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Abstract

We investigate the effectiveness of local spatial dependence in shaping the population density

distribution. We model individual location preferences by considering status-related features of

a given spatial unit and its neighbors as well as local random spatial dependence. Our novelty

is framing such a dependence through CAR (Conditionally Autoregressive) census random effects

that we add to an SLX (Spatially Lagged Explanatory Variable- X-) setting. Our results not only

confirm that controlling for the spatial dimension is relevant but also indicate that local spatial

dependence warrants consideration in determining the population distribution of recent decades.

In this respect, our framework turns to be useful for the analysis of microdata in which individual

relationships (in a same spatial unit) enforce local spatial dependence.

Keywords: Hierarchical Bayesian spatio-temporal model, Population density distribution, Spa-

tial conditionally autoregressive (CAR) model, Spatial interaction.
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1 Introduction

Individual location choices are often driven by features that define the attractiveness of a neighbor-

hood. Economic scholars have conceived the notion of neighborhood status, referring to a group of

socioeconomic features for a given spatial unit (Rosenthal and Ross, 2015). By extension, the spatial

association of environmental characteristics factors into individuals’ preferences, but decisions about

where to settle are subject to individuals’ budget constraints (see Topa and Zenou, 2015). However,

the relevance of those attributes is not limited to a given period: the consolidation of specific features

of a neighborhood in different periods affects individuals’ preferences by factoring into the neighbor-

hood’s reputation (for instance, a neighborhood’s reputation as a ghetto). In addition, the spatial

association of environmental features is not always exclusive to one spatial unit but often spans across

adjacent units, and hence this creates local spatial dependence among them.

In this study, we aim at developing an empirical research by assessing the importance of local

spatial dependence in shaping the population density distribution. Our analysis is performed with the

aim of providing evidence for the case of Massachusetts from 1970 to 2010.

We elaborate an original empirical setting of analysis grounded in spatial econometrics and follow

a Bayesian approach to achieve our goal. Two motivations drive our choice. First, an econometric

model, designed to capture complex spatio-temporal relationships in a sample of heterogeneous data,

requires the consideration of several parameters and poses the risk of overparameterization. The po-

tential problem of overfitting calls for applying a Bayesian approach to make inferences, which, by

using prior distributions, allows for prior constraints on the parameters. Second, we recognize the

opportunity to exploit the logic of the Bayesian treatment of model uncertainty to narrow the choice

between global and local dependence in the empirical modelings as argued in LeSage (2014). Along

these lines, our strategy involves first defining a baseline model without spatial dependence and, later

on, augmenting it by including the most suitable spatial effects. Spatial dependence in our study

includes both spatially lagged covariates and spatial dependence in the disturbances.

Our baseline model builds on a lognormal function that is suitable for modeling a monocentric

distribution pattern that includes the most relevant variables for individuals’ location choices. Next,

we introduce the local spatial interaction (at the census tract level). For one, canonical variables

for shaping the population density distribution (such as income or education in Glaeser, 2008) often

involve temporal and spatial relationships, and spatial correlation patterns are well described by aug-

menting the baseline model with spatially lagged components.

As a novelty for this type of setting, to model spatial dependence commonly detected in small
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units, we formalize our analysis by applying a Bayesian CAR (Conditionally Autoregressive) process

at the census tract level in the disturbance terms. A CAR model is often suitable when data are

characterized by a spatio-temporal structure. In the CAR model, the probabilistic explanation for a

variable at a given location depends on the average of neighboring values, meaning that the model

emphasizes the importance of the local contagion effect. In the literature, De Oliveira (2012) proposes

a method for developing a Bayesian analysis of hierarchical models in a CAR setting. Previously,

Arab et al. (2008) demonstrated that a CAR process, implemented in a Bayesian hierarchical setting,

is more suitable than traditional covariance-based methods because the former allows complicated

structures to be modeled with different hierarchical levels.

Our empirical strategy also entails important consequences for modeling time dependence in the

setting that we investigate, since the time dimension is essentially subsumed by any feasible dynamic

specification strategy for priors. On the one hand, we model a priori autoregressive regression coef-

ficients so that they embed a memory process into their dynamics. On the other hand, spatial-time

dependence is integrated into county random frailties when we consider population density as a func-

tion of all county random effects, in both current and earlier times.

Regarding our data choice, new releases of US Census data allow for the development of a robust

empirical framework at the finest spatial level, and newly released version(s) of the American Com-

munitarian Survey complement the missing information. With those data, we construct a database

covering the period from 1970 to 2010, which allows us to trace our source of information for at least

40 years and, according to the data released in the NHGIS project, at the census tract level.1

Our results confirm that land organization in Massachusetts has accommodated a monocentric-type

structure, since the estimated coefficient of the distance from Boston, qualified as a central business

district (CBD), is always negative and statistically different from zero, meaning that the proximity to

Boston is a truly dominant factor for individual location choices.

