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ABSTRACT  26 

 27 

In this study, the plasmid content of clinical and commensal strains was analysed and 28 

compared. The replicon profile was similar in both, except for L, M, A/C and N 29 

(detected only in clinical strains) and HI1 (only in commensal strains). Although I1 and 30 

F were the most frequent replicons, only IncI1 ST12 was associated with blaCMY-2 in 31 

both populations. In contrast, the widespread resistant IncF plasmids were not linked to 32 

a single epidemic plasmid. 33 

 34 

 35 

KEYWORDS: pMLST, replicon, antimicrobial resistance, Enterobacteriaceae, plasmid 36 

epidemiology. 37 

RUNNING TITLE: Plasmid content in commensal and clinical Enterobacteriaceae 38 

 39 

 40 

TEXT 41 

The most prevalent mechanism in antimicrobial resistance gene (ARG) acquisition by 42 

bacterial pathogens is horizontal gene transfer by plasmids (1, 2). PCR-based replicon 43 

typing (PBRT) based on plasmid incompatibility (Inc) is currently the standard method 44 

for plasmid identification (3, 4). Plasmid multilocus sequence typing (pMLST) schemes 45 

allow to differentiate between plasmids within incompatibility groups and to define 46 

epidemiological and evolutionary relatedness (5–10) (http://pubmlst.org/plasmid/). 47 

Several plasmids carrying ARGs have been characterized, most of them recovered from 48 

clinically relevant bacteria (11–14). In contrast, there is limited information on plasmids 49 

in the commensal microbiota of healthy humans without a selection bias for 50 

antimicrobial-resistant bacteria. In this scenario, the aim of this study was to provide a 51 
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better understanding of resistant plasmid diffusion in a clinical context by comparing 52 

plasmids within Escherichia coli and Klebsiella pneumoniae strains isolated from 53 

healthy human faeces and patients with bloodstream infection.  54 

One hundred and fifty faecal samples were collected during 2014-2015 from healthy 55 

humans who did not consume antibiotics and were not hospitalized. A total of 145 E. 56 

coli and 12 K. pneumoniae strains were isolated. In addition, 202 strains from blood 57 

cultures, 99 of E. coli and 103 of K. pneumoniae, from three hospitals in Barcelona 58 

were analysed (one per patient). All strains underwent antimicrobial susceptibility 59 

testing using disk diffusion (Table S1) and the results were interpreted according to 60 

CLSI guidelines (15). The characterization of ESBLs, AmpCs and carbapenemases (16–61 

20) detected in both populations is shown in Table 1. The prevalence of ESBL-62 

producing E. coli in healthy carriers (4.7%) was higher than in a previous study in 63 

Barcelona in 2005 (3.3%) (21), but still within the 3-6% average of Europe (22). 64 

Plasmid identification was performed using the PBRT-kit (Diatheva, 2014) and simplex 65 

PCR for ColE, X3, X4, L and M replicons (23–25). Twenty-nine replicons were 66 

analysed, and only FIIS, W, T, U and HI2 were not detected in any strain.  A total of 67 

978 replicons were identified in the 359 studied strains: 84.1% (302/359) harboured 68 

from one to four replicons and 10.9% (39/359) from five to seven. In 5% (18/359) of 69 

the strains no replicon was detected. Overall, the results suggest that the replicon 70 

content of E. coli strains followed a similar trend in patients and healthy individuals, 71 

and the most prevalent in both sample groups were ColE, FII and FIB (Fig. 1A). 72 

Nevertheless, replicons M, A/C and N were only detected in clinical strains, in 73 

accordance with the literature (26, 27), while FIIK and HI1 were observed only in faecal 74 

strains (Fig. 1A). Hence, it might be hypothesized that the hospital environment, where 75 

there is a high antimicrobial use and an intense interhuman transmission, selects for 76 
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plasmids more adapted to these settings. The plasmid content in K. pneumoniae isolates 77 

seems to follow similar trends (Fig. 1B) to that of E. coli, but this could not be 78 

confirmed due to the low number of strains obtained from faecal samples. Notably, both 79 

the diversity and frequency of replicons were higher in E. coli than in K. pneumoniae, 80 

except for R and FIIK (Fig. 1C). 81 

IncF and IncI1 plasmids have been reported in Enterobacteriaceae as promoters of beta- 82 

lactamase gene dissemination in multiple environments, specifically blaCTXM-15 and 83 

blaCMY-2 (28–33). In this study, 56 beta-lactamase genes were detected (Table 1). After 84 

