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Abstract: We characterize the set of all obviously strategy-proof and onto social

choice functions on the domain of single-peaked preferences. Since obvious strategy-

proofness implies strategy-proofness, and the set of strategy-proof and onto social

choice functions on this domain coincides with the class of generalized median voter

schemes, we focus on this class. We identify a condition on generalized median voter

schemes for which the following characterization holds. A generalized median voter

scheme is obviously strategy-proof if and only if it satis�es the increasing intersection

property. Our proof is constructive; for each generalized median voter scheme that

satis�es the increasing intersection property we de�ne an extensive game form that

implements it in obviously dominant strategies.
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1 Introduction

The purpose of this paper is to identify the class of all obviously strategy-proof and

onto social choice functions on the domain of single-peaked preferences. Speci�cally,

we consider social choice problems where a set of agents has to choose an alternative

from a �nite and linearly ordered set of alternatives. For instance, when alternatives are

possible levels or locations of a public good, political parties�platforms, temperatures in

a room, etc. In these cases, and in a broad variety of economic and political settings,

it is natural and meaningful to assume that agents have strict single-peaked preferences

over alternatives. A preference is single-peaked if there is a best alternative, or top, and

alternatives that are further away from this top are progressively less preferred. A central

result in the mechanism design literature studying strategy-proof social choice functions

on restricted domains of preferences is that a social choice function is strategy-proof and

onto on the domain of single-peaked preferences if and only if it is a generalized median

voter scheme.1

But in general, the mechanism design literature has mainly neglected the question of

how easy is for the agents to realize that truth-telling is indeed weakly dominant (i.e., how

much contingent reasoning is required to do so). Li (2017) proposes the notion of obvious

strategy-proofness as a criterion to deal with this question. Obvious strategy-proofness has

already been used to identify, among the class of strategy-proof mechanisms in di¤erent

settings, those mechanisms that are �easy to play�because truth-telling is an undoubtedly

optimal decision. Here, we answer the following question: what is the property that a

generalized median voter scheme has to satisfy to be obviously strategy-proof.

A social choice function is obviously strategy-proof if there exists an extensive game

form, whose set of players is the set of agents and its outcomes are alternatives (i.e.,

there exists a sequential mechanism), with two properties. First, for each preference

pro�le one can identify a pro�le of truth-telling (behavioral) strategies with the property

that if agents play the extensive game form according to it, the outcome of the game is

the alternative selected by the social choice function at the preference pro�le (i.e., the

extensive game form induces the social choice function). Second, agents use the two most

extreme behavioral assumptions when comparing the truth-telling strategy with any other

strategy; agents are absolutely pessimistic when assessing the consequence of truth-telling

and absolutely optimistic when assessing the consequence of any other behavior, and they

weakly prefer the former to the latter. Whenever an agent has to play along the sequential

mechanism, truth-telling appears then as being obviously optimal.

Obvious strategy-proofness is stronger than strategy-proofness. Hence, to describe

1See for instance Moulin (1980) or Barberà, Gül and Stacchetti (1993). Generalized median voter

schemes are extensions of the median voter rule and since they respect unanimity they are onto.
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the class of all obviously strategy-proof and onto social choice functions on the domain of

single-peaked preferences we must restrict our search into the class of generalized median

voter schemes. A generalized median voter scheme can be described as a sequence of elec-

toral confrontations between pairs of correlative alternatives. Each electoral confrontation

is settled by a committee, a monotone family of winning coalitions, associated to one of

the two alternatives (call it x). Then, given a pro�le of single-peaked preferences, x is

selected if and only if the set of agents that prefer x to the other alternative belongs to

the committee. For instance, if the number of agents is odd, majority voting between two

alternatives is the committee that associates to one of the two alternatives all coalitions

with more than half of the agents. More speci�cally, a generalized median voter scheme

can be represented by a coalition system that associates to each alternative a committee

and operates as follows. Fix a pro�le of single-peaked preferences over the set of alter-

natives.2 At any generic alternative x, and starting at the smallest one, agents face two

possibilities. Either to select the current alternative x as the one �nally chosen or else

to select, tentatively, x + 1. If the set of agents that prefer x to x + 1, according to the

preference pro�le, is a winning coalition at x (that is, it is a member of the committee

at x), then x is selected, and �nally chosen; otherwise, x + 1 becomes the new current

alternative that is confronted with x+ 2 by applying the committee at x+ 1.

Our contribution is two-fold. First, we give the explicit description of each obviously

strategy-proof and onto social choice function on the domain of single-peaked preferences.

We do it by showing that a generalized median voter scheme is obviously strategy-proof

if and only if its associated coalition system satis�es the increasing intersection property.

The property has two parts, both applied to each alternative and related with the car-

dinalities of the intersections of (minimal) winning coalitions. Second, we propose an

algorithm that, when applied to each coalition system with the increasing intersection

property, de�nes an extensive game form that implements in obviously dominant strate-

gies the corresponding social choice function. The algorithm is based on the description

of generalized median voter schemes as a sequence of electoral confrontations between

pairs of correlative alternatives and it uses the increasing intersection property of their

associated coalition systems.

Literature review

There is a large literature, prior to Li (2017), dealing with the di¢ culties that agents

might have when trying to identify that truth-telling is dominant in strategy-proof mech-

anisms. See for instance Attiyeh, Franciosi and Isaac (2000), Cason, Saijo, Sjöström and

Yamato (2006), Friedman and Schenker (1998), Kawagoe and Mori (2001) and Yama-

mura and Kawasaki (2013). Even earlier, Kagel, Harstad and Levin (1987) interpret their
2Without loss of generality, we may assume that the set of alternatives is a �nite set of correlative

integers.
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experimental results as suggesting that the breakdown of the equivalence between the

English ascending clock and the second-price sealed-bid auctions �on a behavioral level

can be attributed to di¤erential information �ows inherited in the structure of the two

auctions.�Glazer and Rubinstein (1996) already argues that complexity considerations

may suggest the convenience of using extensive game forms to facilitate the identi�cation

of the set of strategies that survive iterative elimination of dominated strategies.

Li (2017)�s notion of obvious strategy-proofness is based on an extreme and strong

behavioral criterion. Thus, it is not surprising that the literature has already identi�ed

settings for which either none of the strategy-proof social choice functions are obviously

strategy-proof or only a very special and small subset of them satisfy the stronger require-

ment. For instance, in the complete impossibility case, Li (2017) already shows that the

top-trading cycles algorithm in the house allocation problem of Shapley and Scarf (1974)

is not obviously strategy-proof. Ashlagi and Gonczarowski (2018) shows that the deferred

acceptance algorithm in the marriage model is not obviously strategy-proof for the agents

belonging to the o¤ering side.

In the partial (or total) possibility case, Li (2017) characterizes the monotone price

mechanisms (generalizations of ascending auctions) as those that are obviously strategy-

proof on the domain of quasi-linear preferences. Li (2017) also shows that, for online

advertising auctions, the Vickrey-Clarke-Groves mechanism is obviously strategy-proof.

Ashlagi and Gonczarowski (2018) shows however that the deferred acceptance algorithm

becomes obviously strategy-proof, for the agents belonging to the o¤ering side, on the

restricted domain of acyclic preferences introduced by Ergin (2002).3 Arribillaga, Massó

and Neme (2019) surprisingly �nds that, for the discrete division problem with single-

peaked preferences, each sequential allotment rule (i.e., each strategy-proof, e¢ cient and

replacement monotonic social choice function) is indeed obviously strategy-proof. This

is shown by means of an algorithm that, for each sequential allotment rule, delivers the

extensive game form that implements the rule in obviously dominant strategies.

But the closest paper to ours is Bade and Gonczarowski (2017). They establish a gen-

eral revelation principle like result for obvious strategy-proofness: a social choice function

is implementable in obviously dominant strategies if and only if some obviously incentive

compatible gradual mechanism implements it. For the problem of assigning a set of ob-

jects to a set of agents, Bade and Gonczarowski (2017) shows that an e¢ cient social choice

function is obviously strategy-proof if and only if it can be implemented by an extensive

game form with sequential barters with lurkers; this class consists of generalizations of

serial dictatorships. They also show that Li (2017)�s positive result on monotone price

mechanisms for binary allocation problems does not hold for more general problems with

3For other partially positive or revelation principle like results see also Bade and Gonczarowski (2017),

Pycia and Troyan (2018) and Troyan (2019).

5



two or more goods. For the case of voting over two alternatives, Bade and Gonczarowski

(2017) shows that if a social choice function is obviously strategy-proof and onto then it

can be implemented by a proto-dictatorship. Finally, for the problem of an in�nite and

linearly ordered set of alternatives with single-peaked preferences, Bade and Gonczarowski

(2017) shows that if a social choice function is obviously strategy-proof and onto then it

can be implemented by an extensive game form consisting of dictatorships with safeguards

against extremisms (and arbitration via proto-dictatorships, if the set of alternatives is

discrete).

Bade and Gonczarowski (2017) and our paper have important overlaps regarding the

two-alternative case and the model with single-peaked preferences.4 The main di¤erences

between the two papers are the following. First, in the single-peaked case, our assumption

that the set of alternatives is �nite is important and becomes crucial for the construction

of the algorithm. On the contrary, Bade and Gonczarowski (2017) assumes that the set

of alternatives is in�nite. Our �nite assumption allows us to obtain the result for the

two-alternative case as a particular instance of our general result (see Corollary 1 and

subsequent comments in Section 6) without having to look at it as a separate model, as

in Bade and Gonczarowski (2017). Second, our approach, proposed extensive game forms

and proofs of the results di¤er from theirs because we formally describe and character-

ize obviously strategy-proof and onto social choice functions as generalized median voter

schemes. In contrast, Bade and Gonczarowski (2017) describe their class of dictatorships

with safeguards against extremisms directly and verbally. Third, in contrast with Bade

and Gonczarowski (2017), and the existing positive results described above (and except

the result in Arribillaga, Massó and Neme (2019)), our characterization is not a revela-

tion principle like result identifying a class of extensive game forms where, without loss

of generality (but not necessarily), the designer has to look for in order to implement in

obviously dominant strategies a particular and given social choice function. But these

revelation principle like results do not identify the speci�c mechanism, among all in the

class, that has to be used in order to implement that given social choice function; and

this is important because di¤erent mechanisms in the class may implement di¤erent social

choice functions. Instead, our proof is constructive. We propose and algorithm that, for

each obviously strategy-proof and onto social choice function, generates (and shows how

to construct) an extensive game form that implements the social choice function in obvi-

ously dominant strategies. For the important class of social choice functions de�ned on

the domain of single-peaked preferences, our characterization identi�es the increasing in-

tersection property as being necessary and su¢ cient for obvious strategy-proofness. Given

a generalized median voter scheme, one can easily check whether or not it is obviously

4We have obtained our results in an independent way, before knowing the existence of the �rst version

of Bade and Gonczarowski (2017), as well as those of Pycia and Troyan (2018) and Mackenzie (2018).
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strategy-proof by using our property, since it is short and reasonably transparent.

To state and prove our results we will use two previous general results that simplify

the search for a speci�c extensive game form that can be used to implement in obviously

dominant strategies a given social choice function. First, we will use a revelation principle

like result saying that in our setting, and without loss of generality, we can assume that

the extensive game form that induces the social choice function has perfect information

(see Ashlagi and Gonczarowski (2018) and Mackenzie (2018)). Second, and following

Mackenzie (2018), the new notion of obvious strategy-proofness can be fully captured by

the classical notion of strategy-proofness applied to extensive form games with perfect

information. In addition, we use in one of our proofs the proto-dictatorship revelation

principle like result, established by Bade and Gonczarowski (2017) for the two-alternative

case.

The paper is organized as follows. Section 2 contains the basic notation and de�nitions.

In Section 3 we present the notion of obvious strategy-proofness applied to our context.

In Section 4 we de�ne the increasing intersection property and state in Theorem 1 the

characterization result. In Section 5 we construct the algorithm that, taking as input

a generalized median voter scheme satisfying the increasing intersection property, gives

as output the extensive game form that implements it in obviously dominant strategies

(this result is stated in Theorem 2). In Section 6 we apply our general results to the two-

alternative case and/or to anonymous social choice functions. In Section 7 we conclude.

An Appendix collects the proofs of the two results, omitted in the main text.