As for the economic predictions of our model, local covariates such as income, level of education,

and ethnic composition that are proxies for the status of a neighborhood are always either significant

or not, regardless of the presence of any kind of random frailties. Those predictions emphasize that

segregation effects have worsened over time, mostly because of ethnic or income discrimination.

At the spatial level, our estimations also reveal an interesting interplay between county and census

random effects (once spatial interaction has been taken into account): whereas the former control for

heteroscedasticity (i.e., different variability) across the counties (above all, the counties farthest from

1Unfortunately, we cannot treat available census tract data as panel data because the number and structure of census
tracts are not constant over time.
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Boston have the largest variances), the latter are the chief drivers of heterogeneity.

On the whole, our estimates point to the growing importance of local spatial dependence over

time: the way in which we model spatial dependence makes proximity between census tracts crucial

in shaping the population density distribution. In perspective, this result highlights that today’s soci-

ety is concerned with reducing spatial and communication distances: all of these efforts cause distance

to shrink and land structure to reorganize. Hence, the local-spatial dimension acquires a relevant role

in individual location choices because agents are concerned with environmental features that they can

find at a local level, and this drives their decisions. This type of bottom-up approach allows the small

spatial dimension to overcome the relevance of other features brought at a higher spatial level.

The remainder of this paper is organized as follows. Section 2 proposes a literature review. Sec-

tion 3 sketches the theoretical framework of our analysis, after which we outline our data in Section 4

and introduce the hierarchical Bayesian spatio-temporal lognormal model in Section 5. Next, we

describe the goodness-of-fit and model selection in Section 6, present the results of estimations in

Section 7, and offer our conclusions in Section 8. Additional statistics, robustness checks and details

about the implementation of estimations appear in Appendices A-D.

2 Literature review

The interest in spatial dependence in understanding the evolution of socioeconomic phenomena in

social science has consolidated over time (Anselin, 2003). In this paper, we examine the interplay

between the relevance of neighborhood status factors and local spatial dependence as determinants

of the population density distribution. In doing so, we seek to define a framework that allows us

to account for how certain location determinants can influence individuals’ location decisions. Of

course, the subject of our study is nothing new, for economics scholars have long devoted attention

to elucidating population growth in urban environments. Among them, Henderson (1988) has argued

that population growth in cities is associated with residents’ level of education, and Glaeser (2008)

has described additional factors, including amenities, housing, crime, and transport infrastructure,

that can drive individuals’ decisions about where to settle in cities. Referring to the United States,

Carruthers and Mulligan (2008) have stressed that features affecting population changes in urban

areas differ from those in rural areas because individuals might be driven by different incentives or

preferences. For example, Boarnet et al. (2005) have shown that the level of spending on education

positively affects population density, and changes in population density in a given area influence the

rate of similar changes in surrounding areas as well. Although they examine different settings, Boarnet

4



et al. (2005), Carruthers and Mulligan (2008), and Chi et al. (2011) have all assessed the existence

of severe spatial dependence between small spatial units (municipalities). Among other advances in

that line of research, one of the most innovative contributions is by Costa da Silva et al. (2017), which

overcomes limitations in identifying determinants of rural and urban population growth in Brazil by

providing an analysis that takes local spatial dependence into account. As their results suggest, deter-

minants of population dynamics in one spatial unit tend to affect population dynamics in surrounding

units as well.

To further complement that line of research, we study spatial land organization in Massachusetts

(US) according to census tract data. By modeling determinants of individuals’ location decisions in

both rural and urban environments, our research strategy links to the urban population growth liter-

ature, but we add a further framework to take into account the spatial land structure of the state. As

Epifani and Nicolini (2013, 2017) have argued, a clear technical advantage of analyzing census tract

data, particularly for Massachusetts, is that the state’s geographical structure favors the adoption of a

monocentric framework of analysis because Boston has consolidated its territorial attractiveness (for

all of the state) and qualifies as a CBD.

Nevertheless, the effects of spatial land organization cannot be dissociated from the neighborhood

relationships stemming from the interaction among individuals. That type of relationship (or spa-

tial correlation) between individuals belonging to two spatial units tends to decrease as the distance

between these units increase. So, those dynamics can be adequately represented by using a spatial

autoregressive framework in which changes in a variable of interest in a given unit depend on changes

in the same variable in other spatial units. Accordingly, we model spatial proximity by introducing a

contiguity matrix, discussed in Section 3. A reasonable assumption is that a territorial unit is more

likely to display a feature (e.g., residents’ level of education) if the neighboring units also display

that feature. As such, the extent of the influence of the other spatial units on the given unit can be

controlled with an adjacency matrix that takes each unit’s spatial contiguity into account.

