
This is the **published version** of the review article:

Andrés Rodríguez, Laura; Borràs, Xavier; Feliu-Soler, Albert; [et al.]. «Peripheral immune aberrations in fibromyalgia : a systematic review, meta-analysis and meta-regression». *Brain, Behavior, and Immunity*, Vol. 87 (2020), p. 881-889. 9 pàg. DOI 10.1016/j.bbi.2019.12.020

This version is available at <https://ddd.uab.cat/record/289828>

under the terms of the IN COPYRIGHT license

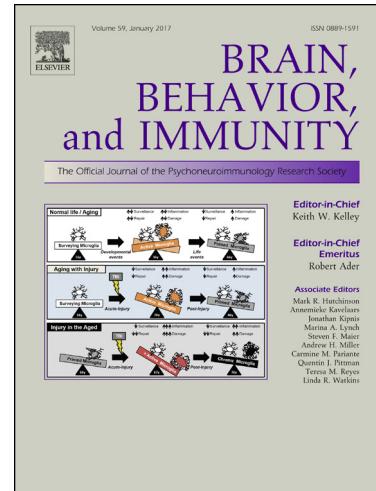
This is the **published version** of the review article:

Andrés Rodríguez, Laura; Borràs, Xavier; Feliu-Soler, Albert; [et al.]. «Peripheral immune aberrations in fibromyalgia : a systematic review, meta-analysis and meta-regression». *Brain, Behavior, and Immunity*, Vol. 87 (2020), p. 881-889. 9 pàg. DOI 10.1016/j.bbi.2019.12.020

This version is available at <https://ddd.uab.cat/record/289828>

under the terms of the IN COPYRIGHT license

Journal Pre-proofs


Peripheral immune aberrations in fibromyalgia: A systematic review, meta-analysis and meta-regression

Laura Andrés-Rodríguez, Xavier Borràs, Albert Feliu-Soler, Adrián Pérez-Aranda, Natalia Angarita-Osorio, Patrícia Moreno-Peral, Jesús Montero-Marin, Javier García-Campayo, Andre F. Carvalho, Michael Maes, Juan V. Luciano

PII: S0889-1591(19)31274-7

DOI: <https://doi.org/10.1016/j.bbi.2019.12.020>

Reference: YBRBI 3937

To appear in: *Brain, Behavior, and Immunity*

Received Date: 4 October 2019

Revised Date: 4 December 2019

Accepted Date: 26 December 2019

Please cite this article as: Andrés-Rodríguez, L., Borràs, X., Feliu-Soler, A., Pérez-Aranda, A., Angarita-Osorio, N., Moreno-Peral, P., Montero-Marin, J., García-Campayo, J., Carvalho, A.F., Maes, M., Luciano, J.V., Peripheral immune aberrations in fibromyalgia: A systematic review, meta-analysis and meta-regression, *Brain, Behavior, and Immunity* (2019), doi: <https://doi.org/10.1016/j.bbi.2019.12.020>

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 **Peripheral immune aberrations in fibromyalgia: A systematic review, meta-analysis and**
2 **meta-regression**

3 Laura Andrés-Rodríguez^{1,2,3,4†}, Xavier Borràs^{1,4†}, Albert Feliu-Soler^{1,2,3,4*}, Adrián Pérez-
4 Aranda^{1,2,3*}, Natalia Angarita-Osorio^{1,2,4}, Patrícia Moreno-Peral^{3,5}, Jesús Montero-Marín³,
5 Javier García-Campayo^{3,6}, Andre F. Carvalho^{7,8}, Michael Maes^{9*}, Juan V. Luciano^{1,2,3*}

6 ¹ Group of Psychological Research in Fibromyalgia & Chronic Pain (AGORA). Institut de
7 Recerca Sant Joan de Déu. C/ Santa Rosa 39-57, 08950. Esplugues de Llobregat, Spain.

8 ² Teaching, Research & Innovation Unit, Parc Sanitari Sant Joan de Déu. C/ Dr. Antoni
9 Pujadas 42, 08830. Sant Boi de Llobregat, Spain.

10 ³ Primary Care Prevention and Health Promotion Research Network, RedIAPP. Madrid,
11 Spain.

12 ⁴ Faculty of Psychology, Universitat Autònoma de Barcelona. Bellaterra (Cerdanyola del
13 Vallès), Barcelona, Spain.

14 ⁵Instituto de Investigación Biomédica de Málaga (IBIMA), Distrito Sanitario Málaga-
15 Guadalhorce. Málaga, Spain.

16 ⁶Department of Psychiatry, Miguel Servet Hospital, Aragon Institute of Health Sciences
17 (I+CS). Zaragoza, Spain.

18 ⁷Department of Psychiatry, University of Toronto, Toronto, ON, Canada.

19 ⁸Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.

20 ⁹Department of Psychiatry, Chulalongkorn University. Bangkok, Thailand.

21

22 **Funding**

23 The study has been funded partly by the Instituto de Salud Carlos III (ISCIII) of the Ministry
24 of Economy and Competitiveness (Spain) through the Network for Prevention and Health
25 Promotion in Primary Care (RD16/0007/0005 & RD16/0007/0012), by a grant for research

26 projects on health from ISCIII (PI15/00383) cofinanced with European Union ERDF funds.
27 The first and fourth listed authors have a FI predoctoral contract awarded by the Agency for
28 Management of University and Research Grants (AGAUR; 2018; FI_B00783 and 2017;
29 FI_B00754 respectively). The third listed author has a “Sara Borrell” research contract from
30 the ISCIII (CD16/00147). The last listed author (JVL) has a “Miguel Servet” research
31 contract from the ISCIII (CP14/00087). This study was awarded both with the Grant PSSJD
32 & FSJD 2016 and with the I Premio del Instituto esMindfulness 2016
33 (www.esmindfulness.com), to whom we are truly thankful.

34 **Conflict of Interest:** The authors declare that they have no conflict of interest.

35 **Word count:** 4916

36 [†] Both authors contributed equally to this paper and should be considered as co-first authors.

37 * Corresponding author.

38 Teaching, Research & Innovation Unit, Parc Sanitari Sant Joan de Déu.

39 C/ Dr. Antoni Pujadas 42, 08830, St. Boi de Llobregat, Spain.

40 Tel: +34 936406350 (Ext. 1-2540).

41 E-mail: a.feliu@pssjd.org (Albert Feliu-Soler), ap.aranda@pssjf.org (Adrián Pérez-Aranda),

42 dr.michaelmaes@hotmail.com (Michael Maes) jvluciano@pssjd.org (Juan V Luciano)

43

44 **Abstract**

45 The objective was to identify immune alterations in patients with fibromyalgia syndrome
46 (FMS) compared to healthy controls (HC) using meta-analysis and meta-regression. Six
47 electronic databases were searched for suitable original articles investigating immune
48 biomarkers in FMS in comparison to HC. We extracted outcomes and variables of interest,
49 such as mean and SD of peripheral blood immune biomarkers, age or sex. A random-effects
50 model with restricted maximum-likelihood estimator was used to compute effect sizes
51 (standardized mean difference and 95% CI, Hedges' g) and meta-analysis, group meta-
52 analysis and meta-regressions were conducted. Forty-three papers were included in this
53 systematic review, of which 29 were suitable for meta-analysis. Interleukin (IL)-6 ($g=0.36$
54 (0.09-0.63); $I^2=85.94$; $p=0.01$), IL-4 ($g=0.50$ (0.03-0.98); $I^2=81.87$; $p=0.04$), and IL-17A
55 ($g=0.53$ (0.00-1.06); $I^2=87.15$; $p=0.05$), were significantly higher in FMS compared to HC
56 while also combinations of cytokines into relevant phenotypes were significantly upregulated
57 including M1 macrophage ($g=0.23$ (0.03-0.43); $I^2=77.62$; $p=0.02$), and immune-regulatory
58 ($g=0.40$ (0.09-0.72); $I^2=84.81$; $p=0.01$) phenotypes. Heterogeneity levels were very high and
59 subgroup and meta-regression analyses showed that many covariates explained part of the
60 heterogeneity including medication washout, sex, time of blood sampling and exclusion of
61 patients with major depressive disorder. In conclusion, FMS is accompanied by a disbalance
62 between upregulated pro-inflammatory (M1 and Th-17) and immune-regulatory cytokines
63 although effect sizes are small-to-moderate. Based on our results we provide specific
64 methodological suggestions for future research, which should assess Th-1, Th-17,
65 chemokines, and Th-2 phenotypes while controlling for possible confounding variables
66 specified in this study.