2 Preliminaries

A set of agents N = f1; : : : ; ng, with n � 2, has to choose an alternative from a �nite and
linearly ordered set X = fx1; : : : ; xMg, with M � 2. Without loss of generality, we will
often assume that X is the set of correlative integers f1; : : : ;Mg. Each agent i 2 N has a

strict preference Pi (a linear order) over X: We denote by Ri the weak preference over X

associated to Pi; i.e., for all x; y 2 X, xRiy if and only if either x = y or xPiy: There is a
rich literature studying this class of problems when agents�preferences are single-peaked.

Agent i�s preference Pi over X is single-peaked if (i) there exists t(Pi) 2 X, called the top
of Pi, such that t(Pi)Pix for all x 2 Xnft(Pi)g and (ii) for all x; y 2 X; x < y � t(Pi) or
t(Pi) � y < x implies yPix: Given i 2 N and x 2 X we write P xi to denote a generic single-

peaked preference such that t(P xi ) = x: Let P be the set of single-peaked preferences over
X:When jXj = 2; the linear order structure ofX plays no role and the set of single-peaked

preferences is simply the universal domain of strict preferences over X. A (preference)

pro�le is a n-tuple P = (P1; : : : ; Pn); an ordered list of n preferences, one for each agent.

Let PN be the set of single-peaked preference pro�les. Given P = (P1; : : : ; Pn) 2 PN ;
we denote the vector of tops at P by t(P ) = (t(P1); : : : ; t(Pn)): Given a pro�le P and an
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agent i; P�i denotes the subpro�le in P�i = PNnfig obtained by removing Pi from P:

A social choice function (SCF) f : PN ! X selects, for each preference pro�le P 2 PN ,
an alternative f(P ) 2 X:
A SCF f : PN ! X is strategy-proof (SP) if for all P 2 PN ; all i 2 N and all P 0i 2 P ;

f(Pi; P�i)Rif(P
0
i ; P�i):

The literature refers to a strategy-proof SCF as being implementable in dominant strate-

gies (or SP-implementable) in the following sense. Let f : PN ! X be a SCF. Construct

its associated normal game form, where N is the set of players, P is the set of strategy

pro�les and f is the outcome function, mapping strategy pro�les into the set of alterna-

tives. Then, f is SP-implementable if the normal game form has the property that, for

all P 2 PN and all i 2 N , Pi is a weakly dominant strategy for i in the game in normal
form; where each i 2 N uses Pi to evaluate the outcomes of strategy pro�les. The normal

game form is known as the direct revelation mechanism that SP-implements f .

We de�ne several properties that a SCF f : PN ! X may satisfy and that we will use

in the sequel. We say that f is (i) onto if for each x 2 X there exists P 2 PN such that
f(P ) = x,5 and (ii) anonymous if for all P 2 PN and all one-to-one mapping � : N ! N;

f(P ) = f(P �) where, for all i 2 N; P �i = P�(i):
The description of the family of all strategy-proof and onto SCFs f : PN ! X is based

on the notion of a committee. Let 2N denote the family of all subsets of N (we call them

coalitions). A non-empty family C � 2Nnf;g of non-empty coalitions is a committee if it
is (coalition) monotonic in the sense that for each pair S; T � N such that S 2 C and
S ( T , we have T 2 C. Coalitions in C are called winning. Given C, denote by Cm the
family of minimal winning coalitions of C; namely,

Cm = fS 2 C j there is no S 0 2 C such that S 0 ( Sg:

Observe that specifying Cm is enough to completely determine C.
We de�ne now a class of SCFs, known as generalized median voter schemes, by means

of a coalition system. A family of committees fCxgx2X , one for each alternative in X, is a
coalition system if (i) it is (outcome) monotonic in the sense that, for each pair x; x0 2 X
such that x < x0, S 2 Cx implies S 2 Cx0, and (ii) CM = 2Nnf;g.

De�nition 1 A SCF f : PN ! X is a generalized median voter scheme if there exists

a coalition system fCxgx2X such that, for all P 2 PN ;

f(P ) = x if and only if (i) fi 2 N j t(Pi) � xg 2 Cx and
(ii) for all x0 < x; fi 2 N j t(Pi) � x0g =2 Cx0 :

5A SCF f : PN ! X is unanimous if, for all P 2 PN such that t(Pi) = x for all i 2 N; f(P ) = x.
Although ontoness is weaker than unanimity, it is easy to see that among the class of all strategy-proof

SCFs, the classes of unanimous and onto SCFs coincide.
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Namely, the alternative x selected by the generalized median voter scheme f at P is

the smallest one for which the top alternatives of all agents of a winning coalition at x

are smaller than or equal to x.6

Alternatively, and more metaphorically, a generalized median voter scheme described

by a coalition system might be understood as a force that, starting at the lowest alter-

native, pushes up towards the highest possible alternative. However, the coalition system

distributes among agents the power to stop this force in such a way that all members of

a winning coalition at x can make sure that, by declaring that their top alternative is

smaller than or equal to x, the pushing force of f will not overcome x.

It is well-known that a SCF f : PN ! X is strategy-proof and onto if and only if f is

a generalized median voter scheme.7 By de�nition, all generalized median voter schemes

are unanimous, and so they are onto.

Example 1 contains a generalized median voter scheme that illustrates De�nition 1

and that we will use in the sequel.

Example 1 Assume X = fx1; x2; x3g and n = 5. Consider the coalition system C =
fCx1 ; Cx2 ; Cx3g where

Cmx1 = ff1g; f2; 3; 4g; f2; 3; 5gg
Cmx2 = ff1g; f2g; f3g; f4; 5gg
Cmx3 = ff1g; f2g; f3g; f4g; f5gg;

and let f : PN ! X be the generalized median voter scheme de�ned by C = fCx1 ; Cx2 ; Cx3g:
Consider any pro�le P 2 PN whose vector of tops is t(P ) = (x3; x1; x2; x1; x3): Then, since
fi 2 N j t(Pi) � x1g = f2; 4g =2 Cx1 and fi 2 N j t(Pi) � x2g = f2; 3; 4g 2 Cx2, f(P ) = x2.
Consider now any pro�le P 0 2 PN whose vector of tops is t(P 0) = (x3; x1; x1; x1; x3): Then,
since fi 2 N j t(P 0i ) � x1g = f2; 3; 4g 2 Cx1, f(P 0) = x1. �

3 Obvious strategy-proofness

We brie�y describe the notion of obvious strategy-proofness, adapted to our setting. Li

(2017) proposes this notion with the aim of reducing the contingent reasoning required by

agents to identify that truth-telling is a weakly dominant strategy. A SCF f : PN ! X

6The term generalized median voter scheme is used in the literature to refer to a minimax rule (intro-

duced in Moulin (1980) for the case X = R [ f�1;+1g) when applied to a �nite and multidimensional
set of alternatives; see for instance Barberà, Gül and Stacchetti (1993) or Barberà, Massó and Neme

(1997). Since we represent strategy-proof SCFs on the domain of single-peaked preferences by means of

coalition systems (instead of using the equivalent representation by collections of �xed ballots, as �rst

used by Moulin (1980)), we adopt this terminology here.
7See Barberà, Gül and Stacchetti (1993).
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is obviously strategy-proof if there exists an extensive game form �, with N as the set of

players and X as the set of outcomes, with two properties. First, for each pro�le P =

(P1; : : : ; Pn) 2 PN one can identify a behavioral strategy pro�le, to be interpreted as being
truth-telling, such that if agents played � according to such strategy the outcome would be

f(P ); the alternative selected by the SCF f at P ; that is, � induces f . Second, whenever

agent i with preference Pi has to play at a history in �, i evaluates the consequence of

choosing the action prescribed by i�s truth-telling strategy according to the worse possible

outcome, among all outcomes that may occur as an e¤ect of later actions made by the

other agents along the rest of �. In contrast, i evaluates the consequence of choosing an

action di¤erent from the one prescribed by i�s truth-telling strategy according to the best

possible outcome, among all outcomes that may occur again as an e¤ect of later actions

chosen by the other agents along the rest of �. Then, i�s truth-telling strategy is obviously

dominant in � if, at all histories where i has to play, its pessimistic outcome is at least

as preferred as the optimistic outcome used to evaluate any other strategy. If � induces

f and for each agent truth-telling is obviously dominant, then f is obviously strategy-

proof. Obvious strategy-proofness is stronger than strategy-proofness (see Corollary 1 in

Li (2017)).

Two important simpli�cations related to obvious strategy-proofness have been iden-

ti�ed in the literature that follows from Li (2017), and that we can use in our context.

First, without loss of generality we can assume that the extensive game form that induces

the rule has perfect information (see Ashlagi and Gonczarowski (2018) and Mackenzie

(2018)). Second, the new notion of obvious strategy-proofness can be fully captured by

the classical notion of strategy-proofness applied to extensive form games with perfect

information. This last observation essentially follows from the fact that, the best possible

outcome obtained when agent i chooses an action di¤erent from the one prescribed by i�s

truth-telling strategy and the worst possible outcome obtained when agent i chooses the

action prescribed by i�s truth-telling strategy, are both obtained with only one strategy

pro�le of the other agents. This holds because the perfect information implies that all in-

formation sets are singleton sets (and each one belongs to either the subgame that follows

the truth-telling choice or else to the subgame that follows the alternative choice).8 Then,

for easy presentation and following this literature, we will say that a SCF is obviously

strategy-proof if it is implemented by an extensive game form with perfect information

for which truth-telling is a weakly dominant strategy (see De�nition 2 below). We present

the general notion of an extensive game form that will be used here to state and prove

our results.
8Mackenzie (2018) formally proves this statement for a special class of extensive game forms with

perfect information, called round table mechanisms, but its proof can be adapted to any extensive game

form with perfect information.
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An extensive game form with perfect information associated to (N;X) consists of the

following elements.

1. A �nite and partially ordered set of histories (H;�), where:

(a) ; 2 H is the empty history for which ; � h for all h 2 Hnf;g:

(b) For each h 2 Hnf;g; there is a unique h0, the immediate predecessor of h, such
that h0 � h and there is no �h such that h0 � �h � h (that is, (H;�) can be seen
as a rooted tree).

(c) H can be partitioned into two sets, the set of terminal histories HT = fh 2
H jthere is no �h 2 H such that h � �hg and the set of non-terminal histories
HNT = fh 2 H jthere is �h 2 H such that h � �hg.

2. A mapping N : HNT ! N that assigns to each non-terminal history h 2 HNT the
agent N (h) that has to play at history h: For each i 2 N , de�ne Hi = fh 2 HNT j
N (h) = ig:

3. A set of actionsA and a correspondenceA : HNT � Anf;g where, for each h 2 HNT ,
A(h) is the non-empty set of actions available to player N (h) at h:

4. An outcome function o : HT ! X that assigns an alternative o(h) 2 X to each

terminal history h 2 HT .

An extensive game form with perfect information associated to (N;X) is a six-tuple

� = (N;X; (H;�) ;N ;A; o) with the above properties.9 The set of agents N and the set

of alternatives X will be �xed throughout the paper. Let G be the class of all extensive
game forms satisfying conditions 1 to 4 above.10

Fix an extensive game form � 2 G and an agent i 2 N: A (behavioral and pure)

strategy of i in � is a function �i : Hi ! A such that, for each h 2 Hi; �i(h) 2 A(h);
namely, �i selects at each history h where i has to play one of i�s available actions at h. Let

�i be the set of i�s strategies in �: A strategy pro�le � = (�1; : : : ; �n) 2 �1�� � ���n � �
is an ordered list of strategies, one for each agent. Given i 2 N; � 2 � and �0i 2 �i we

9Note that the set of actions A is embedded in the de�nition of A. Moreover, � is not yet a game
in extensive form because agents�preferences over alternatives are still unspeci�ed. But given a game �

and a preference pro�le P; the pair (�; P ) de�nes a game in extensive form where each agent i uses Pi to

evaluate alternatives, associated to terminal histories, induced by strategy pro�les.
10According to Mackenzie (2018) a game � 2 G is a round table mechanism if the set of actions A is the

family of all non-empty subsets of preference relations 2Pnf;g and (i) the set of actions at any history
are disjoint subsets of preferences, (ii) when a player has to play for the �rst time the set of actions is a

partition of P, and (iii) later, the set of actions at history h is the intersection of the actions taken by
agent N (h) at all predecessors that lead to h.

11



often write (�0i; ��i) to denote the strategy pro�le where �i is replaced in � by �
0
i: Let

h�(�) be the terminal history that results in � when agents play � according to � 2 �.
Fix an extensive game form � 2 G and a preference Pi 2 P. A strategy �i is weakly

dominant in � at Pi if, for all ��i and all �0i,

o(h�(�i; ��i))Rio(h
�(�0i; ��i)):

We are now ready to de�ne obvious strategy-proofness in our context.