S1-PFGE and Southern hybridization (19, 34), 75% of ESBL, AmpC and 85 

carbapenemase genes identified in E. coli (27/36) and K. pneumoniae (15/20) were 86 

located on a plasmid, the most prevalent being IncF and IncI1 (37% both) in E. coli, and 87 

IncF (47%) and IncR (20%) in K. pneumoniae. The predominant genes were blaCTX-M-88 

15/14/27 and blaCMY-2 in IncF and InI1 plasmids of E. coli (Fig. S1A) and blaCTX-M-15 in 89 

IncF plasmids of K. pneumoniae (Fig. S1B). Figure 2 summarises the 49 ESBL-, 90 

AmpC- and/or carbapenemase-producing strains detected in the study, the plasmids they 91 

harboured, and the location of the beta-lactamase genes.  92 

As IncF and IncI1 were two of the most frequently detected plasmids in both faecal and 93 

clinical samples (27, 35, 36), they were further characterised using the pMLST method 94 

(5, 10). In E. coli strains, 29 different IncI1 sequence types (STs) were detected, 59% of 95 

which were assigned as new STs. This result reflects the great diversity within this 96 

plasmid family, with only ST12 and ST36 being present in both clinical and faecal 97 

populations (Fig. S2). Moreover, some of the most frequently reported STs worldwide 98 

(ST2, ST12, ST26 and ST36) (37) were only found in E. coli from healthy humans. The 99 

detection of many newly assigned STs in the clinical isolates and a scarce number of the 100 
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most reported STs suggests the latter may have been over-reported due to their 101 

involvement in ARG dissemination, resulting in an epidemiological bias.  102 

In addition, IncI1 plasmids have been associated with the carriage of blaCMY-2, 103 

particularly IncI1 ST2, ST12, and ST23 (5, 38–40). In the current study, all identified 104 

ST12 plasmids harboured blaCMY-2 and were detected in E. coli from both populations 105 

(Fig. 2). These results support the suggestion that some IncI1 plasmids have been able 106 

to evolve and persist in clinical settings, thanks to particular features that provide 107 

resistance, persistence and adaptive success, which would explain why they are more 108 

frequently reported and described as epidemic plasmids (38–40).  109 

After defining the final number of IncF plasmids (n=279; 211 in E. coli and 68 in K. 110 

pneumoniae) by Southern hybridization of F-replicons within each strain, 111 

subtypification using replicon sequence typing (RST) was performed. In E. coli strains, 112 

86 different FAB formulas from 205 typable plasmids (45 from faecal samples, 24 from 113 

blood and 17 from both) were defined, where F29:A-:B10, F2:A-:B1, F2:A-:B- and 114 

F24:A-:B1 were the most frequent (Fig. S3). Some of these formulas have been 115 

previously identified in different environments, such as avian-pathogenic E. coli strains 116 

and uropathogenic and extraintestinal pathogenic E. coli (27, 41), indicating a broad 117 

distribution. In K. pneumoniae, 16 different FAB formulas from 68 typable plasmids 118 

(12 from blood and 4 from both) were detected, K1:A-:B- being the most frequent (Fig. 119 

S3).  120 

IncF plasmids, including F2:A-:B-, F2:A1:B-, F31:A4:B1 and F1:A2:B20, have been 121 

associated with the worldwide emergence of CTX-M-15 (10, 12, 42–44). Although 122 

these four plasmids were detected in our study, only F2:A-:B- harboured the blaCTX-M-15 123 

gene in a clinical strain and blaCTX-M-27 in a faecal strain. All the other CTX-M-encoding 124 

genes were located in different IncF plasmids (Fig. 2). Thus, according to our results 125 
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and in agreement with those of previous reports (33, 35), there is no evidence for the 126 

persistence of a unique IncF. These highly versatile plasmids are able to adapt to 127 

intracellular environments by the rapid evolution of replicon regulatory sequences (10) 128 

and they were widely distributed in the Enterobacteriaceae before antimicrobial use, 129 

facilitating the persistence and spread of beta-lactamases (10, 33). Their co-existence 130 

with other resistance determinants also contributes to the dissemination of IncF-CTX-M 131 

plasmids (45). 132 

Additionally, E. coli strains were assigned to phylogenetic groups following the 133 

procedure of Clermont et al (46) (Table 2), and the presence of 15 virulence factors 134 