In spatial econometrics, researchers often model local dependence (or local spillovers) by referring

to the SDEM (Spatial Durbin Error model) in which the errors exhibit a SAR (Spatial Autoregressive)

structure. According to Elhorst (2014), SDEMs are convenient for the estimation of direct and indirect

local effects; the regression coefficients of the covariates belonging to a given spatial unit indicate the

direct effects, whereas the indirect effects correspond to the regression coefficients of spatially lagged

covariates. However, Arab et al. (2008) have additionally argued that a CAR model is more flexible

than a SAR model, for the latter introduces an explicit spatial autocorrelation structure strongly con-
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nected with the weighted spatial matrix. From a probabilistic point of view, Ver Hoef et al. (2018a)

show that any SAR model can be written as a unique CAR model and that any CAR model can

be written as a non-unique SAR model. From an applied perspective, Wall (2004) emphasizes that

empirical models are likely to include discrete information at a neighborhood level modeled as a CAR

or SAR process. In particular, the adoption of CAR models has been quite extensive in public health

studies: Jin et al. (2005) conclude such that the CAR framework is appropriate for mapping the

spreading of a disease over geographical units such as counties, census tracts, or zip codes.

Our strategy is inspired by the previous arguments and has its roots in the argument put forward

by Ver Hoef et al. (2018b). According to their study, CAR and SAR models are designed to model

local spatial dependence, since they are network-based models linked to agents’ connectivity in eco-

logical data. In this spirit, we aim to transpose that idea in a different setting (namely, dealing with

individuals’ location choices) but seek to preserve the concern to take into account potential individ-

ual connections or contacts by means of connectivity via local dependence. Hence, our choice is to

introduce a CAR structure into our empirical framework. A challenge preventing the extensive use of

CAR models is their limitation in developing a proper functional form to define adequate priors. We

overcome that limitation by imposing the CAR structure not on data but on random effects in order

to preserve the local spatial dependence of our variable of interest - that is, the population density

distribution- among spatial units while avoiding the problems associated with selecting an appropriate

functional form.

3 The setting

From a theoretical perspective, our setting of analysis builds on the spatial structure frequently used

in urban theory (Glaeser, 2008). Our main assumption is that individuals prefer to settle close to the

CBD for several reasons. To commence modeling the spatial structure, we refer to Epifani and Nicol-

ini’s (2013) discussion about subjective preferences when presenting the monocentric spatial structure

for Massachusetts; the other determinants for location are taken from the literature according to the

discussion proposed in Epifani and Nicolini (2017). In our study, we also aim to introduce the di-

mension of local spillovers (arising from spatial proximity). Costa da Silva et al. (2017) propose an

interesting theoretical framework that extends the classic models of population growth (Glaeser et

al., 1995) by including spatial interaction.2

2Costa da Silva et al. (2017) propose a novel framework embedded with important features that we cannot transpose
into our setting because we do not handle panel data, whereas their research relies on an aggregation of municipalities
at MCA level that is comparable over time.
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For formalizing our framework of analysis while retaining its generalizability, we propose that an in-

dividual’s location decision is the result of a maximization problem. As in Epifani and Nicolini (2013),

our underlying assumption is that Boston is a point of interest for all citizens in Massachusetts because

it represents the principal economic and cultural center. As usual, this location decision is typically

subject to the individual’s budget constraint. At time t, an individual h chooses to settle in the spatial

unit i belonging to the county g at a distance from Boston dit. This decision is taken by maximizing

the utility function U(·)

Uhit(dit) = U
(
Chit(dit) ; X

(1)
g(i)tβ

(1)
t ; X

(2)
it β

(2)
t ; WitX

(2)
t δt

)

subject to the budget constraint Ihit = s(dit) + ptChit(dit) for a given level of income Ihit. The index

function g(i) returns the county census tract i belongs to. Plugging the budget constraint into the

utility function, we obtain

max
dit

U
(Ihit − s(dit)

pt
; X

(1)
g(i)tβ

(1)
t ; X

(2)
it β

(2)
t ; WitX

(2)
t δt

)

The function U is strictly increasing in each argument, twice continuously differentiable, and strictly

quasi concave. The variable Chit(dit) represents the composite good that individual h consumes at a

distance dit from the CBD, associated with a price index pt. Adopting a hypothesis common in the

literature, we assume that at time t, individual h in spatial unit i enjoys a level of income Ihit from a

job in the CBD for which s(he) has to commute at cost s×dit (with s > 0) that is proportional to the

distance to the CBD. The vector X
(1)
gt embeds features (see Section 4) of county g, and vector X