67 **Key words:** Fibromyalgia, Cytokines, Chemokines, Immune biomarkers, Meta-analysis

69 **1. Introduction**

70 Fibromyalgia syndrome (FMS) is a disabling condition mainly characterized by
71 chronic widespread musculoskeletal pain. Other common symptoms are stiffness, fatigue,
72 sleep problems, mood disturbances, distress, and perceived cognitive impairment, commonly
73 known as “fibrofog” (Feliu-Soler et al., 2018; Häuser et al., 2015; Wolfe et al., 2016).
74 Although the pathophysiology of FMS is unclear, it is commonly classified as a Central
75 Sensitization Syndrome, defined as nociception-driven amplification of neural signalling
76 within the central nervous system leading to pain hypersensitivity (Bäckryd et al., 2017;
77 Woolf, 2011).

78 There is an increasing interest in characterizing the biological hallmarks of FMS,
79 mostly focusing on immune biomarkers of cell-mediated immunity (CMI), which includes
80 the interactions between inflammatory M1 macrophage (involving interleukin (IL)-6 and IL-
81 1 β) and T helper (Th)-1 (including IL-2 or interferon (IFN)- γ) cytokines. Other studies also
82 measured CMI pathways coupled with increased levels of acute-phase reactants including
83 high-sensitivity C-reactive protein (hs-CRP), and chemokines including CXCL-8, CXCL-11
84 or CX3CL1), which all together may be conceptualized as the immune-inflammatory
85 response system (IRS). On the other hand, the compensatory immune-regulatory system
86 (CIRS) has been of special interest since T-regulatory (T-reg) and Th-2 cells produce anti-
87 inflammatory cytokines including IL-10 and IL-4, which may attenuate the IRS through
88 multiple feedback signals (Maes and Carvalho, 2018). Importantly, M1 and Th-1 related
89 cytokines play a critical role in the generation of both acute and chronic pain (Feinberg et al.,
90 2017; Sluka and Clauw, 2016). As such, one of the hypothesis posits that low-grade chronic
91 inflammation may play an important role in the pathophysiology and maintenance of FMS at
92 least in a subgroup of patients (Gür et al., 2002). Nevertheless, FMS research focused on a
93 limited number of IRS/CIRS biomarkers including IL-1 β , IL-6, IL-10, CXCL-8 and tumor

94 necrosis factor (TNF)- α and did not include other major players including soluble IL-6
95 receptor (sIL-6R) and sgp130 levels to assess IL-6 trans-signalling, excitotoxic tryptophan
96 catabolites, IL-5 and CCL-11. Further explanation of the peripheral immune phenotypes can
97 be found in the electronic supplementary files (ESF1 Table 1).

98 Furthermore, FMS as currently defined is rather unspecific as many pain and fatigue-
99 like symptoms with unknown origin (Häuser et al., 2017) may be classified as FMS, causing
100 heterogeneity when characterizing the possible immune features of FMS. In addition, a
101 major flaw of immune research in FMS is the lack of control for analytical and biological
102 variability in immune markers and the high heterogeneity in methodological designs. Immune
103 biomarkers are affected by a large number of confounding variables such as comorbid
104 pathologies or infections, treatments modulating immune functions including use of
105 antidepressants (ADs) (Hannestad et al., 2011), life-style behaviours including diet, physical
106 exercise, smoking and intake of antioxidants including vitamin D (Kiecolt-Glaser and Glaser,
107 1988; von Känel et al., 2014), age and sex (Kiecolt-Glaser and Glaser, 1988), body mass
108 index (BMI) (Feinberg et al., 2017), phase of the menstrual cycle (O'Brien et al., 2007),
109 emotional status (Köhler et al., 2017) and seasonal and diurnal variation (Nilsonne et al.,
110 2016). Most published studies in FMS did not use a standardized methodology to control for
111 the above-mentioned variables when analysing the results. Published systematic reviews and
112 meta-analysis on this topic concluded that immune research in FMS needs substantial
113 improvement by controlling for those confounders (Rodriguez-Pinto et al., 2014; Üçeyler et
114 al., 2011). A recent narrative review underscored the large variability in results but also
115 concluded that cytokines and chemokines emerge as possible biomarkers for FMS
116 (Rodriguez-Pinto et al., 2014).

117 Hence, the main objectives of this study were a) to systematically review and meta-
118 analyse evidence on IRS/CIRS biomarkers distribution in FMS patients in comparison with

119 healthy controls (HC); and b) to assess the degree of between-studies heterogeneity and
120 delineate possible confounders that may impact heterogeneity.

121 **2. Materials and Methods**

122 The review protocol was registered at PROSPERO in December 18, 2017 (registration
123 number: CRD42017080290). The review protocol was registered at PROSPERO in
124 December 18, 2017 (registration number: CRD42017080290). Few changes have been made
125 since the publication of the protocol, as for example the incorporation of two new expert co-
126 authors and the resignation of one of the original authors. We also modified the inclusion
127 criteria, since we were able to include papers written in French and German. On the other
128 hand, we did not use the NOS scale to evaluate risk of bias, and instead created our own scale
129 (see below). Finally, we were able to conduct meta-regression analyses, which were not
130 planned in the protocol. This systematic review and meta-analysis complied with the
131 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement
132 (Liberati et al., 2009).

133 *2.1 Literature search.*

134 Searches were conducted in PubMed, EMBASE, PsycINFO, Scopus, Cochrane and
135 Web of Science using free text and thesaurus alone and in combination. The main search
136 terms were “fibromyalgia”, “inflamm*”, “immun*” and the specific names (and acronyms)
137 of the IRS/CIRS markers. The following search string for PubMed was used and adapted to
138 other database formats: ((inflamm* OR immun*) AND (cytokine OR chemokine OR IL-6
139 OR IL-1 β OR interleukin OR (C-Reactive Protein OR CRP) OR (tumor necrosis factor OR
140 TNF) OR (interferon OR IFN) OR (transforming growth factor OR TGF) OR lymphocyte
141 OR Macrophage OR Microglia OR neutrophil OR east cells OR Eosinophil OR Basophil OR
142 monocyte OR leukocyte* OR dendritic) AND (fibromyalgia)), with filters activated:

143 Publication date from 1990/01/01 to 2017/12/31 (search updated in March 25th 2019),

144 Humans (see **ESF1 Table 2**).

145 We restricted the search to papers written in English, Spanish, French or German and

146 examined the reference lists and conducted a reverse citation search of included papers.

147 Clinical experts in both FMS and immune markers of the review team were also asked to help

148 uncover any additional literature that was not identified from the previously specified

149 searches.

150 Inclusion criteria were: cross-sectional studies and baseline data from longitudinal studies,

151 with a HC group, in English, Spanish, French or German; diagnosis of FMS using ACR 1990

152 or 2010 criteria, adults (≥ 18 years); peripheral immune biomarkers (both in serum or

153 plasma). Studies that examined the effects of interventions on immune biomarker levels were

154 included only when the baseline data were available, or the authors provided the data. We

155 excluded studies, which examined samples other than serum and plasma including stimulated

156 whole blood or PBMCs. We also excluded studies with comorbid conditions other than Major

157 Depressive Disorder (MDD) and those that did not include a HC group. We only included

158 studies in which the healthy control group was well-defined by the absence of any significant

159 disease including chronic pain. Reviews, systematic reviews, and meta-analysis papers, along

160 with grey literature were only used to check the reference list in order to be sure that no study

161 was left out.

162 *2.2 Study selection.*

163 The studies were initially screened on the basis of their titles and abstracts by two authors

164 (LA-R and AP-A) and when there was a disagreement, a third author (AF-S) helped to reach

165 a consensus. Duplications were removed.

166 In a subsequent phase, the full-text of the resulting list of papers were examined to

167 check study eligibility. Again, extraction of data from full-length papers was independently

168 carried out by two researchers (LA-R and AP-A), being key information from each study
169 entered into a predefined form.

170 *2.3 Data abstraction and Study Coding.*

171 The first author (LA-R) summarized all information on the studies in a
172 Comprehensive Meta-Analysis (CMA V3) spreadsheet while the fourth author (AP-A)
173 checked the extracted data. The following information was collected from each included
174 study: sample size in the study groups, mean and SD of biomarkers' levels, % of women, and
175 mean age. We registered year of publication, diagnostic criteria, duration of illness (in years),
176 and severity of FMS (Fibromyalgia Impact Questionnaire, or Visual Analogue Scale). With
177 regard to the immune biomarkers, we registered the blood extraction time, whether plasma or
178 serum was employed as well as the type of assay used to quantify biomarker levels.
179 Additionally, we registered other important variables when available including mean BMI,
180 exclusion of MDD, medication washout, and latitude of the country where the study was
181 conducted.