(VFs) was determined (47, 48) (Fig. 3). In commensal E. coli, the prevalence of 135 

phylogenetic groups varies among studies (36, 49). It has been reported that the highly 136 

diverse hosts and environmental factors, the determinants of virulence and the 137 

antimicrobial pressure can modify prevalence for a better adaptation to commensal 138 

habitats (49). In our study, even though commensal E. coli presented a higher diversity 139 

of phylogroups compared to the clinical samples (Table 2), a predominance of the 140 

phylogroup B2 carrying high rates of VFs was found in both populations. Although no 141 

evident association has been reported between plasmids and phylogroups (35), our 142 

results indicate a possible association of HI1 plasmids with phylogroup A (p≤0.007, 143 

Bonferroni's correction was applied). 144 

All VFs studied were detected in both populations. As expected, the clinical strains had 145 

a higher diversity (9 to15 VFs) and frequency of VFs compared to faecal samples (1 to 146 

8 VFs) (Fig. 3). Finally, as supported by other authors (50), an association between 147 

some VFs (fyuA, iutaA, hlyF, iss and traT) and strains carrying F plasmids was 148 

determined (p≤0.003, Bonferroni's correction was applied). 149 
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In conclusion, new information is provided about the plasmid background in strains 150 

isolated in a non-hospital setting. Although a similar trend was observed in the Inc 151 

groups from both populations, IncL/M, IncA/C and IncN plasmids were only detected 152 

in clinical strains, whereas HI1 was only present in faecal strains. Also, two different 153 

evolutionary pathways followed by plasmids were observed: specific IncI1 plasmids, 154 

such as IncI1 ST12, seem to have evolved by acquiring persistence, adaptive and 155 

antibiotic resistance features relevant in clinical settings, whereas the more widespread 156 

multireplicon IncF plasmids have randomly acquired resistance genes. Additionally, the 157 

findings from this study confirm that strains from healthy individuals have less 158 

antimicrobial resistance and fewer VFs and display a higher diversity of phylogenetic 159 

lineages (in E. coli) than strains causing infection. 160 
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Figure legends 356 

 357 

Figure 1. Replicon prevalence: (a) comparison between replicons detected in E. coli 358 

from clinical and faecal samples; (b) comparison between replicons detected in K. 359 

pneumoniae from clinical and faecal samples; (c) comparison between replicons 360 

detected in E. coli and K. pneumoniae from the total strains. Tables show the number of 361 

each replicon detected.  362 

ND, not detected 363 

*Statistical differences (p<0.05) between each population, faecal and blood samples or 364 

E. coli and K. pneumoniae. 365 

 366 

Figure 2. Heat-map summary of the sources, phylogenetic groups, β-lactamase 367 

resistance genes, and the corresponding Inc plasmid types and their sizes for 49 β-368 

lactam-resistant E. coli (n=32) and K. pneumoniae (n=17) strains from faecal and blood 369 

samples. Black and white squares denote the presence and absence of a particular 370 

feature, respectively. 371 

ND, not determined; CP, carbapenemases 372 

a
 Plasmids where the replicon hybridisation occurred in the same plasmid size (hybrid 373 

plasmids). 374 

 b 
bla-genes detected in the same plasmid. 375 

 376 

Figure 3. Frequency of virulence factors (VFs) analysed in E. coli from faecal and 377 

blood sample strains and percentages of E. coli strains according to the number of VFs 378 

they carry. Adhesins fimH (mannose-specific adhesin of type 1 fimbriae) and hra (heat-379 

resistant agglutinin); siderophores fyuA (yersiniabactin), iutA (aerobactin), and iroN 380 

