Furthermore, we could not include measurements of pro-
tein or albumin in urine as they were not available in a
standardized manner in all included studies. Proteinuria
or albuminuria is indeed an import prognostic factor and
used as an indicator for renal damage especially in CKD
stages 1 and 2 and explains much of the risk increase
within these stages. However, we dichotomized CKD and
summarized all stages 3 and above versus the rest, accord-
ing to the clinically used threshold.

Conclusions
CKD is an important risk factor for subsequent CVD
events and total mortality. However, point estimates of
creatinine-based definition and cystatin C-based CKD
differed considerably between low- and high-risk popu-
lations. Especially in low-risk settings, the use of cystatin
C-based eGFR may result in more accurate risk esti-
mates and have better prognostic value compared to
creatinine-based CKD definition. Therefore, the clinical
utility of both equations in different risk populations and
risk groups has to be considered and should be evalu-
ated further.
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