De�nition 2 A SCF f : PN ! X is obviously strategy-proof if there is an extensive

game form � 2 G associated to (N;X) such that, for each P 2 PN , there exists a strategy
pro�le �P = (�P11 ; : : : ; �

Pn
n ) 2 � with the properties that

(i) f(P ) = o(h�(�P )) and

(ii) for all i 2 N and all Pi 2 P ; �Pii is weakly dominant in � at Pi.

When (i) holds we say that � induces f: When (i) and (ii) hold we say that � OSP-

implements f:

4 The increasing intersection property and the char-

acterization result

We present the key de�nition of the paper and our characterization of the class of all

obviously strategy-proof and onto SCFs on the domain of single-peaked preferences. To

state the property and the result, we need the following notation.

For each x 2 X; let kx denote the cardinality of the coalitions in Cmx with maximal

cardinality; namely,

kx = maxfjSj 2 f1; : : : ; ng j S 2 Cmx g:

For any k � 1; denote by Ikx the intersection of the coalitions in Cmx with cardinality

greater than or equal to k; namely,

Ikx =
\

S2Cmx :jSj�k

S:

Of course, Ikx = ; for all k > kx: By convention, we set I0x = ;. In Example 1, kx1 = 3,
kx2 = 2, kx3 = 1; and I1x1 = ;; I2x1 = I3x1 = f2; 3g; I1x2 = ;; I22 = f4; 5g and I1x3 = ;:

De�nition 3 A coalition system fCxgx2X satis�es the Increasing Intersection (InIn)

property if, for each x 2 f1; : : : ;M � 1g,
(a)

��Ikx �� � k � 1 for all k � kx; and
(b) if kx > 1; there exists i 2 I2x such that I1x+1 [ fig 2 Cmx+1:

12



To describe the de�nition, and its role in our results, �x an alternative x and let kx

be the largest cardinality of minimal winning coalitions in the committee at x. Part (a)

requires that, for each integer k � kx, the cardinality of the intersection of all coalitions
with more than k agents that belong to the committee at x is larger than or equal to

k � 1; namely, all minimal winning coalitions at x of a given cardinality can diverge at
most by one agent. This property will allow us to distinguish, at each alternative x, those

agents that are able to impose x in its pairwise electoral confrontation with a contiguous

alternative, from those that are able to veto x (and so, transforming the contiguous

alternative with the one used as reference in the new electoral confrontation). Part (b)

requires that if the committee at x has a winning coalition with at least two agents, then

the committee at x + 1 contains a minimal winning coalition formed by an agent that

belongs to all minimal winning coalitions with more than two agents at x (such agent does

exist by part (a)) and all agents that belong to all minimal winning coalitions at x + 1.

This property ensures that the agent that has the power to veto the current alternative

will not regret of doing so because the agent will have the power to make the new current

alternative the �nally selected one, if the agent wishes to do so.

Theorem 1 A social choice function f : PN ! X is obviously strategy-proof and onto

if and only if f is a generalized median voter scheme whose associated coalition system

C = fCxgx2X satis�es the increasing intersection property.

Proof See the Appendix.

The proof of the su¢ ciency part of Theorem 1 will be constructive. For each gen-

eralized median voter scheme f whose associated coalition system C satis�es the (InIn)
property we will construct an extensive game form �C that OSP-implements f . In Section

5 below we will de�ne an algorithm that takes C as input and delivers as output the exten-
sive game form �C. However, before moving to Section 5, we illustrate the (InIn) property,

introduce additional notation, and present a preliminary result and another example.

Given a coalition system fCxgx2X we say that condition (a) of the (InIn) property

holds at x if (a) holds for x 2 X: Similarly for (b). We will say that the (InIn) property
holds at x if conditions (a) and (b) hold at x. We say that a generalized median voter

scheme satis�es the (InIn) property if its associated coalition system satis�es it.

The agent identi�ed in condition (b) of the (InIn) property is not necessarily unique,

and we denote one of such agents by ix; for instance, in Example 1, ix1 could be agent 2

or 3 and ix2 could be agent 4 or 5:11

Example 1 (continued) The two tables below might help the reader to check that

11Whenever we want to identify a single agent satisfying a property that several agents may satisfy, we

could select the smallest agent (according to the order 1 < � � � < n) among the set of agents that satisfy
the property, and this will be without loss of generality.
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the coalition system C = fCx1 ; Cx2 ; Cx3g of Example 1 satis�es the (InIn) property.

x1; k
x1 = 3 k = 1 k = 2 k = 3

Intersections I1x1 = ; I2x1 = f2; 3g I3x1 = f2; 3g
(a) of (InIn)

��I1x1�� = 0 � 0 ��I2x1�� = 2 > 1 ��I3x1�� = 2 � 2
(b) of (InIn) ix1 2 f2; 3g and I1x2 [ fix1g = f;g [ fix1g 2 Cmx2

x2; k
x2 = 2 k = 1 k = 2

Intersections I1x2 = ; I2x2 = f4; 5g
(a) of (InIn)

��I1x2�� = 0 � 0 ��I2x2�� = 2 > 1
(b) of (InIn) ix2 2 f4; 5g and I1x3 [ fix2g = f;g [ fix2g 2 Cmx3

�

Remark 1 Let fCxgx2X be a coalition system. Then, the following properties hold.
(1.1) If kx = 1; the (InIn) property holds at x: To see that, observe that kx = 1 implies

Cmx � ffig j i 2 Ng. Hence, 0 � jI1xj � 1 and condition (a) of the (InIn) property holds
at x. Moreover, since kx = 1, condition (b) of the (InIn) property at x does not apply.

(1.2) If jCmx j = 1, condition (a) of the (InIn) property holds at x. To see that, let S be the
unique coalition in Cmx . Hence, kx = jSj and, for all k � kx, Ikx = S: Then, for all k � kx,��Ikx �� = jSj = kx > k � 1.
(1.3) If X = fx1; x2g; condition (b) of the (InIn) property holds at x1. This is because
I1x2 = ; and fig 2 Cmx2 for all i 2 N .

To highlight the additional requirements of obvious strategy-proofness with respect

to strategy-proofness, we exhibit a simple example with a SCF that is SP but not OSP-

implementable.

Example 2 Assume X = fx; x + 1g and n = 5. Consider the SCF f : PN ! X

de�ned by the coalition system C = fCx; Cx+1g; where Cmx = ff1; 2g; f1; 3g; f4; 5gg and
Cx+1 = 2Nnf;g: We already know that f is SP-implementable because it is a generalized
median voter scheme but f is not OSP-implementable because it does not satisfy the

(InIn) property because kx = 2 and jI2xj = 0 < 1 = kx � 1: In the direct revelation
mechanism that SP-implements f , truth-telling is a weakly dominant strategy: to give

support to the top is always optimal independently of whether or not the top is selected.

In contrast, consider any extensive game form � that could OSP-implement f . The notion

requires that (i) � induces f and (ii) truth-telling is weakly (i.e., obviously) dominant in

�. In the example, (i) requires that the agent that has to move �rst in � has to have

available two actions, both inducing x and x+1 as possible outcomes, since for all i 2 N ,
it holds simultaneously that fig =2 Cx (i can not impose x) and there exists S 2 Cmx such
that i =2 S (i can not impose x + 1). But then, for the agent that has to move �rst the
outcome associated to the optimistic view of not truth-telling is strictly preferred to the
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outcome associated to the pessimistic view of truth-telling, and so truth-telling is not

an obvious optimal decision for this agent. SCFs that are OSP-implementable have to

exclude this possibility. The (InIn) property is the condition that does that, and so it

discriminates the SCFs that are OSP-implementable from those that are not. �

5 The extensive game form

To prove the necessity part of Theorem 1, we will de�ne an algorithm that takes each

coalition system C satisfying the (InIn) property and delivers an extensive game form �C

that OSP-implements the generalized median voter scheme associated to C. The algorithm
will be based on a collection of elections confronting x and x + 1 (for x < M) by means

of an extensive form game, de�ned also by an algorithm and denoted by �x. The speci�c

sequence along which these elections take place will be determined later, in Subsection

5.2.

To proceed, and given a committee Cx, we need the following notation. For each
k � kx; let F kx be the subset of agents not in I

k
x with the property that each of them

completes, together with those in Ikx , a minimal winning coalition at x; namely,

F kx = fi 2 NnIkx j Ikx [ fig 2 Cmx g: (1)

By convention, we set F 0x = ;: It can be shown that if condition (a) of the (InIn) property
holds at x, each minimal winning coalition at x can be written as the union of Ikx and fig
for some k � kx and i 2 F kx , or just as Ik

x

x (see (f) and (g) in Remark 2 at the beginning

of the Appendix). Moreover, for all 1 < k � kx;

if F kx nF k�1x = ; then either F kx = ; or F kx = F k�1x : (2)

To see that, assume F kx 6= ;. Since F kx nF k�1x = ;; i 2 F kx implies that i 2 F k�1x :

Therefore, by de�nition of F kx ; I
k
x [ fig 2 Cmx and i =2 Ikx imply Ik�1x [ fig 2 Cmx and

i =2 Ik�1x . Since Ik�1x � Ikx ; Ik�1x = Ikx ; otherwise, there would exists i 2 IkxnIk�1x such that

Ik�1x [ fig ( Ikx [ fig, contradicting that Ikx [ fig 2 Cmx . Therefore, by (1), F kx = F k�1x :

Example 3 contains a committee Cx that illustrates the above de�nition, and that we
will use in the sequel.

Example 3 Let n = 10 and Cmx = ff1g; f2; 3g; f2; 4g; f2; 5; 6g; f2; 5; 7; 8; 9g; f2; 5; 7; 8; 10gg.
Note that kx = 5: Then,

I1x = ; F 1x = f1g
I2x = f2g F 2x = f3; 4g
I3x = f2; 5g F 3x = f6g
I4x = f2; 5; 7; 8g F 4x = f9; 10g
I5x = f2; 5; 7; 8g F 5x = f9; 10g:
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Observe that condition (a) of the (InIn) property holds at x since kx = 5 > 1 and

jI1xj = 0 � 0; jI2xj = 1 � 1; jI3xj = 2 � 2; jI4xj = 4 � 3 and jI5xj = 4 � 4 hold. Moreover,
any S 2 Cmx can be written as S = Ikx [ fig for some i 2 F kx and k � kx. �

5.1 The algorithm confronting x and x+ 1 (for x < M)

Here, we focus only on the election confronting x and x+ 1, for x < M , by means of Cx.
Fix Cx. The algorithm consists of two types of Stages, A and B, that are played

alternately, and each with (potentially) several steps. Agents play sequentially at most

once, and when they do, their choice set is fx; x + 1g. Agents playing in steps of Stage
A (agents belonging to I1x; : : : ; I

kx

x ) can either impose x + 1 (by choosing x + 1) or let

the extensive game form proceed (by choosing x). Agents playing in steps of Stage B
(agents belonging to the sets F 1x ; : : : ; F

kx
x ) can either impose x (by choosing x) or let the

extensive game form proceed (by choosing x+ 1). The agent playing in the last step can

impose x (by choosing x) or x+ 1 (by choosing x+ 1).

The algorithm de�ning the extensive game form �x

Input : A committee Cx satisfying condition (a) of the (InIn) property at x.
Initialization: Identify the integer kx and, for each 1 � k � kx, the subsets of agents Ikx
and F kx . Set k = 1 and go to Stage A.1.

Stage A.k (1 � k � kx).
If IkxnIk�1x 6= ;, agents in IkxnIk�1x play sequentially in any order choosing an action in

the set fx; x+ 1g.
If one agent chooses x+ 1, �x ends with outcome x+ 1.

If all agents choose x; go to Stage B.k:

If IkxnIk�1x = ;, go to Stage B.k.
Stage B.k (1 � k � kx).
(i) Assume 1 � k < kx:

If F kx nF k�1x 6= ;, agents in F kx nF k�1x play sequentially in any order choosing an

action in the set fx; x+ 1g.
If one agent chooses x, �x ends with outcome x.

If all agents choose x+ 1, go to Stage A.k+1.