(2)
it

contains a few factors (e.g., level of education, per capita income, Gini index, ethnic composition) of

the status of a spatial unit (here, census tract) i. The last argument, WitX
(2)
t δt , aims to capture

spillovers and refers to the average of the exogenous covariates in the neighboring census tracts. The

spatial proximity of two census tracts (i, j) relies on the definition of a weight wijt arranged in a

spatial weight matrix Wt (in the centered formulae, Wit is the ith row of Wt and, X
(2)
t the design

matrix with the ith row X
(2)
it ). Solving the previous maximization problem, we obtain the optimal

distance d∗it from the CBD at which each individual decides to locate, and using that measure, we can

approximate the population distribution.

In defining our setting, we make two important assumptions regarding the most convenient measure

of the distance to the CBD and the structure of the spatial weight matrix Wt. First, we approximate

the optimal distance d∗it from the CBD by the distance between the Boston center (one centroid) and
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the centroid of census tract i. We computed the Euclidean distance according to the geographical

coordinates of the two centroids.3 Second, the definition for the spatial weight matrix Wt is not trivial.

There is a wide literature about this topic, and a complete overview can be found in Majewska (2017).

In a common method, the matrix is determined according to its capacity to accommodate data (Elhorst

et al., 2013). However, LeSage and Pace (2014) have reported that estimations of direct and spillovers

effects are quite robust to the alternative specifications of Wt when it includes at least continuous

or nearby spatial units (or neighborhoods). Indeed, LeSage and Pace (2014) identify a sizable degree

of correlation between the number of neighborhoods considered: the more similar the magnitudes of

those numbers between two alternative definitions of Wt, the higher the correlation between spatial

lags of a standard independent normal vector.4 Hence, in the case of contiguous neighborhoods, spatial

lag vectors display similar behaviors in correspondence with different specifications of Wt that exhibit

the same type of scaling, and the inference on direct effects and spillovers is robust with respect to

changes in Wt. Therefore, in light of these insights, we consider it reasonable to settle the spatial

weight matrix as a first-order row-stochastic contiguity matrix.5

4 Data and variables

Our statistical analysis treats spatial census tract data representing the entire state of Massachusetts

during 1970-2010 and elaborated with data from the NHGIS project.6 Our database is a time-pooled,

cross-sectional collection with three dimensions: time, county, and census tract. We handle five waves

of data for five decades, including data for 11 counties in 1970 and 1980 and for all 14 counties in

the remaining decades. For each county, we have information about the corresponding census tracts

whose number changes over time. The tract is often split into two (or more) subtracts when the

size goes over the optimal limit or when the spatial territory is affected by other structural changes.

Unfortunately, there is no a clear mechanism that allows for precise tracking of the changes over time.

For the period 1970-2000, data are taken directly from the US Census, and those referring to 2010

are from both the US census and the American Community Survey (ACS).

A preliminary inspection of raw population data shows that, in 1970, population density was low,

and most people settled close to the largest cities. During the last 40 years, the state’s territory has

3All geographical information and computations are run with QGIS software.
4For instance, when doubling the order of neighbors the correlation decreases from 0.9 to 0.7.
5According to our statistics, upon replacing the first-order contiguity matrix with a second-order one, the number of

neighborhoods doubles (on average), and accordingly, the degree of correlation is quite high (statistics available upon
request). We privilege the use of a contiguity matrix to the distance-based ones because we want to avoid the risk of
overlapping two different spatial structures in the same model.

6Minnesota Population Center. National Historical Geographic Information System: Version 2.0. Minneapolis, MN:
University of Minnesota 2011, http://www.nhgis.org.
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progressively expanded as the population has grown. The mean and variance of the population density

are almost constant over time, but the number of census tracts has increased progressively, especially

those near the cities, increasig from 1,049 units in 1970 to 1,457 in 2010. The greatest concentration

of population is in Suffolk, which includes Boston. Furthermore, after 1970, heterogeneity in terms of

population size across counties appears jointly with county variance heteroscedasticity.7

Among the social, economic, and geographic factors that may affect the population density distri-

bution, a key variable in our analysis is the distance of each census tract from Boston (previously dit

and henceforth Distance). Because our unit of reference - census tracts- changes over time, Distance

values are also time-variant and adapt to territorial changes.