182 *2.4 Methodological quality of the included studies and Immune Confounders Scale
183 (ICS).*

184 We developed a checklist (see **ESF1 Table 3**) to evaluate the methodological quality
185 of studies reporting IRS/CIRS in FMS. In order to obtain a quality score, two authors (LA-R
186 and XB) independently completed the checklist, while a third reviewer was consulted (AF-S)
187 in case of disagreement. The checklist comprises two parts: the first part aims to assess
188 methodological quality of immune-related studies, considering the more critical aspects
189 including sample size, matched groups, reporting detection limit, etc. A score is calculated to
190 estimate the methodological quality which may vary from 0 to 10, with higher scores
191 indicating better methodological quality. The second part includes a red-points scale
192 penalizing the disregard of critical confounders, which are known to induce a considerable

193 heterogeneity in immune-related studies. Here total scores may range from 0 to 29, with 0
194 indicating that all the confounder variables were taken into account (e.g matching the study
195 groups, met all exclusion criteria or statistically adjusted for background variables) and 29
196 when there was no control at all.

197 *2.5 Data analyses*

198 We used the CMA V3 software. A meta-analysis was executed whenever values of
199 immune markers were available in three or more studies. When data of immune markers were
200 available in less than three studies, they were still included in the immune phenotype
201 analysis. Since we expected differences of measurement methods between the studies, we
202 estimated standardized mean difference (SMD) and 95% CI (Hedges's g) for each immune
203 mediator, which provides an unbiased effect size (ES) adjusted for small sample sizes.
204 Studies were considered outliers and removed when $SD > 4.0$ (Sephton and Spiegel, 2003).
205 The significance was set at $p < 0.05$ (two sided tests), the cut-off points for valuing the ES
206 were 0.2 (small), 0.5 (moderate) and 0.8 (large) (Cohen, 1988). We selected the random-
207 effects model with restricted maximum-likelihood for the study under the assumption that
208 population's characteristics in the different studies may differ from each other. Egger's linear
209 regression test was used to detect publication bias. This test probes for asymmetry of the
210 funnel plot at $p < 0.10$ showing significant asymmetry and therefore publication bias. When
211 Egger's linear regression test presented a significant asymmetry, the Duval and Tweedie's
212 trim-and-fill procedure was used to estimate the ES adjusting for publication bias.
213 Heterogeneity between studies was assessed using the Cochran Q test, and I^2 statistic to
214 indicate the percentage of total variation across several studies due to heterogeneity and it is
215 considered high when $\geq 50\%$ (Patsopoulos et al., 2009). Potential sources of heterogeneity
216 across studies for each ES estimate were explored when at least 10 studies reported data of
217 the same variable, using either subgroup meta-analysis (with a minimum of 3 studies per sub-

218 group) or random-effects meta-regression analyses (Köhler et al., 2017) while the group-by
219 analyses were checked using within- and between-group heterogeneity results. Moreover, all
220 meta-analysis were examined using the leave-one-out sensitivity analysis.

221 The following variables were considered in the group meta-analysis: exclusion of
222 comorbid MDD (yes/no), medication washout (yes/no), time of blood sample (morning vs.
223 not reported), sex (100% woman vs. mixed samples), total scores on the two sub-scales of the
224 ICS dichotomized using the median-split method, age differences (FMS minus HC,
225 dichotomized using less vs. more than one year), ethnicity, type of assay (ELISA vs. Others),
226 use of serum or plasma, latitude dichotomized using 40°, and year of publication
227 dichotomized using 2010 as threshold (the year that the ACR revised the diagnostic criteria
228 for FMS). In the meta-regression, we used % of females in the whole sample, year of
229 publication and total scores of the two sub-scales of the ICS as covariates (continuous
230 regressors). The confounder variables used in our study were selected by our immune experts
231 and comprised those variables that are known to affect the immune status and those that were
232 reported in a sufficient number of papers to perform group meta-analysis or meta-regression.

233 Unfortunately, there were not enough studies reporting BMI, severity of illness, years
234 with FMS, diet, physical exercise, smoking, use of vitamin D or antioxidant supplements,
235 menstrual cycle, anxiety or depression to evaluate the effect of these variables.

236 Moreover, immune biomarkers were grouped (Maes and Carvalho, 2018) in order to
237 evaluate the following phenotypes: M1 (IL-6, s-IL-6R, TNF- α , IL-1 β , IL-1RA, MCP-1 and
238 MIP-1), Th-1 (IL-2, IL-12, sCD8, IFN- γ), CMI (M1+Th-1), IRS (CMI, Chemokines, IL-7,
239 IL-15, IL-17A, IL-18, IL-31, IL-33, HGMB1 and hs-CRP) and CIRS (IL-4, IL-5, IL-13,
240 sTNF- α R1, sTNF- α R2, IL-1RA, sgp130 and IL-10).

241 *2.6 Patient and public involvement*

242 No public or patient representatives were directly involved in the draft or process of
243 this review.

244 **3. Results**

245 *3.1 Selection and inclusion of studies*

246 The initial literature search on the electronic databases yielded 1,520 potentially
247 relevant studies whereas 6 additional papers were identified through other sources (751
248 abstracts in total, after removal of duplicates). Seventeen out of the 60 full-text articles were
249 excluded because they did not meet the inclusion criteria. Therefore, 43 studies complied
250 with the inclusion criteria and were included in the systematic review involving 2 randomized
251 control trials, 1 non-randomized control trial, 1 cohort study and 37 case-control studies. No
252 unpublished relevant studies were found. Of these 43 studies that matched our inclusion
253 criteria we were able to obtain data from 29 studies to conduct the meta-analysis. One study
254 was excluded given that the meta-analysis results for TNF- α (the only assessed immune
255 biomarker in that study) were considered to be an outlier ($> 4SD$) (Cordero et al., 2013) (see
256 **Figure 1**). Nine articles could not be included because data were not provided upon request,
257 and 4 because they did not have files of the requested data anymore (see **ESF1 Table 3**).

258 *Insert Figure 1 around here*

259 *3.2 Characteristics of the included studies in the systematic review*

260 The sample sizes of the study groups ranged from 16 to 250 participants. The
261 included studies were conducted in 12 different countries: Spain (n=10), USA (n=8), Turkey
262 (n=6), Germany (n=5), Brazil (n=4), Sweden (n=3), Italy (n=2), Belgium (n=1), Mexico
263 (n=1), India (n=1), Korea (n=1) and Israel (n=1). We found that 74.4% of the studies
264 included in our systematic review had matched participants by age and gender, and that
265 76.7% of them controlled the results for potential confounders (e.g. age, sex, BMI). We found
266 that 58.1% of the studies specified the time of sample collection, 30.2% specified that

267 participants were free of ADs while 74.4% reported that participants were free of medication.
268 41.9% of the papers reported durations of illness and up to 97.7% of the studies reported the
269 name of the manufacturer of the test kits used to assay the biomarkers (but only around 35%
270 reported how they handled data under the detection limit). All studies reported the blood
271 fraction on which the assays were conducted. Further information of the systematically
272 reviewed characteristics of individual studies is detailed in **ESF1 Table 4**. Applying the ICS
273 we found that 16.3% of the studies included in this systematic review presented low
274 methodological quality (0-4), 62.8% of them have moderate methodological quality (5-7),
275 and only 20.9% had a high methodological quality (8-10). Additionally, 79.1% of the papers
276 did not assess or control for at least 10 of the 20 well established confounder variables. These
277 results are available upon request.

278 *3.3 Meta-analysis*

279 Analyses were performed with and without outliers, which were detected in two instances. In
280 the case of IL-10, we removed Malhorta et al. (2012) because the g value was -13.56
281 indicating a clear bias in the HC direction. In the case of TNF- α , we removed Cordero et al.
282 (2013) because the g value was 8.59, which was in the FMS direction.

283 *3.3.1 Individual Immune biomarkers*

284 IL-6, IL-4 and IL-17A (**Table 1, Figure 2**) levels were higher in FMS patients than in
285 HC, with small to moderate effect sizes (gs ranging from 0.36 to 0.53). Marginally significant
286 differences ($p < 0.10$) were found for sIL-1RA, CXCL-11 and hs-CRP in the same direction.
287 Peripheral levels of IL-1 β , IL-2, CXCL-8, IL-10, IFN- γ , MCP-1, MIP-1 β and TNF- α were
288 measured in at least 3 studies and, therefore, meta-analysed, but we did not find significant
289 differences between FMS and HC (see **ESF2 Figures 1-10**). All analysis had significant
290 heterogeneity ($I^2 > 50\%$).