If F kx nF k�1x = ;, go to Stage A.k+1.
(ii) Assume k = kx:

If F kx nF k�1x 6= ;, agents in F kx nF k�1x play sequentially in any order choosing an

action in the set fx; x+ 1g.
If one agent chooses x, �x ends with outcome x.
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If all agents choose x+ 1, �x ends with outcome x+ 1:

If F kx nF k�1x = ;:
If F kx = ;, �x ends with outcome x:
If F kx = F

k�1
x 6= ;; �x ends with outcome x+ 1:12

Output : �x:

The extensive game form �x is a proto-dictatorship, as de�ned by Bade and Gonczarowski

(2017). Each agent plays at most once by choosing either x or x + 1 and, except for the

last player, one and only one of the two choices induces a terminal history while for the

last player both choices induce a terminal history.

Example 3 (continued) Figure 1 represents the extensive game form �x for the com-

mittee Cx of Example 3, where agents play from left to right, with the order 1; : : : ; 10,

and the set of actions is fx; x+ 1g for all agents.

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r1 2 3 4 5 6 7 8 9 10

x x+ 1 x x x+ 1 x x+ 1 x+ 1 x x

x+ 1 x x+ 1 x+ 1 x x+ 1 x x x+ 1 x+ 1

x x+ 1 x x x+ 1 x x+ 1 x+ 1 x x

x+ 1

Figure 1: Extensive game form �x of Example 3

Below, we apply the algorithm to Cx to obtain �x depicted in Figure 1.
At Stage A.1, since I1x = ;, go to Stage B.1. At Stage B.1, since F 1x = f1g, only 1

plays. If 1 chooses x, �x ends with x, and if 1 chooses x+1, go to Stage A.2. At Stage
A.2, since I2xnI1x = f2g, only 2 plays. If 2 chooses x + 1, �x ends with x + 1, and if 2
chooses x, go to Stage B.2. At Stage B.2, since F 2xnF 1x = f3; 4g, 3 and 4 play (in Figure
1, 3 plays before 4). If 3 chooses x, �x ends with x, and if 3 chooses x + 1, 4 plays. If 4

chooses x, �x ends with x, and if 4 chooses x+1, go to Stage A.3. At Stage A.3, since
I3xnI2x = f5g, only 5 plays. If 5 chooses x + 1, �x ends with x + 1, and if 5 chooses x, go
to Stage B.3. At Stage B.3, since F 3xnF 2x = f6g, only 6 plays. If 6 chooses x, �x ends
with x, and if 6 chooses x + 1, go to Stage A.4. At Stage A.4, since I4xnI3x = f7; 8g, 7
and 8 play (in Figure 1, 7 plays before 8). If 7 chooses x + 1, �x ends with x + 1, and

if 7 chooses x, 8 plays. If 8 chooses x + 1, �x ends with x + 1, and if 8 chooses x, go to

Stage B.4. At Stage B.4, since F 4xnF 3x = f9; 10g, 9 and 10 play (in Figure 1, 9 plays
before 10). If 9 chooses x, �x ends with x, and if 9 chooses x + 1, agent 10 plays. If 10

chooses x, �x ends with x, and if 10 chooses x+1, go to Stage A.5. At Stage A.5, since
12By (2), these two cases are the only possible ones.
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I5xnI4x = ;; go to Stage B.5. At Stage B.5, since k = kx = 5 and F 5x = F 4x = f9; 10g; �x

ends with outcome x+ 1 and the algorithm stops after Stage B.5 with output �x. �

5.2 The extensive game form �C

This subsection contains the description of the algorithm de�ning the full extensive game

form that OSP-implements a given generalized median voter scheme f : PN ! X sat-

isfying the (InIn) property. This description will require to identify, given the coalition

system fCxgx2X associated to f , (i) the smallest alternative x� 2 X with the property

that its committee Cx� has a singleton set and (ii) one of the agents that alone is a minimal
winning coalition at x�, denoted by i�. Namely,

x� = argminfx 2 X j fig 2 Cmx for some i 2 Ng:

The alternative x� is well de�ned since CmM = ff1g; : : : ; fngg. De�ne13

i� =

(
argminfi 2 N j fig 2 Cmx�g if x� = 1

ix
��1 otherwise.

The algorithm de�ning the extensive game form �C

Input: A coalition system fCxgx2X satisfying the (InIn) property.

Initialization: Identify the alternative x�, the agent i� and, for each x < M; the integer

kx, the agent ix (if kx > 1) and, for each 1 � k � kx, the subsets of agents Ikx and F
k
x .

Go to Stage I.

Stage I. The �rst agent to play is N (;) = i� choosing an action in the set A(;), where

A(;) =

8><>:
fx�; x� + 1g if x� = 1

fx� � 1; x�; x� + 1g if 1 < x� < M

fx� � 1; x�g if x� =M:

If i� chooses x�, �C ends with outcome x�.

If i� chooses x� + 1; go to Stage Up.1.
If i� chooses x� � 1; go to Stage Down.1.

Stage Up.k (k � 1). Set x = x� + (k � 1):
(i) Assume x+ 1 < M .

If kx > 1; agents play �x as previously de�ned except that in Stage A.2, agent
13If x� > 1; kx

��1 > 1 holds since no singleton coalition belongs to Cmx��1: Observe also that, since
condition (b) of the (InIn) property holds at x� � 1, fix��1g 2 Cmx� because, by the de�nitions of x� and
ix

��1, either I1x� = ; or I1x� = fix
��1g and so Cmx� = ffix

��1gg.
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ix 2 I2xnI1x plays �rst.14

If ix chooses x+ 1, go to Stage Up.k+1.
If ix chooses x, the other agents in I2x n I1x play sequentially, in any order.
The outcome of �x is the outcome of �C:

If kx = 1; agents play �x.

If the outcome of �x is x; then �C ends with outcome x:

If the outcome of �x is x+ 1, go to Stage Up.k+1:

(ii) Assume x+ 1 =M . Agents play �x and the outcome of �x is the outcome of �C.

Stage Down.k (k � 1). Set x = x� � k:
(i) Assume x > 1:

If jCmx j > 1; agents play �x as previously de�ned except that in Stage B.1 agent
ix�1 2 F 1x plays �rst.15

If ix�1 chooses x, go to Stage Down.k+1.
If ix�1 chooses x+ 1, the other agents in F 1x play sequentially, in any order.

The outcome of �x is the outcome of �C.

If jCmx j = 1; agents play �x.
If the outcome of �x is x+ 1; then �C ends with outcome x+ 1:

If the outcome of �x is x, go to Stage Down.k+1:

(ii) Assume x = 1: Agents play �x and the outcome of �x is the outcome of �C.

Output : �C:

The following �gures represent the building blocks that make up the algorithm.

Stage I.
If 1 < x� < M

r r r

r
Stage Down.1 Stage Up.1

x� � 1 x� + 1

x�

x�

i�

14Observe that since kx > 1, x� � x < M; and condition (b) of the (InIn) property holds at x, we have
that I1x = ; and ix 2 I2xnI1x:
15Observe that, since 1 < x < x� and condition (b) of the (InIn) property holds at x� 1, we have that

fix�1g =2 Cmx and I1x [ fix�1g 2 Cmx . Since jCmx j > 1, I1x =2 Cmx holds, and so ix�1 =2 I1x and ix�1 2 F 1x :
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If x� = 1 If x� =M

r r

r
Stage Up.1

x� + 1

x�

x�

i� r r

r
Stage Down.1

x� � 1

x�

x�

i�

Stage Up.k. For x = x� + (k � 1)

... ...r r r r r r r r r

r r r r r

r
Stage Up.k+1

x x x+ 1 x

x+ 1 x+ 1 x

x+1 x+ 1 x x+ 1

ix
Stages A.1 and B.1 in �x Stage A.2 in �x Remaining stages in �x

Stage Down.k. For x = x� � k

... ...r r r r r r r r r

r r r r r

r
Stage Down.k+1

x x x x+ 1

x+ 1 x+ 1 x+ 1

x+ 1 x+ 1 x+ 1 x

ix�1
Stage A.1 in �x Stage B.1 in �x Remaining stages in �x

The algorithm can be seen as a sequence of electoral confrontations between x and x+1,

each by means of �x: However, obvious strategy-proofness requires that the transition from

�x to �x+1, if x� � x, or from �x to �x�1, if x < x�, can not just depend on the outcome

of �x. When �x is played in an up stage (i.e., x� � x), and the outcome of �x is x + 1
after ix chooses x; the overall game �C does not move to �x+1 but instead it �nishes with
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�nal outcome x + 1: Similarly, when �x is played in a down stage (i.e., x < x�), and the

outcome of �x is x after ix�1 chooses x + 1; the overall game �C does not move to �x�1

but instead it �nishes with �nal outcome x: Observe that by de�nitions of ix and ix�1

the outcome of �x is respectively x + 1 if x� � x and ix chooses x + 1 or x if x < x�

and ix�1 chooses x; and then the corresponding �x+1 or �x�1 will be played after �x. To

preserve obvious strategy-proofness, agent ix or agent ix�1 has to be the �rst to choose

respectively in the corresponding stages A.2 or B.1 of �x.
We now illustrate the algorithm by applying it to the coalition system C = fCx1 ; Cx2 ; Cx3g

of Example 1. We have already checked that C satis�es the (InIn) property.

Example 1 (continued) Remember that X = fx1; x2; x3g; n = 5,

Cmx1 = ff1g; f2; 3; 4g; f2; 3; 5gg
Cmx2 = ff1g; f2g; f3g; f4; 5gg
Cmx3 = ff1g; f2g; f3g; f4g; f5gg

and, without loss of generality, assume x2 = x1 + 1 and x3 = x2 + 1:

The application of the algorithm to obtain �C (see Figure 2 below)

Input: The coalition system C = fCx1 ; Cx2 ; Cx3g that satis�es the (InIn) property.

Initialization: Identify the alternative x� = x1, the agent i� = 1; and the cardinalities,

subsets of agents and agents shown in the table below.

x1

kx1 = 3

I1x1 = ; F 1x1 = f1g
I2x1 = f2; 3g F 2x1 = f4; 5g
I3x1 = f2; 3g F 3x1 = f4; 5g

ix1 = 2

x2

kx2 = 2

I1x2 = ; F 1x2 = f1; 2; 3g
I2x2 = f4; 5g F 2x2 = ;

ix2 = 4

x3

kx3 = 1

I1x3 = ; F 1x3 = f1; 2; 3; 4; 5g:

Go to Stage I.

Stage I. Agent 1 is the �rst to play choosing an action in the set fx1; x2g:
If 1 chooses x1, �C ends with outcome x1.

If 1 chooses x2; go to Stage Up.1.

Stage Up.1. Set x = x1.

Since x2 < x3 and kx1 = 3 > 1; agents play �x1 with the modi�cation that ix1 = 2

plays �rst in Stage A.2.

�x1

Stage A.1. Since I1x1nI0x1 = ;, go to Stage B.1.
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Stage B.1. Since kx1 = 3 > 1 and F 1x1nF 0x1 = f1g, agent 1 plays choosing an action
in the set fx1; x2g:

If 1 chooses x1; �C ends with outcome x1:

If 1 chooses x2, go to Stage A.2.

Stage A.2. Since I2x1nI1x1 = f2; 3g and ix1 = 2, agents 2 and 3 play in this order by
choosing an action in the set fx1; x2g.

If 2 chooses x2, go to Stage Up.2.
If 2 chooses x1, 3 plays.

If 3 chooses x2; �C ends with outcome x2:

If 3 chooses x1, go to Stage B.2.

Stage B.2. Since kx1 = 3 > 2 and F 2x1nF 1x1 = f4; 5g, agents 4 and 5 play in any other
by choosing an action in the set fx1; x2g. Set the order 4; 5.

If 4 chooses x1; �C ends with outcome x1.

If 4 chooses x2; 5 plays.

If 5 chooses x1; �C ends with outcome x1.

If 5 chooses x2; go to Stage A.3.

Stage A.3. Since I3x1nI2x1 = ;; go to Stage B.3.
Stage B.3. Since kx1 = 3 and F 3x1 = F

1
x1
= f4; 5g, �C ends with x2:

Stage Up.2. Set x = x2.

Since x2 + 1 = x3; agents play �x2 and the outcome of �x2 is the outcome of �C.

�x2

Stage A.1. Since I1x2nI0x2 = ;, go to Stage B.1.
Stage B.1. Since kx2 = 2 > 1 and F 1x2nF 0x2 = f1; 2; 3g; agents 1, 2 and 3 play in any

order by choosing an action in the set fx2; x3g: Set the order 1; 2; 3:
If 1 chooses x2, �C ends with outcome x2.