The degree of spatial autocorrelation in our data has been measured by Moran’s I index for the

population log-densities per year. The statistics in Table 1 show a quite strong positive global spatial

1970 1980 1990 2000 2010
Moran’s I 0.76 0.78 0.78 0.80 0.82

Table 1: Moran’s I-index for census tract population log-density in Massachussets.

dependence that has slightly increased over time.

For features to represent neighborhood status, we follow Epifani and Nicolini (2017) in using ethnic

composition along with education and income as potential quantitative determinants of the population

density distribution.

For the ethnic composition of the population, we use the proportion of whites over the total pop-

ulation (henceforth Mix ). As discussed in Quigley (1985), people are usually more prone to positive

discrimination among citizens belonging to the same ethnic group, hence the clustering by ethnic

group.

Additionally, in Topa and Zenou’s (2015) study on social networks, individuals usually prefer to

settle close to other individuals who share the same level of income or education.

For income, we introduce two local predictors: the average income per capita of the previous year

(henceforth Income)8 and the Gini index of the income distribution (henceforth Gini), which measures

income dispersion and inequality. The US census provides the income distribution for each census

tract in four classes: less than $10 000, $10 000 - $15 000, $15 000 - $25 000, and more than $25 000.

7Refer to Table 1 as well as Figures 1 and 2 in Appendix A.
8The variable Income is not collected in 1970, so we do not use it in the estimations for that decade.
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We computed their Gini index by the formula

Gini =

∑n−1
k=1 (Pk −Qk)∑n−1

k=1 Pk

where Qk’s are the actual cumulative frequencies and Pk’s are the cumulative frequencies of income

if it was equally distributed.9

By contrast, to have a comprehensive indicator of the distribution of the level of education in each

census tract, we elaborated a synthetic measure of the degree of education (henceforth Education)

by ranking all the census tracts according to the level of education of their residents from age 25

onward. Since US census data provide the distribution of education between primary, college, and

high levels, we first ranked the census tracts (a) according to the relative frequency of citizens with

a high degree of education and, separately, (b) according to the relative frequency of citizens with

primary education. Second, for each census tract, we subtracted rank (b) from rank (a). This type

of index represents the extent to which a census tract may emerge as highly educated with respect to

the rest of the census tracts in Massachusetts.

Finally, some geographical features of the counties have been included in the study by means of

the amenities and the surface of the counties. The presence of amenities in each county g is proxied by

its proportion Zg of water areas. Glaeser and Ward (2009) argue that water can be considered a fun-

damental factor in creating recreational spaces for leisure time. Following Epifani and Nicolini (2017),

Zg can be considered to be constant over time. Regarding the spatial surface Sg of each county g,

Combes and Gobillon (2015) suggest that the land (or surface) area is fundamental for picturing the

size of agglomeration effects. They conclude that agglomeration gains can stem both from density and

from the physical extent of a spatial unit. More precisely, when holding population density constant,

the impact of changes in the area (of a spatial unit) reflects agglomeration gains. Therefore, they

conclude that agglomeration gains exist when the estimates for land are positive.

The list of our covariates is completed by the interaction between Distance and Income. It usually

amplifies the attractiveness of each tract unit, thereby emphasizing the presence of a mass effect for

a number of selected features -in our case, income. The purpose of using that term is to capture the

attractiveness of a destination by focusing on some privileged aspects that shape individual prefer-

ences for location choices despite the physical distance from the CBD. Put differently, the interaction

effects exhibit a spatial autoregressive structure (Wang and Kockelman, 2009).

9The Gini index varies between 0 and 1; it is equal to 0 when there is no inequality and reaches 1 when an individual
earns the entire income.
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In light of the arguments put forward previously and the (statistically significant) spatial depen-

dence in the data structure, we elaborate a step-by-step strategy of analysis. Our first concern is to

define the proper empirical framework to perform the econometric analysis, keeping in mind the the-

oretical setting from Section 3. In the next section, we devote our interest to selecting the functional

form with the best fit to accommodate the analysis of the spatial structure and neighborhood status

as factors that impact individuals’ location decisions. Once we provide this piece of evidence, we turn

to refining the way local spatial dependence can be included in the framework of the analysis in order

to capture the potential spillovers effects across spatial units (here, census tracts). We perform this

second part of the analysis in Section 6, where our preferred device will be the modeling of the degree

of spatial dependence by means of census and county random effects according to a few alternative

specifications combined in seven different models. The model with the best fit will be retained for

drawing corresponding economic insights.

5 Hierarchical Bayesian spatio-temporal Lognormal Model

The definition of a suitable empirical model to perform our analysis involves the building of a frame-

work of analysis that begins with a baseline model including the neighborhood status features (that

is the level of education, ethnic composition, income, and amenities) as exogenous predictors and a

spatial structure (that is, the physical distance to Boston), but without spatial dependence. Then,

this setting will be augmented with features for embedding the local spatial dependence across spatial

units.