291 *Insert figure 2 around here*

3.3.2 Immune phenotypes

293 The immune activation scores M1 and CIRS were significantly higher in FMS
294 patients than in HC, with medium effect size in both cases ($g=0.31$ and $g=0.40$, respectively).
295 No significant differences were found for Th-1, CMI or IRS (see **Table 1**). Noteworthy, we
296 removed two studies (Cordero et al., 2013; Malhotra et al., 2012) from the meta-analysis
297 reporting on IL-10, TNF- α , M1, CMI and CIRS because these data were considered to
298 constitute outliers.

299

300 *Insert table 1 around here*

3.3.3 Sensitivity analysis

In sensitivity analysis, the exclusion of some individual studies from the analysis did alter the statistical significance (Hedges's g). As such, CXCL-8 was significantly higher in FMS patients ($g=0.33$, 0.05 to 0.61, $p=0.02$) when one study was removed (Ribeiro et al., 2018); TNF- α ($g=0.30$, 0.07 to 0.53, $p=0.01$) was higher in FMS patients after removing another study (Hernandez et al., 2010) and hs-CRP ($g=0.31$, 0.05 to 0.57, $p=0.02$) after removing one study (Ataoğlu et al., 2018). Moreover, removing one study (Hernandez et al., 2010) from the IRS composite score changed the ES from non-significant to significantly higher in FMS patients ($g=0.20$, 0.04 to 0.36, $p=0.02$). Removing one study did not change the significance levels for IL-1 β , IL-1RA, IL-2, IL-4, IL-17A, CXCL-11, IL-10, INF- γ , MCP-1, MIP-1 β , M1, Th-1, CMI or IRS.

3.3.4 Publication bias and heterogeneity

Publication bias was assessed with Egger's linear regression test (**Table 2**), which revealed that none of the immune biomarkers presented significant publication bias. Nevertheless, heterogeneity was very high $I^2 > 75\%$ or high $I^2 > 50\%$ for all biomarkers. Egger's linear regression test revealed a potential publication bias for M1, and when using

317 Duval and Tweedie's trim and fill the imputed point estimate is 0.54 with 95% CI (0.29 to
318 0.80) for M1 to the right (favours FM).

319 *Insert table 2 around here*

320 *3.4 Subgroup analyses*

321 IL-6 levels were higher in FMS when considering the studies which a) excluded
322 patients with MDD, b) reported that participants did not go through a medication washout, c)
323 did not report the time of blood extraction, d) included study samples consisting of both sexes
324 (**Table 3**), e) considered study samples with more than one year of difference in age between
325 the study groups; and f) assessed the biomarkers with other assays than ELISAs (see **ESF1**
326 **Table 5**). CXCL-8 was higher in FMS patients when the participants did not have a
327 medication washout and when the sample was mixed (**Table 3**).

328 *Insert table 3 around here*

329 Higher levels of M1 macrophage cytokines were found in FMS in studies reporting
330 that patients with MDD were excluded to participate. Higher levels of M1, CMI and IRS
331 phenotypes were found in FMS in studies reporting on medication washout or that the study
332 groups comprised both men and woman. Higher levels of the M1 macrophage phenotype
333 were found in FMS in studies that did not report the time of blood extraction while increased
334 CIRS levels were found in studies which sampled blood in the morning hours.

335 Studies with a high number of red points in the checklist (>13.5) reported higher
336 CIRS levels in the FMS group, whereas those with a lower score (<13.5) reported higher
337 levels of M1 phenotype in the FMS group. CMI levels were higher in FMS patients when
338 blood samples were analysed with other procedures than ELISA, but CIRS levels were found
339 to be higher in FMS patients when the analyses where conducted with an ELISA procedure.
340 M1 levels were higher in FMS patients when this group was more than one year older than

341 HC, but the opposite was found for CMI, which levels were higher in FMS when there were
342 no differences in age between groups (see **ESF1 Table 6**). Subgroups of IL-10 and TNF- α
343 were not applicable because studies were not equally distributed. Ethnicity and use of plasma
344 versus serum did not have any significant effects on the immune biomarkers.

345 Post-hoc analyses were also performed using subgroups based on latitude (split in
346 countries with higher vs lower of 40°) and the year when the study was conducted (before or
347 after 2010) as explanatory variables. These analyses showed that IL-6, M1, CMI, CIRS levels
348 were higher in studies performed in countries with lower latitude (<40°) and that IL-6 and M1
349 levels were higher in FMS in studies published after 2010 while CIRS levels were higher in
350 FMS patients in studies published before 2010 (see **Tables ES5 and ES6**).

351 *3.5 Meta-regression*

352 Meta-regression analyses showed that a significant part of the variance in the
353 heterogeneity in IL-6 (11%), CXCL-8 (22%), IL-10 (38%), M1 (51%), CMI (41%), IRS
354 (29%) and CIRS (16%) could be explained by confounders including sex, methodological
355 quality of the studies and year of publication (**Table 4**).

356 *Insert table 4 around here*

357 **4. Discussion**

358 To our knowledge this is the largest systematic review, meta-analysis and meta-
359 regression of immune biomarkers in FMS. Previous meta-analyses on immune biomarkers in
360 FMS (Üçeyler et al., 2011) found that IL-6 was the only biomarker that was elevated in
361 plasma in FMS, although these results were based on three studies only. The current more
362 comprehensive meta-analysis provides results on IL-6 in 21 studies and meta-analyses ten
363 more immune biomarkers. In addition, by calculating specific immune phenotypes, as
364 delineated by the novel IRS/CIRS model, we were able to integrate essential but less well
365 studied biomarkers including sIL-6R, CCL-11, IL-12, IL-7, IL-5, and IL-17A.

366 The first major finding of this meta-analysis is that IL-6, IL-17A, and IL-4 are
367 significantly higher in FMS patients compared to HC. Nevertheless, there are no significant
368 between-group differences in the majority of the immune biomarkers including IL-1 β , IL-
369 1RA, IL-2, CXCL-11, IL-10, hs-CRP, IFN- γ , MCP-1 and MIP-1 β . Pro-inflammatory
370 cytokines such as IL-6 or IL-17A are involved in the pathophysiology of pain (Zhang and An,
371 2007). Some authors posited that FMS symptoms may be caused by increased pro-
372 inflammatory cytokine levels and decreased levels of anti-inflammatory cytokines (the
373 inflammatory hypothesis) (Üçeyler et al., 2011; Zhang and An, 2007). However, our study
374 shows that although some pro-inflammatory cytokines are slightly higher in FMS patients,
375 the major anti-inflammatory cytokine IL-10 is not altered while IL-4 is even increased in
376 FMS. IL-4 induces T0 cells to differentiate into immune-regulatory Th-2 cells thereby
377 promoting the release of TGF- β , IL-1ra and IL-10 and suppressing the production of IL-1 β ,
378 IL-6 and TNF- α (Maes and Carvalho, 2018). As such, the slightly increased levels of IL-4 in
379 FMS patients could be explained as a compensatory response to increased levels of IL-6 and
380 IL-17A (Maes and Carvalho, 2018; Pernambuco et al., 2013). Furthermore, IL-6 levels are
381 difficult to interpret without measurements of sIL-6R and sgp130 which would allow to
382 differentiate into pro-inflammatory IL-6 trans-signalling *versus* classical IL-6 signalling,
383 which has homeostatic effects by increasing the production on sIL-1Ra and sTNFRs (Maes
384 and Carvalho, 2018; Pernambuco et al., 2013). Thus, one of the main problems in FMS
385 research is the interpretation of single cytokine assays (e.g. IL-6) while not considering their
386 cytokine receptors, which may activate or suppress their activities (Maes and Carvalho, 2018;
387 Pernambuco et al., 2013). Therefore, in the present study we meta-analysed multiple
388 cytokines that were combined to reflect specific phenotypes, which allow to interpret possible
389 disbalances between the major IRS and CIRS phenotypes (Maes and Carvalho, 2018).

390 The second major finding of this meta-analysis is that M1 macrophage, IRS and CIRS
391 phenotypes are upregulated in patients with FMS as compared to controls. Nevertheless, our
392 results do not reveal an inflammatory signature in FMS, since M1 is only slightly upregulated
393 while there are no significant changes in hs-CRP or the Th-1 phenotype. Additionally, the
394 between-group differences in M1 may be driven by IL-6 as this is the most assessed cytokine.
395 As such, the findings of this meta-analysis do not confirm the “inflammatory hypothesis of
396 FMS”, which proposed that FMS is accompanied by increased M1 and IRS phenotypes and a
397 downregulation of CIRS, Treg and Th-2 phenotypes (Bote et al., 2012; Ernberg et al., 2018;
398 Pernambuco et al., 2013). The data of this meta-analysis indicate mild aberrations in the
399 immune signature pointing toward a disrupted homeostasis with an upregulated M1/IRS and
400 CIRS. IRS/CIRS disbalances are also reported in many neuro-psychiatric illnesses, including
401 MDD or schizophrenia, but in those disorders the IRS and CIRS responses are much more
402 pronounced than in FMS (Khandaker et al., 2015; Köhler et al., 2017; Maes and Carvalho,
403 2018).