If 1 chooses x3, 2 plays.

If 2 chooses x2, �C ends with outcome x2.

If 2 chooses x3; 3 plays.

If 3 chooses x2, �C ends with outcome x2.

If 3 chooses x3; go to Stage A.2.

Stage A.2. Since I2x2nI1x2 = f4; 5g, agents 4 and 5 play in any order by choosing and
action in the set fx2; x3g: Set the order 4; 5:

If 4 chooses x3; �C ends with outcome x3:

If 4 chooses x2; 5 plays.

If 5 chooses x3; �C ends with outcome x3:

If 5 chooses x2; go to Stage B.2.
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Stage B.2. Since kx2 = 2 and F 2x2 = ;, �C ends with outcome x2.

Output : �C:

Figure 2 depicts the extensive game form �C; output of the algorithm, that OSP-

implements the generalized median voter scheme associated to C.
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x1 x2 x1 x1
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x2 x1 x1 x2 x2 x2
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x2 x2 x2 x3 x3

x3 x3 x3 x2 x2 x2

Figure 2: Extensive game form �C of Example 1

Two comments about Figure 2 are pertinent. First, at the beginning of the game,

player 1 plays twice in a row with the same set of actions. The game without the �rst

node is strategically equivalent to �C. We have maintained this potential redundancy in

order to be consistent with the de�nition of the general algorithm which distinguishes

between agent i�, who moves �rst in Stage I, and the �rst agent to move in �x�, who
moves just after i� has chosen x�+1; in the example, these two agents coincide (both are

player 1) but in general they may be di¤erent. Second, the example may help to clarify

the role of the (InIn) property to guarantee that truth-telling is obviously dominant as

well as why Stage A.2 (in Stage Up.k) of �x has to be modi�ed, and the special role
given to player ix (player 2 in the example).16 In Figure 2, and to see why truth-telling

is an obviously dominant strategy in �x for any i 2 f1; 3; 4g, consider i�s choice at any
history where i plays (the case i = 5 is trivial). If i�s top coincides with the alternative

that i can induce as �nal outcome, then truth-telling is obviously dominant since the

worse outcome is the top. If i�s top does not coincide with the alternative that i can

induce as �nal outcome, then truth-telling is obviously dominant since the worse outcome

it induces coincides with the outcome of not truth-telling. Consider now agent 2 (in the

role of player ix1) who plays �rst in Stage A.2 (in Stage Up.1) in the modi�ed �x1.

16The truth-telling strategies here consist of choosing always the preferred alternative on the set of

available actions, either fx1; x2g or fx2; x3g.
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Observe that, despite the fact that none of 2�s actions induces a terminal node, truth-

telling is obviously dominant. If 2 chooses x1, x3 is not a possible outcome because �x2

is not played after 2 chooses x1. Moreover, when 2 chooses x2; and �x2 is played, x1 is

not a possible outcome but, at the same time, 2 has the power to avoid x3. Otherwise, x3
could be the worse outcome if 2; with the single-peaked preference x2P2x1P2x3 chooses x2
(i.e., truth-tells) while x2 could be the best outcome after choosing x1. Condition (b) of

the (InIn) property guarantees that 2 is a minimal winning coalition at x2 and so, 2 can

impose x2 (i.e., avoid x3) after choosing x2. When agent 2�s preference is x1P2x2P2x3,

x2P2x3P2x1 or x3P2x2P2x1, x2 is the worse outcome of truth-telling and the best of not

doing so. Thus, truth-telling is obviously dominant for 2. �

We are now ready to state Theorem 2, the second main result of the paper. Theorem

2 implies the su¢ ciency part of Theorem 1 but, in addition, it gives for each obviously

strategy-proof SCF an extensive game form that OSP-implements it.

Theorem 2 Let f : PN ! X be a generalized median voter scheme whose associated

coalition system C = fCxgx2X satis�es the increasing intersection property. Then, �C

implements f in obviously dominant strategies.

Proof See the Appendix.

6 Particular results: the two-alternative case and/or

anonymity

We apply our results to special cases of our setting, those in which X only contains two

alternatives and/or the SCFs are anonymous.

Assume jXj = 2 and, without loss of generality, let X = fx; x + 1g. Then, the set
P of single-peaked preferences over X is the universal domain of (strict) preferences over

fx; x + 1g: Let f : PN ! fx; x + 1g be a strategy-proof and onto SCF (i.e., it is not
constant) and let fCx; Cx+1g be its associated coalition system. By (1.3) in Remark 1,
fCx; Cx+1g trivially satis�es condition (b) of the (InIn) property. Hence, we obtain as a
corollary of our results the characterization of all obviously strategy-proof and onto SCFs

for the two-alternative case.

Corollary 1 Assume X = fx; x + 1g. Then, a social choice function f : PN ! X is

obviously strategy-proof and onto if and only if the committee Cx associated to f satis�es
condition (a) of the (InIn) property at x. Moreover, the extensive game form �x, outcome

of the algorithm applied to Cx, implements f in obviously dominant strategies.

Corollary 1 helps to further clarify the boundary between Bade and Gonczarowski

(2017) and our work. We can present in an uni�ed way the two-alternative result and
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the single-peaked result into a sole result about single-peaked preferences. Bade and

Gonczarowski (2017) cannot do this, as their single-peaked result is for in�nite sets of

alternatives. For this reason, they have to treat the two cases separately (their Theorem

4.1 refers to the two-alternative case). In addition to the fact that the approaches of

the two papers are di¤erent,17 this is an additional evidence that the results of the two

independent papers are distinct and complement each other well.

A committee Cx is anonymous if Cx = fS 2 2N j jSj � qg for some q 2 f1; : : : ; ng.
The associated anonymous SCF and Cx itself are named voting by quota q (see Barberà,
Sonnenschein and Zhou (1991)). The two special and extreme cases q = n and q = 1

correspond to the two unanimity cases. Unanimity for x when q = n (i.e., to be elected,

x needs n votes) and unanimity for x + 1 when q = 1 (i.e., to be elected, x + 1 needs n

votes). Among all voting by quota, these two extreme cases are the unique ones for which

condition (a) of the (InIn) property holds at x. Indeed, if q = 1; then kx = 1 and jI1xj = 0:
If q = n; then kx = n and, for all 1 � k � n;

��Ikx �� = n > k � 1: In contrast, if n > 2

and 1 < q < n; then kx = q and, for all 1 < k � q,
��Ikx �� = 0 < k � 1; hence, condition

(a) of the (InIn) property does not hold at x. We state as corollary of our results the

following characterization of all obviously strategy-proof, anonymous, and onto SCFs for

the two-alternative case.

Corollary 2 Assume X = fx; x + 1g. Then, a social choice function f : PN ! X is

obviously strategy-proof, anonymous and onto if and only if f is either voting by quota 1

or voting by quota n:

The reason of why voting by quota 1 is obviously strategy-proof is as follows. Let �x

be the extensive game form that OSP-implements voting by quota 1. When agent i has to

move, i has two choices: voting for x (i.e., vetoing x+1), and so ending the game with x,

or voting for x+1, and so passing to the next agent in the sequence (if any) the power to

impose x: If i prefers x, truth-telling (voting for x) gives to i the top alternative, at least

as preferred as the outcome of not truth-telling. If i prefers x+1, not truth-telling (voting

for x) gives to i the worse alternative, indi¤erent or less preferred to the outcome of truth-

telling (voting for x + 1). Hence, truth-telling is obviously dominant. Symmetrically for

voting by quota n: The reason of why any voting by quota 1 < q < n is not obviously

strategy-proof is as follows. Let � be an extensive game form that induces voting by quota

q. Look at the �rst agent (called i) who has available a set of two actions.18 None of them

can be decisive (both have to leave as possible outcomes x and x+1), as otherwise � would

not induce voting by quota q. Hence, the other agents can always impose both outcomes
17Bade and Gonczarowski (2017) gives revelation principle like results while our approach, based on

the algorithm, identi�es for each obviously strategy-proof and onto SCF an extensive game form that

implements it in obviously dominant strategies.
18By Bade and Gonczarowski (2017), this simpli�cation can be done without loss of generality.
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on i; irrespective of i�choice. Thus, the worse possible outcome of i�s truth-telling strategy

is strictly worse than the best possible outcome of any alternative strategy. Hence, voting

by quota 1 < q < n is not obviously strategy-proof.

As a consequence of our results, we �nally obtain Corollary 3 characterizing the class

of all obviously strategy-proof, anonymous and onto SCFs on the domain of single-peaked

preferences over an arbitrary �nite set of alternatives X = f1; : : : ;Mg, with M � 2. The
result follows as a consequence of two observations. By Corollary 2, condition (a) of the

(InIn) property requires that, for all x 2 f1; : : : ;M � 1g, Cx is either voting by quota 1
or voting by quota n (observe that CmM = ff1g; : : : ; fngg is voting by quota 1). Moreover,
outcome monotonicity of the coalition system requires that it should exists x� 2 X such

that, for all x < x� (if any), Cx is voting by quota n and, for all x � x�, Cx is voting by
quota 1. Namely,

Corollary 3 A social choice function f : PN ! X is obviously strategy-proof, anony-

mous and onto if and only if f is a generalized median voter scheme whose associated

coalition system fCxgx2X has the property that there exists x� 2 X such that (i) for all

1 � x < x� (if any), Cmx = fNg and (ii) for all x� � x �M , Cmx = ff1g; : : : ; fngg:

Note that if M = 2, then x� = 1 corresponds to the case of voting by quota 1 and

x� = 2 corresponds to the case of voting by quota n. Figure 3 below represents one of

those anonymous generalized median voter schemes for the case where M = 5, n = 3 and

x� = x3. For each x 2 X, Cmx is depicted on the top of x:

r r r r r
x1 x2 x3 x4 x5

f1; 2; 3g f1; 2; 3g f3g
f2g
f1g

f3g
f2g
f1g

f3g
f2g
f1g

Figure 3: Anonymous generalized median voter scheme for M = 5; n = 3 and x� = x3

Observe that in general, the two cases x� = 1 and x� = M correspond to the SCFs

that select the minimum and maximum top alternative, respectively. Corollary 3 says that

there are still other obviously strategy-proof, anonymous and onto SCFs di¤erent of these

two extremes. For instance, in the example depicted in Figure 3, at any P = (P1; P2; P3)

with the property that t(P ) = (x1; x4; x5); f(P ) = x3 is neither the maximum nor the

minimum top alternative but f is somehow simple, and far of being a dictatorship. In

fact, f can be described as follows: f(P ) is the maximum top, as long as all tops are

below x3; f(P ) is the minimum top, as long as all tops are above x3; and f(P ) = x3, as

long as there are tops below and above x3.
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7 Conclusion

For the class of social choice problems where a set of agents have to select an alternative

from a �nite and linearly ordered set of alternatives over which agents have single-peaked

preferences, we have characterized the set of all obviously strategy-proof and onto social

choice functions. Our contribution is to identify the (InIn) property as being necessary and

su¢ cient for OSP-implementation. Moreover, we use the property to de�ne an algorithm

that for each obviously strategy-proof social choice function delivers an extensive game

form that OSP-implements it. This is in contrast with a major part of the literature on

obvious strategy-proofness containing revelation principle like results.

The (InIn) property is restrictive and substantially reduces the class of strategy-proof

social choice functions in this setting. Often, apparently a simple mechanism (e.g., in the

two-alternative case, voting by quota q when 1 < q < n) that seems to suggest that truth-

telling is clearly dominant, nonetheless the mechanism is not obviously strategy-proof.

Our paper con�rms the conviction that obvious strategy-proofness is a very restrictive

notion. However, our companion paper (Arribillaga, Massó and Neme (2019)) indicates

that in another setting this is not necessarily the case; e.g., when alternatives have private

components, OSP may not have any additional bite at all. This means that for each

speci�c setting a particular analysis has to be carried out. Our two papers are two

examples of those, each with two extreme and di¤erent conclusions: restrictive in the

public-good case and not at all in the private-good case.
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Appendix

We start with the proof of Theorem 2 since it implies the su¢ ciency part of Theorem

1. Observe that Theorem 2 does not only guarantee that a generalized median voter

scheme that satis�es the (InIn) property is obviously strategy-proof but it also says that

the extensive game form de�ned in Subsection 5.2 OSP-implements it.

We state a remark that will be used in the sequel.