The baseline lognormal likelihood for the density of the population Yit of census tract i at decade

t = 1, 2, . . . , T ,10 henceforth Model 1, takes the form

logYit |γ0t,βt, σ2,ν
indep.∼ N

(
γ0t + X

(1)
g(i)β

(1)
t + X

(2)
it β

(2)
t , σ2 × νg(i)

)
(1)

where γ0t is a time-decade intercept to be estimated, the index function g(i) returns the county g

to which census tract i belongs, and X
(1)
g = [Zg, Sg] is the row vector of amenities Zg and surface

Sg; Zg, Sg are constant over time and associated with unknown coefficients β
(1)
t . In addition, X

(2)
it

is the row vector containing the time-variant census-level covariates Distance, Mix, Education, Gini,

and Income as well as the interaction Distance×Income, associated with the unknown coefficients

10The definition t = 1 refers to the first decade 1970, 2 refers to the second decade 1980, and . . . , T refers to the fifth
decade 2010.
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β
(2)
t .11 To manage tractable values, all the exogenous predictors in [X

(1)
g ,X

(2)
it ] were standardized by

subtracting their sample mean and normalizing by their sample standard deviation. For the sake of

simplicity, Table 2 summarizes the dependent variable and all the covariates. The common unknown

Yt X(1) X
(2)
t

Population’s Density
Z S X

(2)
1t X

(2)
2t X

(2)
3t X

(2)
4t X

(2)
5t X

(2)
6t := X

(2)
1t ×X

(2)
5t

Amenities Surface Distance Mix Education Gini Income Distance×Income

Table 2: Legend for population’s density Yt and selected covariates.

variance σ2 aims to capture the implicit variability shared by the population log-density of all census

tracts at each time t, and the vector ν := (ν1, · · · , ν14) measures the county-specific variabilities.

Following LeSage and Pace (2009), Equation (1) accommodates the county heteroscedasticity in a

Bayesian spirit by the multiplicative structure σ2
g = σ2 × νg, g = 1, . . . , 14.

According to a hierarchical specific-to-general scheme, including the spatial dimension allows for

the possibility of augmenting Model 1 with i) exogenous spatial interaction effects among covariates

involving neighboring census tracts, ii) interaction among random county effects, and iii) interaction

among census random effects. The spatial model that includes all three types of spatial effects takes

the form

(2) log Yit| φit,γt,βt, δt, σ2,ν
indep.∼ N

(
γg(i)t + φit + X

(1)
g(i)β

(1)
t + X

(2)
it β

(2)
t + WitX

(2)
t δt, σ

2 × νg(i)
)
.

We refer to the model identified by the set of Equations (2)–(5) as Model 6. It replicates the distin-

guishing components of the SDEM - that is the exogenous spatial interaction between the covariates

and spatial dependence in the disturbances.

Vector Wit is the ith row of the first-order row-stochastic contiguity matrix Wt that has null

elements on the principal diagonal and, for i 6= j: wijt = 1/mit if census tracts i, j are neighbors at

time t (i.e., mit is the number of neighboring census tracts of i at time t) and wijt = 0 otherwise;12

WitX
(2)
t is the vector of the spatially lagged explanatory variables. Its introduction proposes that

population density can be affected by changes in explanatory variables in the neighboring census

tracts summarized by their average. The direct effects at decade t are the estimates of the coefficients

β
(1)
t ,β

(2)
t associated with the variables X

(1)
g ,X

(2)
t , and the estimate of δt is the vector of the spillovers

(or indirect) effects associated with WtX
(2)
t .

The random vector γt = (γ1 t, . . . , γ14 t) refers to 14 county random effects at time t. Each frailty

11According to the setting in Section 3, the coefficients βt have been split into two disjointed subsets βt = [β
(1)
t ,β

(2)
t ],

one referring to covariates at the county level and the other at the census-tract level.
12Notice that some neighboring census tracts of i may fall outside census tract i’s county.
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γgt captures all the predictors of the population density, whether unobservable or observable, common

to all the census tracts in county g, but not measured. Involving all the census tracts in the same

county g, frailty γgt potentially captures a dimension of county effects that are not fully embedded

in natural amenities Zg or in spatial surface Sg. Our rationale is that census tracts belonging to the

same county share some common features (e.g., urban regulation) that individuals consider in forming

their preferences. Hence, the frailties in γt model global mean random heterogeneity -namely, global

spatial dependence. All γgt frailties are assumed to be conditionally independent with a common

constant variance σ2
γ , given the time-decade intercept γ0t that satisfies

γgt | γ0t, σ2
γ

indep.∼ N (γ0t, σ
2
γ).(3)

Moreover, the common hyperparameter γ0t is ruled by the autoregressive dynamics

(4) γ01 ∼ N (0, σ2
0) and γ0t | γ0t−1 ∼ N (γ0t−1, σ

2
0), t = 2, . . . , T

that yield a correlation among all γgt across space and time given by

ρ(γgs, γht) =
min{s, t}√

(min{s, t}+ a)(max{s, t}+ a)
if s 6= t or g 6= h with a :=

σ2
γ

σ2
0

.