404 In accordance with our a priori hypothesis, the results of the current study show a
405 large heterogeneity in all immune biomarkers and immune phenotypes. For example, the use
406 of MDD as an exclusion criterion may impact IL-6 and the M1 phenotype, suggesting that
407 not excluding MDD patients may hamper the interpretation of IL-6 and M1 results in FMS.
408 Moreover, the use of medication washout is another significant covariate which impacts IL-6
409 and CXCL-8 levels, as well as M1, CMI and IRS phenotypes. Thus, not only use of
410 psychotropic drugs (Baumeister et al., 2016; Szałach et al., 2019) but also withdrawal of
411 medication may affect the results. Not surprisingly, sex and age differences affected most
412 biomarkers and immune phenotypes. Furthermore, reporting the time of blood extraction
413 impacted the M1, CMI and IRS phenotypes. Latitude, 1990 versus 2010 ACR criteria, the
414 type of assay used to analyse the biomarkers and our red points scale are other confounding

415 variables that affect the peripheral cytokines/chemokines levels and their phenotypes as well.
416 Latitude may reflect the impact of environmental variables, such as hours of sun per day,
417 pollution exposure or even diet. A plausible explanation for the effect of the 1990 versus
418 2010 ACR criteria is that by 2010 the conceptualization of FMS had evolved whereby the
419 new ACR criteria included symptoms other than pain.

420 All in all, our results show that there are many different sources of variability that can
421 induce heterogeneity in the levels of cytokines and chemokines and their phenotypes. A
422 general conclusion is that not controlling for the confounders examined in our study may
423 generate heterogeneity, which may lead to imprecise or even erroneous conclusions.
424 Interestingly, in this meta-analysis we quantified the most important methodological errors
425 that can induce heterogeneity and found that most studies were not adequately controlled for
426 these background variables.

427 Interestingly, in chronic fatigue syndrome (CFS), which shows a strong comorbidity
428 with FMS, there is evidence of immune activation with increased levels of CRP, and
429 proinflammatory (TNF- α and IL-2) and immune-regulatory (e.g. IL-4) cytokines (Maes et al.,
430 2019; Strawbridge et al., 2019; Yang et al., 2019). Nevertheless, the lack of a validated CFS
431 case definition did not allow to use these immune biomarkers as external validating criteria
432 for CFS (Maes et al., 2019; Yang et al., 2019). As such, there may be important differences in
433 immune-inflammatory pathways between both disorders with signs of IRS and CIRS
434 activation in CFS (Maes et al., 2019; Yang et al., 2019), whereas only minor changes could
435 be established in FMS (this study).

436 The results of this meta-analysis should be discussed with regard to its limitations.
437 First, the above-mentioned methodological differences and large heterogeneity among the
438 studies made it difficult to draw solid conclusions. Although we were able to explain an
439 important part of the heterogeneity in the results among studies, the percentage of

440 unexplained heterogeneity remained high. Other background variables may explain the
441 residual heterogeneity including duration of illness, vitamin supplements, psychological
442 stress, and a history of early trauma (Baumeister et al., 2016; Passos et al., 2015). In addition,
443 some possibly important background variables could not be introduced in the meta-analysis
444 because the number of studies was insufficient to perform the analysis, including the
445 medications that the participants were taking in studies without a washout period (including
446 PRN medications), the exact time of blood extraction, whether the participants had been
447 fasting, substance abuse, smoking, the intake of omega 3 and antioxidant supplements, use of
448 oral contraceptives, sedentarism, and cytokine data management when cytokine values were
449 below the limit of detection. Future research should control for the many intervening
450 variables listed in our comprehensive Immune Confounders Scale (ICS). Secondly, the small
451 number of studies for some biomarkers including CXCL-11 and MIP-1 β (3 studies), IL-4, IL-
452 1ra, and IL-2 (4 studies). Therefore, we were unable to examine sub-group meta-analysis or
453 meta-regressions for those cytokines/chemokines. Third, sensitivity analyses using the leave-
454 one-out method showed that CXCL-8, TNF- α , M1 and CIRS had a significant effect size
455 driven by a small number of studies. Fourth, the studies included herein reported results that
456 were skewed to the assays of M1, CMI and T-reg phenotypes, whereas other phenotypes
457 were underreported, including Th-1, Th-2, and Th-17. Fifth, only peer-reviewed articles were
458 included, leaving out those un-published studies that were out of our knowledge and gray
459 literature.

460 **5. Conclusions**

461 The results of this meta-analysis show that there may be a minor disbalance in the
462 immune system in FMS with slightly upregulated IL-6, IL-4 and IL-17A levels as well as
463 M1, CMI, IRS and CIRS phenotypes. Future research should control for the various
464 background variables described in our study and should focus on a) IRS variables including

465 acute-phase reactants other than hs-CRP, such as haptoglobin, albumin or zinc; b) CIRS
466 biomarkers including IL-4, IL-13, IL-5, and the T-reg phenotype; and c) classical IL-6
467 signalling versus IL-6 trans-signalling by measuring levels of IL-6 together with sIL-6R and
468 sgp130 (Maes and Carvalho, 2018). Finally, a few larger-scale studies should examine a
469 panel of 15-20 cytokines that would allow to estimate M1, Th-1, Th-2, Th-17, and T-reg
470 phenotypes in the same studies.

471

472

473 **References**

474 Ataoğlu, S., Ataoglu, S., Ankarali, H., Samancı, R., Ozsahin, M., Admis, O., 2018. The
475 Relations between Serum Leptin Level with Disease Activity and Inflammatory Markers
476 in Fibromyalgia Patients. *North. Clin. Istanbul* 5, 102–108.
477 <https://doi.org/10.14744/nci.2017.31644>

478 Bäckryd, E., Tanum, L., Lind, A.-L., Larsson, A., Gordh, T., 2017. Evidence of both
479 systemic inflammation and neuroinflammation in fibromyalgia patients, as assessed by a
480 multiplex protein panel applied to the cerebrospinal fluid and to plasma. *J. Pain Res.*
481 Volume 10, 515–525. <https://doi.org/10.2147/JPR.S128508>

482 Baumeister, D., Akhtar, R., Ciufolini, S., Pariante, C.M., Mondelli, V., 2016. Childhood
483 trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein,
484 interleukin-6 and tumour necrosis factor- α . *Mol. Psychiatry* 21, 642–649.
485 <https://doi.org/10.1038/mp.2015.67>

486 Baumeister, David, Ciufolini, S., Mondelli, V., 2016. Effects of psychotropic drugs on
487 inflammation: consequence or mediator of therapeutic effects in psychiatric treatment?
488 *Psychopharmacology (Berl)*. 233, 1575–1589. <https://doi.org/10.1007/s00213-015-4044->

490 Bote, M.E., Garca, J.J., Hinchado, M.D., Ortega, E., 2012. Inflammatory/stress feedback
491 dysregulation in women with fibromyalgia. *Neuroimmunomodulation* 19, 343–351.
492 <https://doi.org/10.1159/000341664>

493 Cohen, J., 1988. Statistical power analysis for the behavioral sciences, 2nd ed. Hillsdale:
494 Lawrence Erlbaum Associates.

495 Cordero, M.D., Diaz-Parrado, E., Carrion, A.M., Alfonsi, S., Sanchez-Alcazar, J.A., Bullon,
496 P., Battino, M., de Miguel, M., 2013. Is inflammation a mitochondrial dysfunction-
497 dependent event in fibromyalgia? *Antioxid. Redox Signal.* 18, 800–807.
498 <https://doi.org/10.1089/ars.2012.4892>

499 Ernberg, M., Christidis, N., Ghafouri, B., Bileviciute-Ljungar, I., Lofgren, M., Bjersing, J.,
500 Palstam, A., Larsson, A., Mannerkorpi, K., Gerdle, B., Kosek, E., 2018. Plasma
501 Cytokine Levels in Fibromyalgia and Their Response to 15 Weeks of Progressive
502 Resistance Exercise or Relaxation Therapy. *Mediators Inflamm.*
503 <https://doi.org/10.1155/2018/3985154>

504 Feinberg, T., Sambamoorthi, U., Lilly, C., Innes, K.K., 2017. Potential Mediators between
505 Fibromyalgia and C-Reactive protein: Results from a Large U.S. Community Survey.
506 *BMC Musculoskelet. Disord.* 18, 294. <https://doi.org/10.1186/s12891-017-1641-y>

507 Feliu-Soler, A., Pérez-Aranda, A., Andrés-Rodríguez, L., Butjosa, A., Díaz, N.S., Trujols, J.,
508 Núñez, C., Stephan-Otto, C., Rozadilla-Sacanell, A., Serrano-Blanco, A., Kratz, A.L.,
509 Luciano, J. V., 2018. Digging into the construct of fibrofog: Psychometric properties of
510 the Spanish version of the Multidimensional Inventory of Subjective Cognitive
511 Impairment in patients with fibromyalgia. *J. Appl. Biobehav. Res.* e12134.
512 <https://doi.org/10.1111/jabr.12134>

513 Gür, A., Karakoç, M., Nas, K., Remzi, Cevik, Denil, A., Saraç, J., 2002. Cytokines and
514 Depression in Cases with Fibromyalgia.