Remark 2 Let C = fCxgx2X be a coalition system that satis�es the (InIn) property

and let x 2 X. Then, the following statements hold.
(a) Assume x� � x. Then, fig 2 Cmx if and only if i 2 I1x [ F 1x :
(b) If S 2 Cmx is such that jSj � 2, then ix 2 S:
(c) If 1 < kx and x� � x < x0, then fixg 2 Cmx0 .
(d) If x0 < x � x�, then ix�1 2 I1x0.
(e) If x < x�, then I1x+1 [ fixg � S for every S 2 Cmx :
(f) If F k

x

x 6= ;, then

Cmx = fS � N j S = Ikx [ fig for some 1 � k � kx and i 2 F kx g: (3)

(g) If F k
x

x = ;, then

Cmx = fS � N j S = Ikx [ fig for some 1 � k � kx � 1 and i 2 F kx g [ fIk
x

x g: (4)

(h) jCmx j = 1 if and only if I1x 2 Cmx :

We now argue why the statements of Remark 2 hold.

To see that (a) holds, notice that x� � x together with outcome monotonicity of C
imply that Cmx contains at least one singleton coalition. Hence, either I1x is a singleton

set and Cmx = fI1xg, in which case F 1x = ;, or else I1x = ; . Then, by de�nition of F 1x ; the
statement follows.

Statement (b) holds because, by hypothesis, kx > 1 and, by the de�nitions of ix and

I2x, i
x 2 I2x and I2x � S.
Statement (c) holds because, by hypothesis, I1x = ; and so, by outcome monotonicity

of the coalition system, I1x+1 = ;. By condition (b) of the (InIn) property, fixg 2 Cmx+1
and, by outcome monotonicity of the coalition system, fixg 2 Cmx0 if x < x0.
Statement (d) holds because, by de�nition of x�, kx�1 > 1. By the de�nition of

ix�1 and condition (b) of the (InIn) property, ix�1 2 I2x�1. By de�nition of x� and the
hypothesis x0 < x � x�; I1x�1 = I2x�1 and I1x0 = I2x0 hold. By outcome monotonicity of the
coalition system, I1x�1 � I1x0 : Hence, ix�1 2 I1x0.
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To see that (e) holds, assume x < x�. By de�nition of x�, kx > 1: Let S 2 Cmx be

arbitrary. Notice �rst that I2x � S and ix 2 I2x; and so i
x 2 S: Second, by outcome

monotonicity of the coalition system, S 2 Cx+1: Hence, I1x+1 � S. Thus, I1x+1 [ fixg � S:
Statement (f) holds because the fact that Cmx includes the set in the right side of (3)

follows from the de�nition of F kx : To see that the other inclusion in (3) holds as well, let

S 2 Cmx and set k = jSj : Observe that F kxx 6= ; implies that there exists S 0 2 Cmx such

that jS 0j � k; and so Ikx ( S and, by condition (a) of the (InIn) property,
��Ikx �� = k � 1:

By the de�nition of F kx ; there exists i 2 F kx such that S = Ikx [ fig:
To see that (g) holds, observe �rst that F k

x

x = ; implies Ikxx 2 Cmx : Now, the fact
that the union of the two sets in the right side of (4) is included in Cmx follows from the

de�nition of F kx : To see that the other inclusion in (4) holds as well, let S 2 Cmx and set

k = jSj : If k < kx; the inclusion follows by the same argument used to show that (f)

holds. If k = kx; F k
x

x = ; implies S = Ikxx and so S belongs to the union of the two sets.

Statement (h) follows immediately from the de�nition of I1x.

Proof of Theorem 2 Let f : PN ! X be a generalized median voter scheme whose

associated coalition system C = fCxgx2X satis�es the (InIn) property. Let �C be the

extensive game form obtained by the algorithm de�ned in Subsection 5.2. For each P 2
PN , de�ne the pro�le of truth-telling strategies �P = (�P11 ; : : : ; �Pnn ) in �C as follows. For
each i 2 N; let h be a history with the property that N (h) = i. Suppose h is a history in
Stage I (namely, h = ; and i = i�). Then,

�Pii (h) =

8><>:
x� � 1 if x� > 1 and t(Pi) � x� � 1
x� if t(Pi) = x�

x� + 1 if x� < M and t(Pi) � x� + 1:

Suppose h is a history in Stage Up.k or in Stage Down.k, for some k � 1. Then,

�Pii (h) =

(
x if t(Pi) � x
x+ 1 if t(Pi) � x+ 1;

where x = x� + k � 1 if h belongs to Stage Up.k and x = x� � k if h belongs to Stage
Down.k. Namely, �Pii chooses always the best available action according to Pi.

We prove Theorem 2 by showing that, for each pro�le P 2 PN , the following two
statements hold.

(I.a) f(P ) = o(h�
C
(�P )).

(I.b) �P is weakly dominant in �C:

Proof of (I.a) Let P = (P1; : : : ; Pn) 2 PN be an arbitrary pro�le and let o(h�
C
(�P ))

be the outcome of the extensive game form �C when agents play it according to �P : We

will distinguish among three cases depending on whether h�
C
(�P ) is a terminal history in

Stage I, Stage Up.k (for some k � 1) or Stage Down.k (for some k � 1).
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Case I: Assume h�
C
(�P ) is a terminal history in Stage I. Then, x� = o(h�

C
(�P )): Let

i = N (;) be the agent that has chosen the terminal action x� in Stage I (namely, i = i�).
By the de�nition of �P , t(Pi) = x�: Since fig 2 Cmx� ; f(P ) � x�: If x� = 1; f(P ) = x�

and so f(P ) = o(h�
C
(�P )). Assume now x� > 1: By the de�nition of x�, Cmx��1 does not

contain any singleton coalition. By de�nition, i = ix
��1 2 I2x��1. Therefore, i 2 S for all

S 2 Cx��1: Since t(Pi) = x�; f(P ) � x�: Hence, f(P ) = x� and so f(P ) = o(h�
C
(�P )).

Case II: Assume h�
C
(�P ) is a terminal history in Stage Up.k for some k � 1: Let

x = x� + (k � 1): By de�nition of �C, o(h�C(�P )) 2 fx; x+ 1g:
We �rst show that

f(P ) 2 fx; x+ 1g:

We start by showing that f(P ) � x; which is immediate if x = 1: Consider the case
x > 1: When considering the reasons why �C has reached Stage Up.k we distinguish
between the cases k = 1 and k > 1:

Assume k = 1, i.e., x = x�. By construction of �C, agent ix
��1 has chosen x� + 1 in

Stage I. Since ix��1 is playing according to the truth-telling strategy, t(Pix��1) � x� + 1:
Since ix

��1 2 I2x��1 and, by de�nition of x�, Cmx��1 has no minimal winning coalition of
cardinality equal to one, f(P ) � x� = x:
Assume k > 1, i.e., x > x�. We distinguish between the two cases in Stage Up.k-1

that lead �C to reach Stage Up.k. Suppose kx�1 > 1 and so I1x�1 = ;: Since �C has reached
Stage Up.k, each agent i 2 F 1x�1[fix�1g has chosen x when playing (the modi�ed) �x�1

in Stage Up.k-1: By the de�nition of �P , t(Pi) � x for all i 2 F 1x�1 [ fix�1g: Then,
by (a) and (b) in Remark 2; f(P ) � x: Suppose kx�1 = 1. Since �C has reached Stage
Up.k, each agent i 2 I1x�1 [ F 1x�1 has chosen x when playing (the modi�ed) �x�1 in
Stage Up.k-1; because the outcome of �x�1 must be x: Therefore, by the de�nition of
�P , t(Pi) � x for all i 2 I1x�1 [ F 1x�1: Since kx�1 = 1 holds, by (f) and (g) in Remark 2,
S 2 Cmx�1 if and only if S = fig for some i 2 I1x�1 [ F 1x�1: Then, f(P ) � x: Hence, and

independently of whether kx�1 > 1 or kx�1 = 1,

f(P ) � x: (5)

We now proceed by showing that f(P ) � x + 1; which is immediate if x + 1 = M:

Consider the case x+1 < M . We distinguish between the two circumstances under which

�C has ended in Stage Up.k. Suppose kx > 1. Since x� � x, by outcome monotonicity
of C, Cmx contains at least a minimal winning coalition of cardinality equal to one and so,
by assumption, I1x = ;: Therefore, there exists �{ 2 F 1x [ fixg that has chosen x in �x; i.e.,
t(P�{) � x: Therefore, by (a) and (c) in Remark 2, either f�{g 2 Cmx (and f(P ) = x) or

f�{g 2 Cx+1 (i.e., �{ = ix and f(P ) � x + 1). Therefore, f(P ) � x + 1: Suppose kx = 1.

Since �C has ended in Stage Up.k, at least one i 2 I1x[F 1x has chosen x in �x: Therefore,
by the de�nition of �P , t(Pi) � x for at least one i 2 I1x [ F 1x : By (f) and (g) in Remark
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2, S 2 Cmx if and only if S = fig for some i 2 I1x [ F 1x : Then, f(P ) � x: Hence, and

independently of whether kx > 1 or kx = 1,

f(P ) � x+ 1: (6)

Thus, by (5) and (6),

f(P ) 2 fx; x+ 1g: (7)

Consider now (the modi�ed) �x played in Stage Up.k. By hypothesis, o(h�C(�P )) is
the outcome of �x when agents play it according to �P :We show that f(P ) = o(h�

C
(�P ))

by distinguishing between two cases.

First assume that the outcome of (the modi�ed) �x takes place in Stage A.k, with
1 � k � kx. This implies that IkxnIk�1x 6= ;, o(h�C(�P )) = x + 1 and the following two

conditions hold.

(1.A) There exists i 2 IkxnIk�1x that has chosen x+ 1, i.e., x+ 1 � t(Pi):
(2.A) For all k0 < k, each i 2 F k0x has chosen x+ 1, i.e., x+ 1 � t(Pi):
Let S 2 Cmx be such that jSj � k: Then Ikx � S; and by (1.A) above, there exists i 2 S

such that x+ 1 � t(Pi): Thus, there is no S 2 Cmx such that jSj � k and t(Pi) � x for all
i 2 S.
Let S 2 Cmx be such that jSj = k < k: Then, as k < k � kx, by (f) and (g) in Remark

2, S = Ikx [ fig for some i such that i 2 F kx : By (2.A) above, there exists i 2 S such that
x+ 1 � t(Pi): Thus, there is no S 2 Cmx such that jSj < k and t(Pi) � x for all i 2 S.
Therefore, f(P ) � x+ 1. By (7), f(P ) = x+ 1 and so f(P ) = o(h�C(�P )):
Assume now that the outcome of (the modi�ed) �x takes place in Stage B.k, with

1 � k � kx: We proceed by distinguishing among several cases and subcases.
Case 1: k < kx: Then, F kx nF k�1x 6= ;, o(h�C(�P )) = x and the following two conditions

hold.

(1.B.1) There exists �{ 2 F kx nF k�1x that has chosen x, i.e., t(P�{) � x:
(2.B.1) Each i 2 Ikx has chosen x, i.e., t(Pi) � x:
By de�nition of F kx ; it holds that for agent �{ identi�ed in (1.B.1), I

k
x [ f�{g 2 Cmx : By

(1.B.1) and (2.B.1), t(Pi) � x for all i 2 Ikx [f�{g; implying that f(P ) � x. Hence, by (7),
f(P ) = x and so f(P ) = o(h�

C
(�P )):

Case 2: k = kx: The following two conditions hold.

(1.B.2) Each i 2 Ikxx has chosen x, i.e., t(Pi) � x:
(2.B.2) For all k0 < kx; each i 2 F k0x has chosen x+ 1, i.e., x+ 1 � t(Pi):

Subcase 2.1: F kx nF k�1x 6= ;: We distinguish between two cases.
Subcase 2.1.1: There exists �{ 2 F kx n F k�1x that has chosen x, i.e., t(P�{) � x. Then,

o(h�
C
(�P )) = x. By de�nition of F kx ; I

k
x [ f�{g 2 Cmx : By (1.B.2), t(Pi) � x for all

i 2 Ikx [f�{g; implying that f(P ) � x. Hence, by (7), f(P ) = x and so f(P ) = o(h�
C
(�P )):
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Subcase 2.1.2: Each i 2 F kx nF k�1x has chosen x+1, i.e., x+1 � t(Pi) for all i 2 F kx nF k�1x .