The formula for the correlation ρ(γgs, γht) sheds light on the meaning of the ratio a of the variance

σ2
γ to σ2

0 . Indeed, ρ(γgs, γht) is a decreasing function of a, and the larger is σ2
γ with respect to σ2

0 ,

the closer the correlation ρ(γgs, γht) is to zero. Equations (3)-(4) embed the same spatial dependence

across any two counties at time t but changing over time. Briefly, the population density in one

county at time t depends on the county’s population density at time s previous to t as well as on the

current and past population density of the other counties; for any fixed s, the correlation ρ(γgs, γht)

approaches zero as t approaches infinity. This way of modeling is flexible enough for obtaining a

county-specific correlation: it is sufficient to assume different variances σ2
γg for the random effects γgt

in Equations (3)-(4).13 In this sense, ρ(γgs, γht) serves as an index of association between counties.

Introducing spatial CAR census random effects is the principal technical novelty of our contribu-

tion. The T vectors of the census random effects (φ11, . . . φn11), . . . , (φ1T , . . . φnTT ) allow for controlling

for the random mean heterogeneity at the census tract level (hence, the local spillovers). They are

time-independent, and each of them has been modeled as a proper CAR random process, meaning

13The econometric analysis of county spatial models developed by Epifani and Nicolini (2018) shows that no sizable
difference exists between adopting a CAR strategy for county frailties or modeling them with Equations (3)-(4).
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that at each decade t, the full conditional distribution of the vector (φ1t, . . . φntt) is

(5) φit | φjt, j 6= i, αt, τt ∼ N
(
αt
∑
j 6=i

wijtφjt ,
τt
mit

)
.

Since wijt is the (ij) element of the row-stochastic contiguity matrix Wt of order 1, then
∑
j 6=i wijtφjt

can be interpreted to be the arithmetic mean of the φjt’s neighboring of unit i at time t. Therefore,

the census random effect φit is centered on the arithmetic mean of its neighbors. The strength of the

spatial dependence between the nearest neighboring census tracts is quantified by the unknown spatial

autoregressive parameter αt. By Brook’s lemma, the joint distribution of (φ1t, . . . φntt) is multivariate

normal with

(φ1t, . . . φntt) ∼ MN(0, τt[Dt − αtWt]
−1),

where Dt = diag(mit) is a diagonal matrix; if αt belongs to [0, 1), then the covariance matrix τt[Dt−

αtWt]
−1 is positive definite and the multivariate normal distribution MN(0, τt[Dt − αtWt]

−1) is

proper. If αt = 1, the proper CAR model in (5) collapses to an intrinsic CAR model that lacks a

probability density function. Instead, the parameter value αt = 0 corresponds to time-independent

census tracts:

(6) φit | σ2
φ,t

indep.∼ N
(

0,
τt
mit

)
∀i, t.

For that reason, αt is defined a priori in the interval [0, 1); a large value of αt confirms the existence

of a strong spatial correlation.14

Before moving to estimations, in a Bayesian framework, we need to specify the prior distribution

scheme for the unknown parameters β
(1)
t ,β

(2)
t , δt, σ

2,ν, σ2
0 , σ

2
γ , τt, αt.

A priori, we assume an autoregressive hierarchical model for the sequences of the intercept (γ0t)t,

the direct effects (βt)t, and the spillovers (δt)t. In particular, the block of the regression parameters

Bt := (γ0t,β
′
t, δ
′
t), t = 1, . . . , T has the prior dynamics given by


B1 ∼ MN(0,ΣB)

Bt|Bt−1 ∼ MN(Bt−1,ΣB) for t = 2, . . . , T

ΣB = diag{σ2
0 , σ

2

β
(1)
1

, σ2

β
(1)
2

, σ2

β
(2)
1

, . . . , σ2

β
(2)
6

, σ2
δ1
, . . . , σ2

δ6
},

14For more details on CAR models, see Banerjee et al. (2015).
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where the variance hyperparameters σ2
0 , σ

2

β
(1)
1

, σ2

β
(1)
2

, σ2

β
(2)
1

, . . . , σ2

β
(2)
6

, σ2
δ1
, . . . , σ2

δ6
are modeled a priori

in terms of their standard deviations in the usual way to be diffuse:

σ0, σβ(1)
1
, σ
β
(1)
2
, σ
β
(2)
1
, . . . , σ

β
(2)
6
, σδ1 , . . . , σδ6

iid∼ Uniform(0, 100).