(salmochelin receptor); toxins hlyD (α-hemolysin), hlyF (hemolysin F), cnf1 (cytotoxic 381 
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necrotizing factor 1), clbB and clbN (colibactin), and the miscellaneous VF genes iss 382 

(surface exclusion serum survival protein), traT (serum resistance), ompT (outer 383 

membrane protease), ibeA (invasion of brain endothelium) and usp (uropathogenic-384 

specific protein). 385 

*Statistical differences (p<0.05) between each population, faecal and blood samples   386 
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Table 1. ESBL, AmpC and carbapenemase genes detected in E. coli and K. 387 

pneumoniae from faecal and blood samples 388 

 E. coli (n=244) K. pneumoniae (n=115) 

 
Faecal samples 

(n=13/145)
a
 

Blood cultures 

(n=19/99)
b
 

Faecal samples 

(n=0/12) 

Blood cultures 

(n=17/103)
c
 

ESBLs 

(n=43) 

 n=8, 5.5% n=17, 17.2%  n=17, 16.5% 

blaCTX-M-15 (n=4) 

blaCTX-M-14 (n=3) 

blaCTX-M-27 (n=1) 

blaSHV-12 (n=1) 

blaCTX-M-15 (n=10) 

blaCTX-M-14 (n=2) 

blaCTX-M-27 (n=2) 

blaCTX-M-32 (n=1) 

blaSHV-12 (n=2) 

- 

blaCTX-M-15 (n=9) 

blaCTX-M-14 (n=2) 

blaSHV-28 (n=5) 

blaSHV-2 (n=1) 

AmpCs 

(n=11) 

n=5, 3.5% n=5, 5.0%  n=1, 1.0% 

blaCMY-2 (n=5) 
blaCMY-2 (n=4) 

blaDHA-1 (n=1) 
- blaDHA-1 (n=1) 

Carbapenemases 

(n=2) 
- - - 

n=2, 1.9%  

blaKPC-3 (n=2) 

Total genes 

(n=56) 
14 22 0 20 

 389 

a 
one E. coli strain had blaCTX-M-15 and blaCTX-M-14 390 

b 
three E. coli strains had blaCTX-M-15/blaCTX-M-32, blaCTX-M-27/blaDHA-1 and blaSHV-391 

12/blaCMY-2. 392 

c 
one K. pneumoniae strain had blaCTX-M-15 and blaCTX-M-14, and two strains blaCTX-M-15 393 

and blaSHV-28. 394 

  395 
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Table 2. Phylogenetic groups detected in E. coli strains isolated from faecal and blood samples 396 

    Phylogenetic groups 

    A B1 B2 C D E F Clade I Unknown 

Total E. coli  n=244 (%) 26 (10.6) 22 (9) 124 (50.8) 3 (1.2) 32 (13.1) 15 (6.1) 17 (6.9) 4 (1.6) 1 (0.41) 

Faecal samples 

n=145 23 (15.9)a 11 (7.6) 59 (40.7) b 3 (2.1) 23 (15.9) 8 (5.5) 13 (8.9) 4 (2.7) 1 (0.7) 

S  n= 71  16 (22.5) 1 (1.4) 24 (33.8) 3 (4.2) 10 (14.1) 7 (9.9) 9 (12.6) 1 (1.4) 0 

R  n= 74  7 (9.5) 10 (13.5) 35 (47.3) c 0 13 (17.6) 1 (1.3) 4 (5.4) 3 (4.1) 1 (1.3) 

Blood samples 

n= 99  3 (3) a 11 (11.1) 65 (65.7) b 0 9 (9.1) 7 (7.1) 4 (4) 0 0 

S  n= 9 0 1 (11.1) 6 (66.7) 0 2 (22.2) 0 0 0 0 

R  n= 90 3 (3.4) 10 (11.1) 59 (65.5)
 c
 0 7 (7.8) 7 (7.8) 4 (4.4) 0 0 

S, susceptible to all antimicrobials tested; R, resistant to at least one of the antimicrobials tested.  397 

a,b,c 
Statistical differences (p<0.05) between each population and the different phylogroups. 398 

 399 
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