Then, o(h�
C
(�P )) = x + 1: By condition (2.B.2), for all k0 � kx, each i 2 F k0x has chosen

x + 1: By (f) in Remark 2, there is no S 2 Cmx such that t(Pi) � x for all i 2 S: Thus,
x+ 1 � f(P ). Hence, by (7), f(P ) = x+ 1 and so f(P ) = o(h�C(�P )):
Case 2.2: F kx nF k�1x = ;: By (2), we distinguish only between two cases.
Subcase 2.2.1: F k

x

x = ;: Then, o(h�C(�P )) = x: By (g) in Remark 2, Ik
x

x 2 Cmx ; which
implies, by (1.B.2) above, that f(P ) � x: Hence, by (7), f(P ) = x and so f(P ) =

o(h�
C
(�P )):

Subcase 2.2.2: F k
x

x = F k
x�1

x 6= ;; Then, o(h�C(�P )) = x + 1. Condition (2.B.2) implies

that, for all k0 � kx, each i 2 F k0x has chosen x+1: By (f) in Remark 2, there is no S 2 Cmx
such that t(Pi) � x for all i 2 S: Thus, x + 1 � f(P ): Hence, by (7), f(P ) = x + 1 and
so f(P ) = o(h�

C
(�P )):

Case III: Assume h�
C
(�P ) is a terminal history in Stage Down.k for some k � 1: Let

x = x� � k: By de�nition of �C, o(h�C(�P )) 2 fx; x+ 1g:
We �rst show that

f(P ) 2 fx; x+ 1g:

We start be showing that f(P ) � x + 1, which is immediate if x + 1 = M: Consider
the case x + 1 < M: When considering the reasons why �C has reached Stage Down.k
we distinguish between the cases k = 1 and k > 1:

Assume k = 1, i.e., x = x��1: By construction of �C, agent ix��1 has chosen x��1 in
Stage I. Since ix��1 is playing according to the truth-telling strategy, t(Pix��1) � x� � 1:
Since fix��1g 2 Cmx� (see footnote 13), f(P ) � x� = x+ 1:
Assume k > 1, i.e., x < x� � 1: We distinguish between the two cases in Stage

Down.k-1 that lead �C to reach Stage Down.k. Suppose
��Cmx+1�� > 1: Since �C has

moved to Stage Down.k, each agent i 2 I1x+1 [ fixg has chosen x + 1 when playing
(the modi�ed) �x+1 in Stage Down.k-1. By de�nition of �P , t(Pi) � x + 1 for all

i 2 I1x+1 [ fixg. Since x + 1 < x�; kx+1 > 1: By condition (b) of the (InIn) property,

I1x+1 [ fixg 2 Cmx+1 holds, and then f(P ) � x + 1: Suppose
��Cmx+1�� = 1: Then, in Stage

Down.k-1 the outcome of �x+1 is x+1, which means that each i 2 I1x+1 has chosen x+1
in �x+1: By de�nition of �P , t(Pi) � x + 1 for all i 2 I1x+1: Since

��Cmx+1�� = 1; by (h) in

Remark 2, I1x+1 2 Cmx+1, and then f(P ) � x + 1: Hence, and independently of whether��Cmx+1�� > 1 or ��Cmx+1�� = 1,
f(P ) � x+ 1: (8)

We now proceed by showing that f(P ) � x; which is immediate if x = 1: Consider the
case 1 < x: We distinguish between the two circumstances under which �C has ended at

Stage Down.k. Suppose jCmx j > 1: Then, there exists �{ 2 I1x[fix�1g that has chosen x+1
when playing (the modi�ed) �x in Stage Down.k. By de�nition of �P , t(P�{) � x + 1.

By (e) in Remark 2, there is no S 2 Cmx�1 such that t(Pi) � x� 1 for all i 2 S; and then
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f(P ) � x: Suppose jCmx j = 1: Then, in Stage Down.k the outcome of �x is x+ 1: Then,
since jCmx j = 1, by (h) in Remark 2, there exists �{ 2 I1x that has chosen x+1 when playing
�x in Stage Down.k. By de�nition of �P , t(P�{) � x+1. By (h) in Remark 2, Cmx = fI1xg
holds, and so there is no S 2 Cmx such that t(Pi) � x for all i 2 S; and then f(P ) � x:
Hence, and independently of whether jCmx j > 1 or jCmx j = 1,

f(P ) � x: (9)

Thus, by (8) and (9),

f(P ) 2 fx; x+ 1g: (10)

Now, the proof that f(P ) = o(h�
C
(�P )) follows as in Case II.

Proof of (I.b) We show that, for each i 2 N and Pi 2 P, the strategy �Pii is weakly

dominant in �C. Fix i 2 N and Pi 2 P, and let �0i 6= �Pii be arbitrary. We consider three

cases depending on the stage at which �0i chooses for the �rst time an action di¤erent

from the one that �Pii would choose.

Case 1: Assume �0i chooses a di¤erent action than �
Pi
i in Stage I, i.e., N (;) = i = i� and

�0i(;) 6= �Pii (;): We distinguish among three cases.
Subcase 1.1: t(Pi) = x�: Then, �Pii chooses x�, the outcome of �C is x� and so �Pii is

trivially weakly dominant.

Subcase 1.2: t(Pi) � x�+1. Then, �Pii chooses x�+1. By (c) in Remark 2, fig 2 Cmx0 for all
x0 � x�. Hence, the outcome of �C is greater than or equal to x� and smaller than or equal
to t(Pi). Furthermore, �0i(;) 2 fx� � 1; x�g in Stage I and so the outcome of �C when i
plays according to �0i is smaller than or equal to x

�. Hence, since Pi is single-peaked, �
Pi
i

is weakly dominant:

Subcase 1.3: t(Pi) � x� � 1. Then, �Pii chooses x� � 1. By (d) in Remark 2, i 2 I1x0 for
all x0 < x�. Hence, the outcome of �C is smaller than or equal to x� � 1 and larger than
or equal to t(Pi). Furthermore, �0i(;) 2 fx�; x� + 1g in Stage I and so the outcome of �C

when i plays according to �0i is larger than or equal to x
�. Hence, since Pi is single-peaked,

�Pii is weakly dominant:

Case 2: Assume �0i chooses a di¤erent action than �
Pi
i in Stage Up.k for some k � 1.

Let x = x� + (k � 1). We distinguish between two cases.
Subcase 2.1: i 2 Ikxx . Observe two things. First, Ikx � Ik

x

x for all 1 � k � kx and i plays
in some Stage A.k0 for some k0 � 1 in (the modi�ed) �x: We distinguish between two

cases.

Subcase 2.1.1: t(Pi) � x. Then, �Pii chooses x in (the modi�ed) �x: We distinguish

between the cases kx = 1 and kx > 1:

Assume kx = 1. Then, since i 2 Ikxx , ffigg = Cmx and the outcome of �C is x. Since �0i
chooses x+ 1; the outcome of �C is now larger than or equal to x+ 1: Hence, since Pi is

single-peaked, �Pii weakly dominates �0i.
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Assume kx > 1. Since i plays in Stage A.k0 for some k0 � 1, agent i; and every agent
j 2 Ikxx that has played before i; have chosen x: Hence, when i plays according to �Pii , �

C

ends with the outcome of �x, which is either x or x+1; regardless of whether or not i = ix:

In contrast, when i plays according to �0i; i chooses x + 1 and then the outcome of �
C is

greater than or equal to x+1: Hence, since Pi is single-peaked, �
Pi
i weakly dominates �0i.

Subcase 2.1.2: t(Pi) � x + 1: Then, �Pii chooses x + 1 in (the modi�ed) �x; and the

outcome of �C is greater than or equal to x+ 1: We distinguish between the cases i = ix

and i 6= ix. Suppose i = ix. Then, by (c) in Remark 2, fig 2 Cx0 for all x0 > x, the

outcome of �C is smaller than or equal to t(Pi). Suppose i 6= ix. Since agent i plays x+1
in Stage A.k and agent ix has chosen x and fixg 2 Cx+1, the outcome of �C is x + 1.
Now, and independently of whether i = ix or i 6= ix, �0i chooses x and the outcome of �C

is x or x+ 1. Hence, since Pi is single-peaked, �
Pi
i weakly dominates �0i:

Subcase 2.2: i 2 F k0x n F k
0�1

x for k0 � k. Observe that i plays in some Stage B.k0 for some
k0 � 1 in (the modi�ed) �x: We distinguish between two cases.
Subcase 2.2.1: t(Pi) � x: Then, �Pii chooses x in (the modi�ed) �x and the outcome of

�C is x. Furthermore, �0i chooses x+ 1 and the outcome of �
C is greater than or equal to

x. Hence, since Pi is single-peaked, �
Pi
i weakly dominates �0i:

Subcase 2.2.2: t(Pi) � x+1:We distinguish between the cases k0 = 1 and k0 > 1: Suppose
k0 = 1: Then, i 2 F 1x implies fig 2 Cmx0 for x0 � x: Since �

Pi
i chooses x+1 in (the modi�ed)

�x, the outcome of �C is larger than or equal to x and smaller than or equal to t(Pi):

Suppose k0 > 1: Then, ix has chosen x in �x and so the outcome of �C is either x or x+1:

Hence, and independently of whether k0 = 1 or k0 > 1, �0i chooses x and then the outcome

of �C is x. Hence, since Pi is single-peaked, �
Pi
i is weakly dominant.

Case 3: Assume �0i chooses a di¤erent action than �
Pi
i in Stage Down.k for some k � 1:

This case is similar to Case 2, replacing the role of (c) by (d) in Remark 2, and therefore

its proof is omitted. �

Proof of Theorem 1 The su¢ ciency part follows from Theorem 2.

To prove necessity, assume f : PN ! X is obviously strategy-proof and onto. By

Corollary 1 in Li (2017), f is strategy-proof. By Barberà, Gül and Stacchetti (1993), f

is a generalized median voter scheme. Let fCxgx2X be the coalition system associated to

f . We have to show that fCxgx2X satis�es the (InIn) property. To do so we will use the
fact that, similarly to what happens with SP-implementability, OSP-implementability is

a hereditary property in the following sense. If f is OSP-implementable in a domain, then

the restriction of f on any of its subdomains is also OSP-implementable.19

The subdomains that we will consider are those obtained by considering subsets of

single-peaked preferences over two or at most three consecutive alternatives in X, with

19The proof of Proposition 5 in Li (2017) contains this observation.
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tops on one of those alternatives. We now show that condition (a) of the (InIn) property

holds for every x < M . Fix x 2 f1; : : : ;M�1g, denote by Px the set of the two preferences
over fx; x + 1g and consider the generalized median voter scheme f : PNx ! fx; x + 1g
de�ned by the coalition system C = fCx; Cx+1g, where Cx = Cx and Cx+1 = ffig j i 2
Ng: Since f is obviously strategy-proof so is f .20 As we have already mentioned in

the Introduction, Bade and Gonczarowski (2017) show that to OSP-implement f one can

restrict attention only to proto-dictatorship mechanisms (see also the proof of Proposition

1 in Arribillaga, Massó and Neme (2016)). That is, we can assume that the extensive game

form that OSP-implements f has the following properties. Agents play sequentially, at

most once, and have to choose either x or x+1. Moreover, they are grouped into alternate

subsets in which each agent has either the choice between implementing x (by choosing it)

or letting the game continue (by choosing x+1) or the choice between implementing x+1

(by choosing it) or letting the game continue (by choosing x), except the last player in the

sequence who has the choice between implementing x (by choosing x) or implementing

x+ 1 (by choosing x+ 1).

Let X1 be the �rst group of agents in the sequence that can implement x or let the

game continue. Let Y1 be the second group of agents in the sequence that play after

the agents in X1, and can implement x + 1 or let the game continue. In general, for

t 2 f2; : : : ; tg; let Xt the group of agents in the sequence that play after the agents in

Yt�1, and can implement x or let the game continue. Let Yt the group of agents in the

sequence that play after the agents in Xt, and can implement x + 1 or let the game

continue. Finally, let bj be the last agent in the sequence that plays after the agents in Yt,
and can implement either x or x+ 1. Hence, the order of play of the subsets of agents is

given by X1; Y1; X2; : : : ; Xt; Yt; Xt+1; : : : ; Xt; Yt;bj; and agents in each subset can play in
any order. Observe that X1 and/or Yt could be empty.