515 Hannestad, J., DellaGioia, N., Bloch, M., 2011. The effect of antidepressant medication
516 treatment on serum levels of inflammatory cytokines: a meta-analysis.
517 Neuropsychopharmacology 36, 2452–9. <https://doi.org/10.1038/npp.2011.132>

518 Häuser, W., Ablin, J., Fitzcharles, M.-A., Littlejohn, G., Luciano, J. V., Usui, C., Walitt, B.,
519 2015. Fibromyalgia. Nat. Rev. Dis. Prim. 15022. <https://doi.org/10.1038/nrdp.2015.22>

520 Häuser, W., Perrot, S., Sommer, C., Shir, Y., Fitzcharles, M.A., 2017. Diagnostic
521 confounders of chronic widespread pain: Not always fibromyalgia. Pain Reports 2, 1–
522 11. <https://doi.org/10.1097/PR9.0000000000000598>

523 Hernandez, M.E., Becerril, E., Perez, M., Leff, P., Anton, B., Estrada, S., Estrada, I., Sarasa,
524 M., Serrano, E., Pavon, L., 2010. Proinflammatory cytokine levels in fibromyalgia
525 patients are independent of body mass index. BMC Res. Notes 3, 156.
526 <https://doi.org/10.1186/1756-0500-3-156>

527 Khandaker, G.M., Cousins, L., Deakin, J., Lennox, B.R., Yolken, R., Jones, P.B., 2015.
528 Inflammation and immunity in schizophrenia: Implications for pathophysiology and
529 treatment. The Lancet Psychiatry 2, 258–270. [https://doi.org/10.1016/S2215-0366\(14\)00122-9](https://doi.org/10.1016/S2215-0366(14)00122-9)

530 Kiecolt-Glaser, J.K., Glaser, R., 1988. Methodological issues in behavioral immunology
531 research with humans. Brain. Behav. Immun. [https://doi.org/10.1016/0889-1591\(88\)90007-4](https://doi.org/10.1016/0889-1591(88)90007-4)

532 Köhler, C.A., Freitas, T.H., Maes, M., de Andrade, N.Q., Liu, C.S., Fernandes, B.S., Stubbs,
533 B., Solmi, M., Veronese, N., Herrmann, N., Raison, C.L., Miller, B.J., Lanctôt, K.L.,
534 Carvalho, A.F., 2017. Peripheral cytokine and chemokine alterations in depression: a
535 meta-analysis of 82 studies. Acta Psychiatr. Scand. 135, 373–387.
536 <https://doi.org/10.1111/acps.12698>

537 Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gøtzsche, P.C., Ioannidis, J.P.A., Clarke,
538 22

540 M., Devereaux, P.J., Kleijnen, J., Moher, D., 2009. The PRISMA statement for reporting
541 systematic reviews and meta-analyses of studies that evaluate health care interventions:
542 explanation and elaboration. *J. Clin. Epidemiol.* 62, e1–e34.
543 <https://doi.org/10.1016/j.jclinepi.2009.06.006>

544 Maes, M., Carvalho, A.F., 2018. The Compensatory Immune-Regulatory Reflex System
545 (CIRS) in Depression and Bipolar Disorder. *Mol. Neurobiol.* 55, 8885–8903.
546 <https://doi.org/10.1007/s12035-018-1016-x>

547 Maes, M., Rodriguez, L.A., Morris, G., 2019. Is a diagnostic blood test for chronic fatigue
548 syndrome on the horizon? *Expert Rev. Mol. Diagn.* 19, 1049–1051.
549 <https://doi.org/10.1080/14737159.2020.1681976>

550 Malhotra, D., Saxena, A.K., Dar, S.A., Kumar, V., Nasare, N., Tripathi, A.K., Banerjee, B.D.,
551 2012. Evaluation of cytokine levels in fibromyalgia syndrome patients and its
552 relationship to the severity of chronic pain. *J. Musculoskelet. Pain* 20, 164–169.
553 <https://doi.org/10.3109/10582452.2012.704141>

554 Nilsonne, G., Lekander, M., Åkerstedt, T., Axelsson, J., Ingre, M., 2016. Diurnal variation of
555 circulating interleukin-6 in humans: A meta-analysis. *PLoS One* 11, 1–17.
556 <https://doi.org/10.1371/journal.pone.0165799>

557 O'Brien, S.M., Fitzgerald, P., Scully, P., Landers, A.M.T., Scott, L. V., Dinan, T.G., 2007.
558 Impact of gender and menstrual cycle phase on plasma cytokine concentrations.
559 *Neuroimmunomodulation* 14, 84–90. <https://doi.org/10.1159/000107423>

560 Passos, I.C., Vasconcelos-moreno, M.P., Costa, L.G., Kunz, M., Brietzke, E., Quevedo, J.,
561 Salum, G., 2015. Inflammatory markers in post-traumatic stress disorder : a systematic
562 review , meta-analysis , and meta-regression 2. [https://doi.org/10.1016/S2215-0366\(15\)00309-0](https://doi.org/10.1016/S2215-0366(15)00309-0)

564 Patsopoulos, N.A., Evangelou, E., Ioannidis, J.P., 2009. Heterogeneous views on

565 heterogeneity. *Int. J. Epidemiol.* 38, 1740–1742. <https://doi.org/10.1093/ije/dyn235>

566 Pernambuco, A.P., Schetino, L.P.L., Alvim, C.C., Murad, C.M., Viana, R.S., Carvalho,

567 L.S.C., Reis, D.A., 2013. Increased levels of IL-17A in patients with fibromyalgia. *Clin.*

568 *Exp. Rheumatol.* 31, S60-3.

569 Ribeiro, V.G.C., Mendonça, V.A., Souza, A.L.C., Fonseca, S.F., Camargos, A.C.R., Lage,

570 V.K.S., Neves, C.D.C., Santos, J.M., Teixeira, L.A.C., Vieira, E.L.M., Teixeira Junior,

571 A.L., Mezêncio, B., Fernandes, J.S.C., Leite, H.R., Poortmans, J.R., Lacerda, A.C.R.,

572 2018. Inflammatory biomarkers responses after acute whole body vibration in

573 fibromyalgia. *Brazilian J. Med. Biol. Res.* 51, 1–9. <https://doi.org/10.1590/1414-431x20176775>

575 Rodriguez-Pinto, I., Agmon-Levin, N., Howard, A., Shoenfeld, Y., 2014. Fibromyalgia and

576 cytokines. *Immunol. Lett.* 161, 200–203. <https://doi.org/10.1016/j.imlet.2014.01.009>

577 Sephton, S., Spiegel, D., 2003. Circadian disruption in cancer: A neuroendocrine-immune

578 pathway from stress to disease? *Brain. Behav. Immun.* 17, 321–328.

579 [https://doi.org/10.1016/S0889-1591\(03\)00078-3](https://doi.org/10.1016/S0889-1591(03)00078-3)

580 Sluka, K.A., Clauw, D.J., 2016. Neurobiology of fibromyalgia and chronic widespread pain.

581 *Neuroscience* 338, 114–129. <https://doi.org/10.1016/j.neuroscience.2016.06.006>

582 Strawbridge, R., Sartor, M.L., Scott, F., Cleare, A.J., 2019. Inflammatory proteins are altered

583 in chronic fatigue syndrome—A systematic review and meta-analysis. *Neurosci.*

584 *Biobehav. Rev.* 107, 69–83. <https://doi.org/10.1016/j.neubiorev.2019.08.011>

585 Szałach, Ł.P., Lisowska, K.A., Cubała, W.J., 2019. The Influence of Antidepressants on the

586 Immune System. *Arch. Immunol. Ther. Exp. (Warsz).* 67, 143–151.

587 <https://doi.org/10.1007/s00005-019-00543-8>

588 Üçeyler, N., Haeuser, W., Sommer, C., Uceyler, N., Hauser, W., Sommer, C., 2011.

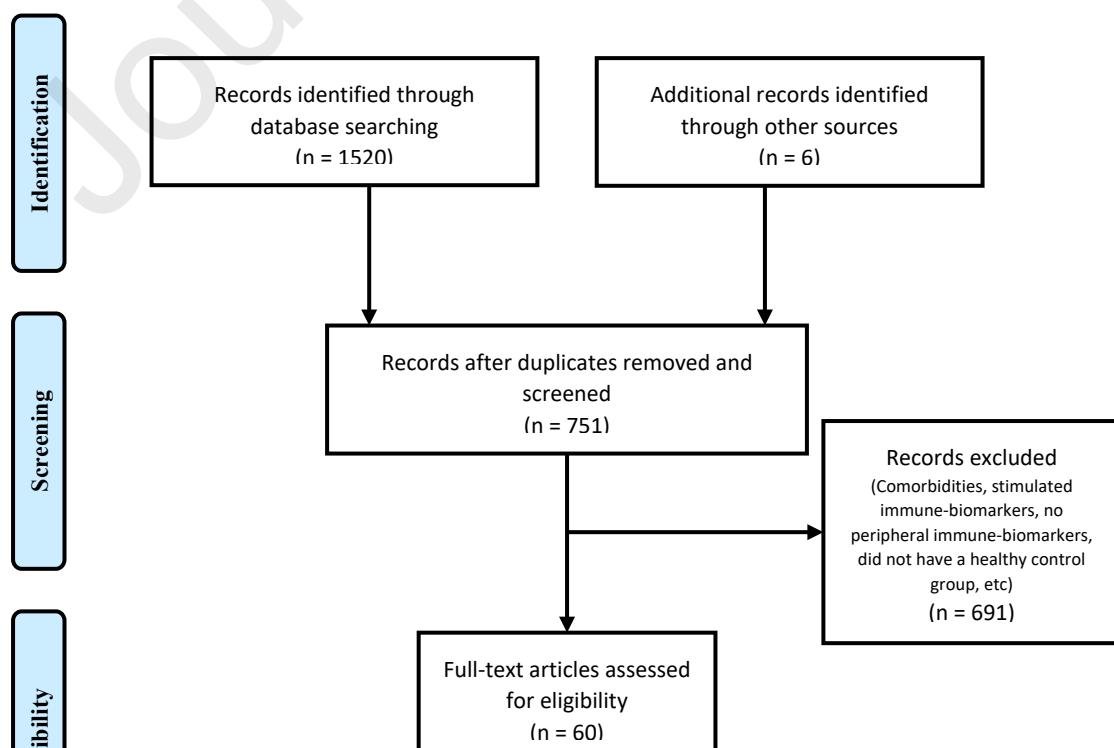
589 Systematic review with meta-analysis: cytokines in fibromyalgia syndrome. *Bmc*

590 Musculoskelet. Disord. 12, 245. <https://doi.org/10.1186/1471-2474-12-245>

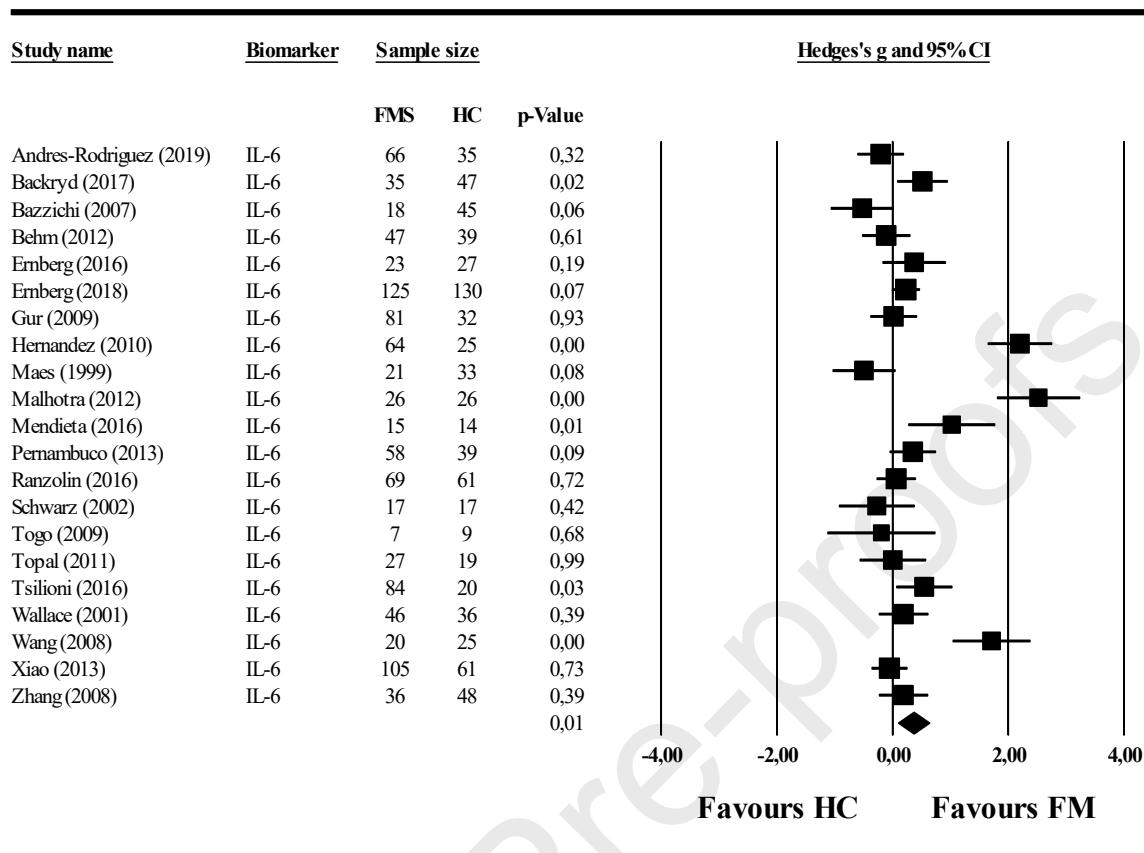
591 von Känel, R., Müller-Hartmannsgruber, V., Kokinogenis, G., Egloff, N., 2014. Vitamin D
592 and central hypersensitivity in patients with chronic pain. Pain Med. (United States) 15,
593 1609–1618. <https://doi.org/10.1111/pme.12454>

594 Wolfe, F., Clauw, D.J., Fitzcharles, M., Goldenberg, D.L., Häuser, W., Katz, R.L., Mease,
595 P.J., Russell, A.S., Russell, I.J., Walitt, B., 2016. 2016 Revisions to the 2010/2011
596 fibromyalgia diagnostic criteria. Semin. Arthritis Rheum. 46, 319–329.
597 <https://doi.org/10.1016/j.semarthrit.2016.08.012>

598 Woolf, C.J., 2011. Central sensitization: implications for the diagnosis and treatment of pain.
599 Pain 152, S2–15. <https://doi.org/10.1016/j.pain.2010.09.030>


600 Yang, T., Yang, Y., Wang, D., Li, C., Qu, Y., Guo, J., Shi, T., Bo, W., Sun, Z., Asakawa, T.,
601 2019. The clinical value of cytokines in chronic fatigue syndrome. J. Transl. Med. 17, 1–
602 12. <https://doi.org/10.1186/s12967-019-1948-6>

603 Zhang, J.-M., An, J., 2007. Cytokines, Inflammation, and Pain. Int. Anesthesiol. Clin. 45, 27–
604 37. <https://doi.org/10.1097/AIA.0b013e318034194e>


605

606

607 **Figure 1. Flowchart of study selection**

Interleukin 6

Andres-Rodriguez et al, 2019

Figure 2. Meta-analysis of interleukin 6

Highlights

1. Levels of IL-6, IL-4 and IL-17 are slightly upregulated in Fibromyalgia (FMS).
2. Immune-Inflammatory and the Compensatory (IRS/CIRS) phenotypes are also upregulated.
3. Research in immune-inflammatory in FMS needs to evaluate confounding variables.
4. Immune-inflammatory studies in FMS need to focus on a wider spectrum of biomarkers.