21

Since the proto-dictatorship OSP-implements f and Cx = Cx; it can be checked that
Cmx can be written as the following collection of subsets

Cmx = ffig j i 2 X1gS
fS j S =

btS
t=1

Yt [ fig s.t. i 2 Xbt+1 for some 1 � bt � t� 1gS
f
tS
t=1

Yt [ fbjgg:
If k = 1 � kx; jI1xj � 0 holds trivially. Let 1 < k � kx and bS 2 Cmx be such that��� bS��� � k and ��� bS��� � jSj for all S 2 Cmx such that jSj � k. That is, bS is one of the subsets

20Since generalized median voter schemes are tops only and onto, f is the restriction of f into the

subdomain PNx .
21Figure 1 in Example 2 represents the proto-dictatorship mechanism where t = 4 and X1 = f1g;

Y1 = f2g; X2 = f3; 4g; Y2 = f5g; X3 = f6g; Y3 = f7; 8g; X4 = f9g; Y4 = ; and bj = 10:
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with the smallest cardinality among all subsets in Cmx with cardinality larger than or equal

to k. Clearly, bS =2 ffig j i 2 X1g and let bt 2 f1; : : : ; tg be such that bS = btS
t=1

Yt [ fbig:
Observe that if S 2 Cmx and jSj � k; S =

t0S
t=1

Yt [ fig with t0 � bt and i 2 Xt0+1 [ fbjg:
Then, Ikx =

btS
t=1

Yt and so
��Ikx �� =

����� btSt=1Yt
����� � ��� bS���� 1 � k � 1:

Now we show that condition (b) of the (InIn) property holds at x. Assume kx > 1.

Then, there exists S 2 Cmx such that jSj � 2 and, by condition (a) of the (InIn) property
holds at x, I2x 6= ;: We distinguish between two cases.
Case 1: x+1 =M: Then Cmx+1 = ffig j i 2 Ng and I1x+1 = ;. Therefore, I1x+1[fig 2 Cmx+1
for each i 2 I2x, which means that condition (b) of the (InIn) property holds at x.
Case 2: x+ 1 < M . We distinguish between two cases.

Subcase 2.1:
��Cmx+1�� = 1: Let fS 0g = Cmx+1, and so I1x+1 = S 0: By outcome monotonicity of

the coalition system, S 2 Cx+1 for all S 2 Cmx with jSj � 2. Hence,

S 0 =
T

S2Cx+1
jSj�2

S �
T

S2Cmx
jSj�2

S = I2x:

Then, there exists i 2 S 0 � I2x such that S 0 [ fig = S 0 2 Cmx+1: Thus, condition (b) of the
(InIn) property holds at x:

Subcase 2.2:
��Cmx+1�� > 1: We distinguish between two cases.

Subcase 2.2.1: There exists j0 such that fj0g 2 Cmx+1: De�ne eP1 � � � � � ePn � eP � PN as
follows.

i) If fig 2 Cmx ; then ePi = fPi 2 P j t(Pi) 2 fx+ 1; x+ 2gg:
ii) If fig =2 Cmx ; then ePi = fPi 2 P j t(Pi) 2 fx; x+ 1; x+ 2gg:
Let ef be the restriction of f to the set of pro�les in eP. Since f is OSP-implementable,

so is ef . Let e� be an extensive game form that OSP-implements ef . From now on, we will

use a tilde to refer to the components of e�, and set eN = N: Hence, for every P 2 eP ; there
exists �P such that eo(he�(�P )) = ef(P ): For Pi 2 ePi; denote �Pii by �zi where t(Pi) = z:

Let j be the �rst agent that has to play in e� (i.e., eN (;) = j). By Mackenzie (2018),
we can assume without loss of generality that j has at least two actions available at ;
(i.e.,

��� eA(;)��� � 2); that is,
�zj(;) 6= �z

0

j (;) (11)

for z; z0 2 fx; x+ 1; x+ 2g. We claim that j 2 I2x:
Claim 1 j 2 I2x:
Proof of Claim 1 Suppose otherwise. We distinguish between two cases, depending

on whether or not fjg is a minimal winning coalition at x.
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(1.i) fjg 2 Cmx : Since kx > 1; there exists S 2 Cmx such that jSj � 2 and j =2 S: By the
de�nition of ePj, fjg 2 Cmx and (11), �x+1j (;) 6= �x+2j (;):
For each i 2 S and history h in e� such that eN (h) = i, de�ne

e�i(h) = ( �x+1i (h) if �x+1j (;) � h
�xi (h) if �x+2j (;) � h:

Since e� induces ef ,
eo(he�(�x+2�S�fjg; e�S; �x+2j )) = eo(he�(�x+2�S�fjg; �

x
S; �

x+2
j )) = ef(P x+2�S�fjg; P

x
S ; P

x+2
j ) = x

and

eo(he�(�x+2�S�fjg; e�S; �x+1j )) = eo(he�(�x+2�S�fjg; �
x+1
S ; �x+1j )) = ef(P x+2�S�fjg; P

x+1
S ; P x+1j ) = x+ 1:

By single-peakedness, (x+ 1)P x+2j x holds, which implies that �x+2j is not weakly domi-

nant. Hence, j 2 I2x if fjg 2 Cmx .
(1.ii) fjg =2 Cmx . Then, by our contradiction hypothesis stating that j =2 I2x, there exists
S 2 Cmx such that jSj � 2 and j =2 S: By the de�nition of ePj; fjg =2 Cmx and (11), there

exists y 2 fx; x+ 1g such that �yj (;) 6= �x+2j (;):
For each i 2 S and history h in e� such that eN (h) = i, de�ne

e�i(h) = ( �x+1i (h) if �yj (;) � h
�xi (h) if �x+2j (;) � h:

Since e� induces ef ,
eo(he�(�x+2�S�fjg; e�S; �x+2j )) = eo(he�(�x+2�S�fjg; �

x
S; �

x+2
j )) = ef(P x+2�S�fjg; P

x
S ; P

x+2
j ) = x

and

eo(he�(�x+2�S�fjg; e�S; �yj )) = eo(he�(�x+2�S�fjg; �
x+1
S ; �yj )) =

ef(P x+2�S�fjg; P
x+1
S ; P yj ) = x+ 1:

By single-peakedness, (x+ 1)P x+2j x holds, which implies that �x+2j is not weakly domi-

nant. Hence, j 2 I2x if fjg =2 Cmx , and this concludes the proof of Claim 1. �

To proceed with the proof for this Subcase 2.2.1, assume that condition (b) of the

(InIn) property does not hold at x. By Claim 1, j 2 I2x; and so I1x+1 [ fjg =2 Cmx+1: Since��Cmx+1�� > 1 and there exists j0 such that fj0g 2 Cmx+1; I1x+1 = ;; and so fjg =2 Cmx+1. By
outcome monotonicity of the coalition system, fjg =2 Cmx : By the de�nition of ePj; fjg =2 Cmx
and (11), there exists y 2 fx+ 1; x+ 2g such that �xj (;) 6= �

y
j (;):

For each i 6= j and history h in e� such that eN (h) = i, de�ne
e�i(h) = ( �x+2i (h) if �xj (;) � h

�x+1i (h) if �yj (;) � h:
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Since e� induces ef ,
eo(he�(e��j; �xj )) = eo(he�(�x+2�j ; �

x
j )) =

ef(P x+2�j ; P
x
j ) = x+ 2

and eo(he�(e��j; �yj )) = eo(he�(�x+1�j ; �
y
j )) =

ef(P x+1�j ; P
y
j ) = x+ 1:

By single-peakedness, (x+ 1)P xj (x+ 2) holds, which implies that �
x
j is not weakly domi-

nant. This contradiction implies that condition (b) of the (InIn) property holds at x for

the Subcase 2.2.1.

Subcase 2.2.2: There is no j0 such that fj0g 2 Cmx+1: By outcome monotonicity of the
coalition system, there is no j0 such that fj0g 2 Cmx : Hence, I1x+1 = I2x+1. Since condition
(a) of the (InIn) property holds at x+1, I1x+1 = I

2
x+1 6= ;: De�ne eP1�� � �� ePn � eP � PN

as follows.

i) If i 2 I1x+1; then ePi = fPi 2 P j t(Pi) 2 fx; x+ 1gg:
ii) If i =2 I1x+1; then ePi = fPi 2 P j t(Pi) 2 fx; x+ 1; x+ 2gg:
Let ef be the restriction of f to the set of pro�les in eP. Since f is OSP-implementable,

so is ef . Let e� be an extensive game form that OSP-implements ef . Hence, for every
P 2 eP, there exists �P such that eo(he�(�P )) = ef(P ): For Pi 2 ePi; denote �Pii by �zi where

t(Pi) = z:

Let j be the �rst agent that has to play in e� (i.e., eN (;) = j). By Mackenzie (2018),
we can assume without loss of generality that j has at least two actions available at ;
(i.e.,

��� eA(;)��� � 2); that is,
�zj(;) 6= �z

0

j (;) (12)

for z; z0 2 fx; x+ 1; x+ 2g. We claim that j 2 I2x:
Claim 2 j 2 I2x:
Proof of Claim 2 Assume otherwise. Then, there exists S 2 Cmx such that jSj � 2
and j =2 S: By outcome monotonicity of the coalition system, S 2 Cx+1, and so j =2 I1x+1:
By (12), there exists y 2 fx; x+ 1g such that �yj (;) 6= �x+2j (;):
For each i 2 S and history h in e� such that eN (h) = i, de�ne

e�i(h) = ( �x+1i (h) if �yj (;) � h
�xi (h) if �x+2j (;) � h:

Since e� induces ef ,
eo(he�(�x+1�S�fjg; e�S; �x+2j )) = eo(he�(�x+1�S�fjg; �

x
S; �

x+2
j )) = ef(P x+1�S�fjg; P

x
S ; P

x+2
j ) = x

and

eo(he�(�x+1�S�fjg; e�S; �yj )) = eo(he�(�x+1�S�fjg; �
x+1
S ; �yj )) =

ef(P x+1�S�fjg; P
x+1
S ; P yj ) = x+ 1:
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By single-peakedness, (x+ 1)P x+2j x holds, which implies that �x+2j is not weakly domi-

nant. A contradiction. �
To proceed with the proof for this Subcase 2.2.2, assume that condition (b) of the

(InIn) property does not hold at x. Since by Claim 1, j 2 I2x;

I1x+1 [ fjg =2 Cmx+1: (13)

We distinguish between two cases, depending on whether or not j belongs to I1x+1:

(2.i) j 2 I1x+1: By (13), I1x+1 =2 Cmx+1: By (12), �xj (;) 6= �x+1j (;):
For each i =2 I1x+1 and history h in e� such that N (h) = i, de�ne

e�i(h) = ( �x+2i (h) if �xj (;) � h
�x+1i (h) if �x+1j (;) � h:

Since e� induces ef and I1x+1 =2 Cmx+1,
eo(he�((e��I1x+1�fjg; �x+1I1x+1

; �xj )) = eo(he�((�x+2�I1x+1�fjg
; �x+1

I1x+1
; �xj )) =

ef(P x+2�I1x+1�fjg
; P x+1

I1x+1
; P xj ) = x+2

and

eo(he�(e��I1x+1�fjg; �x+1I1x+1
; �x+1j )) = eo(he�(�x+1�I1x+1�fjg

; �x+1
I1x+1

; �x+1j )) = ef(P x+11 ; : : : ; P x+1n ) = x+1:

By single-peakedness, (x+ 1)P xj (x+ 2) holds, which implies that �
x
j is not weakly dom-

inant. A contradiction.

(2.ii) j =2 I1x+1: By (12), there exists y 2 fx+ 1; x+ 2g such that �xj (;) 6= �
y
j (;):

For every i =2 I1x+1 [ fjg and history h such that eN (h) = i, de�ne
e�i(h) = ( �x+2i (h) if �xj (;) � h

�x+1i (h) if �yj (;) � h:

Since e� induces ef and (13) holds,
eo(he�(e��I1x+1�fjg; �x+1I1x+1

; �xj )) = eo(he�(�x+2�I1x+1�fjg
; �x+1

I1x+1
; �xj )) =

ef(P x+2�I1x+1�fjg
; P x+1

I1x+1
; P xj ) = x+2

and

eo(he�(e��I1x+1�fjg; �x+1I1x+1
; �yj )) = eo(he�(�x+1�I1x+1�fjg

; �x+1
I1x+1

; �yj )) =
ef(P x+1�I1x+1�fjg

; P x+1
I1x+1

; P yj ) = x+1:

By single-peakedness, (x+ 1)P xj (x+ 2) holds, which implies that �
x
j is not weakly dom-

inant.

Thus, condition (b) of the (InIn) property holds at x. �
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