Table 1. Meta-analysis and heterogeneity

Mediator	Studies	FMS	HC	Hedges' g (95% CI)	p-	Heterogeneity
----------	---------	-----	----	--------------------	----	---------------

	(n)	(n)	(n)		value	<i>I</i> ²	<i>p</i> -
							<i>value</i>
IL-1β	6	290	291	-0.08 (-0.37 to 0.21)	0.58	56.70	0.04
IL-1RA	4	228	247	0.44 (-0.01 to 0.90)	0.06†	80.40	0.002
IL-2	4	245	237	0.25 (-0.38 to 0.87)	0.44	89.45	<0.001
IL-4	4	245	237	0.50 (0.03 to 0.98)	0.04*	81.87	0.001
IL-6	21	990	788	0.36 (0.09 to 0.63)	0.01*	85.94	<0.001
IL-17A	4	254	264	0.53 (0.00 to 1.06)	0.05*	87.15	<0.001
CXCL-8	15	767	685	0.19 (-0.14 to 0.51)	0.27	88.35	<0.001
CXCL-11	3	196	225	1.04 (-0.17 to 2.24)	0.09†	96.26	<0.001
IL-10\wedge	9	468	473	0.17 (-0.16 to 0.50)	0.31	82.24	<0.001
hs-CRP	7	506	278	0.24 (-0.02 to 0.50)	0.07†	62.61	0.013
INF-γ	6	295	296	-0.09 (-0.90 to 0.73)	0.83	95.75	<0.001
MCP-1	6	420	399	0.03 (-0.38 to 0.43)	0.89	87.49	<0.001
MIP-1β	3	178	182	0.15 (-0.49 to 0.78)	0.65	87.81	<0.001
TNF-$\alpha$$\wedge$	12	610	562	0.06 (-0.35 to 0.47)	0.77	89.90	<0.001
M1\wedge	23	1155	950	0.23 (0.03 to 0.43)	0.02*	77.62	<0.001
Th-1	7	352	374	-0.12 (-0.74 to 0.50)	0.70	93.37	<0.001
CMI\wedge	23	1147	948	0.14 (-0.04 to 0.31)	0.12	68.43	<0.001
IRS\wedge	29	1474	1127	0.14 (-0.05 to 0.33)	0.15	78.43	<0.001

CIRS[^]	12	600	587	0.40 (0.09 to 0.72)	0.01*	84.81	<0.001
-------------------------	----	-----	-----	---------------------	--------------	-------	--------

625 Note: * $p < 0.05$, † $p < 0.10$ (marginally significant) [^] Removed one outlier (> 4 SD) M1: IL-6, sIL-6R,
626 TNF- α , IL-1 β , IL-1RA, MCP-1 and MIP-1. Th-1: IL-2, IL-12, IFN- γ and sCD8. CMI: M1+Th-1. IRS: CMI,
627 Chemokines (e.g. CXCL-8, CXCL-11), IL-7, IL-15, IL-17A, IL-18, IL-31, IL-33, HGMB1, and hs-CRP. CIRS:
628 IL-4, IL-5, IL-13, sTNF- α R1, sTNF- α R2, IL-1RA, sgp130, and IL-10. hs-CRP= high sensibility C-reactive
629 protein; IFN- γ = Interferon-gamma, MCP-1= Monocyte chemoattractant protein-1; TNF- α = Tumor
630 necrosis factor alpha; M1= Macrophage; Th-1: T helper-1; CMI= Cell Mediated Immunity; IRS=
631 Immune-inflammatory Response System; CIRS= Compensatory Immune-Regulatory Reflex System.

632
633
634
635
636
637
638
639
640
641

642 **Table 2. Publication bias**

Mediator	Studies (n)	t	df	p-value (Egger)	Fail-Safe N
IL-1b	6	0.09	4	0.93	0
IL-1ra	4	1.95	4	0.19	12
IL-2	4	0.47	2	0.68	7

IL-4	4	1.20	2	0.35	19
IL-6	21	1.57	19	0.13	168
IL-17A	4	1.05	2	0.40	24
CXCL-8	15	0.32	13	0.75	21
CXCL-11	3	2.21	1	0.27	36
IL-10[^]	9	0.84	7	0.43	1
hs-CRP	7	0.61	5	0.57	11
INF-γ	6	0.57	4	0.60	0
MCP-1	6	0.71	4	0.51	0
MIP-1β	3	0.97	1	0.51	0
TNF-α[^]	12	0.52	10	0.61	0
M1[^]	23	2.04	21	0.05*	79
Th-1	7	1.14	5	0.30	0
CMI[^]	23	0.69	21	0.49	16
IRS[^]	29	0.21	27	0.83	40
CIRS[^]	12	1.51	10	0.16	85

643 Note: * $p < 0.05$, † $p < 0.10$ (marginally significant) [^] Removed one outlier (> 4 SD). M1: IL-6, sIL-6R,
 644 TNF- α , IL-18, IL-1RA, MCP-1 and MIP-1. Th-1: IL-2, IL-12, IFN- γ and sCD8. CMI: M1+Th-1. IRS: CMI,
 645 Chemokines (e.g. CXCL-8, CXCL-11), IL-7, IL-15, IL-17A, IL-18, IL-31, IL-33, HGMB1, and hs-CRP. CIRS:
 646 IL-4, IL-5, IL-13, sTNF- α R1, sTNF- α R2, IL-1RA, sgp130, and IL-10. hs-CRP= high sensibility C-reactive

647 protein; IFN- γ = Interferon-gamma, MCP-1= Monocyte chemoattractant protein-1; TNF- α = Tumor
648 necrosis factor alpha; M1= Macrophage; Th-1: T helper-1; CMI= Cell Mediated Immunity; IRS=
649 Immune-inflammatory Response System; CIRS= Compensatory Immune-Regulatory Reflex System.

650
651
652
653
654
655
656
657
658
659
660
661
662

663 **Table 3. Meta-analysis by groups**

Variable	Meta-analysis					Heterogeneity	
	n	Hedges' <i>g</i>	SE	<i>p</i> -value	Total between	I^2	<i>p</i> -value
<i>p</i> -value							
IL-6							
Reported exclusion					0.27		
of MDD							
No	11	0.20	0.14	0.16	75.12		<0.001

Yes	10	0.52	0.25	0.04*	90.44	<0.001
Reported Medication					0.21	
Washout						
Yes	8	0.12	0.25	0.64	87.05	<0.001
No	13	0.50	0.16	0.002*	84.32	<0.001
Time of extraction					0.22	
Morning	11	0.26	0.21	0.21	89.19	<0.001
NR	9	0.53	0.23	0.02*	82.56	<0.001
Sex					0.25	
100% woman	10	0.23	0.21	0.28	85.86	<0.001
Mixed	10	0.53	0.21	0.012*	88.20	<0.001
<hr/>						
CXCL-8						
Reported exclusion					0.29	
of MDD						
No	10	0.05	0.20	0.80	87.37	<0.001
Yes	5	0.46	0.33	0.16	89.68	<0.001
Reported Medication					0.08	
Washout						
Yes	6	-0.25	0.33	0.40	90.41	<0.001
No	9	0.43	0.20	0.03*	87.62	<0.001

Time of extraction						0.53
Morning	8	0.04	0.26	0.87	92.91	<0.001
NR	6	0.38	0.29	0.19	76.25	0.001
Sex					0.05*	
100% woman	9	-0.15	0.23	0.51	84.96	<0.001
Mixed	5	0.74	0.30	0.015*	92.90	<0.001

664 Note: * $p < 0.05$, † $p < 0.10$ (marginally significant)

665

666

667

668

669

670

671 **Table 4. Meta-regression**

Mediator	Studies (n)	Studies	
		2-sided p-value	R analog
IL-6	20		
Total females		0.005	0.11
CXCL-8	13		
Total females		0.001	0.22
IL-10	10		

Year of publication	0.0036	0.38
M1	24	
Total females	<0.001	0.51
Methodological quality	0.06	
CMI	22	
Methodological quality	<0.001	0.41
IRS	27	
Methodological quality	<0.001	0.29
CIRS	12	
Total females	0.001	0.16

672 Note: * $p < 0.05$, † $p < 0.10$ (marginally significant) ^ Removed one outlier (> 4 SD). M1: IL-6, sIL-6R,

673 TNF- α , IL-16, IL-1RA, MCP-1 and MIP-1. CMI: M1+Th-1. IRS: CMI, Chemokines (e.g. CXCL-8, CXCL-11),

674 IL-7, IL-15, IL-17A, IL-18, IL-31, IL-33, HGMB1, and hs-CRP. CIRS: IL-4, IL-5, IL-13, sTNF- α R1, sTNF- α

675 R2, IL-1RA, sgp130, and IL-10. M1= Macrophage; Th-1: T helper-1; CMI= Cell Mediated Immunity;

676 IRS= Immune-inflammatory Response System; CIRS= Compensatory Immune-Regulatory Reflex

677 System.

678

679

680