Taken from the theory of dynamic linear models introduced by West and Harrison (1997), the random

walk prior specified for the direct and indirect effects βt, δt embeds the time dimension. This prior

is quite comparable to the canonical way of dealing with the classic idea of adaptive expectations,

meaning that we are introducing a sort of memory in the dynamics process in an autoregressive style.

The prior variances’ structure of the population log-densities σ2
g , g = 1, . . . , 14, is

(7)


σ2
g = σ2 × νg, σ2, ν1, ν2, . . . , ν14 independent

σ2 ∼ InverseGamma(0.001, 0.001)

ν1, ν2, . . . , ν14
iid∼ InverseGamma

(r
2
,
r

2

)
,

where InverseGamma(r/2, r/2) stands for the inverse gamma distribution with shape and rate r/2,

and σ2,ν are independent of all the other parameters. If a large value were assigned to parameter r,

then all of the νg’s a priori would collapse into one and the assumption of constant variance over the

counties would hold. Conversely, small values of r cause a skewed distribution of νg’s, which allows

for both large and small values of σ2
g and entails a strong heteroscedasticity among counties. In this

sense, formulae in (7), from LeSage and Pace (2009), accommodate Bayesian heteroscedasticity in

spatial models. Here, we define r = 4 as suggested by LeSage and Pace (2009).

A priori the standard deviation σγ , common to all county random effects in γt, comes from the

diffuse uniform density on (0, 100).

Last, we assume prior independence of the hyperparameters αt, τt of the CAR census effects

(φ1t, . . . φntt) for t = 1, . . . , T , such that

logit(αt)
iid∼ N(0, 0.02), τt

iid∼ InverseGamma(0.5, 0.0005) ∀t = 1, . . . , T.

Variances τt’s change a priori over time since census tracts cannot be mapped over time; therefore, in

each decade, we handle a different sample.15

15See Appendix B for a discussion of the prior choice for αt, τt.
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6 Goodness-of-fit and model selection

The previous lognormal model allows for formalizing six different empirical forms that we label

Model 1 –Model 6. The steps for moving from Model 1 to Model 6 involve defining a series of nested

models that can be formalized by adding spatial interaction effects to Model 1 at different levels.

Model 2 embeds only the exogenous interaction effect WitX
(2)
t among covariates. Model 2 is an SLX

model, which is considered the simplest econometric model that is able to flexibly accommodate the

study of spatial spillovers (Halleck Vega and Elhorst, 2015). Its structure can be enriched by intro-

ducing either county random frailties γt to better control for global spatial dependence (Model 3 ) or,

alternatively, independent census random effects (φ1t, . . . φntt) (Model 4 ) to capture local spatial het-

erogeneity, or introducing both (Model 5 ). Along this line, Model 6 generalizes Model 5 by imposing

a CAR structure on census effects (φ1t, . . . φntt). With this in mind, we have to identify the most

effective framework for modeling spatial dependence.

We assessed the goodness-of-fit of our models by computing the Bayesian posterior p-value pM

of each Model M (for M = 1, . . . , 6) on the basis of the χ2 discrepancy measure between the data

of population density and their prediction under Model M , as suggested in Gelman et al. (1996). A

value for pM of around 0.5 indicates that Model M fits quite well, whereas values close to zero or one

suggest a limited fitting capacity. The estimated pM are summarized in the first column of Table 3.

A Bayesian comparison of Models 1-6 was performed by computing the value of the Bayesian

Deviance Information Criterion (DIC) of every model, the Logarithm of the Pseudo-Marginal Like-

lihood (LPML), and the Bayesian percentage census-tract outliers with level 90% of every model

at each decade. Models with a small DIC value are preferred to those with a large DIC value. In-

stead, the larger the value of the LPML at time t, the better the fit of the model at that time. The

DIC values appear in the second column of Table 3, and the 90% Bayesian percentage outliers and

LPML statistics per decade are presented in the last five columns of Table 3. The computation of

pM , DIC,LPML, and the Percentage of the Bayesian census-tract outliers has been performed via

Markov Chain Monte Carlo simulation (see Appendix C for more technical details).

Overall, our specifications perform relatively well since they produce relatively good pM at ap-

proximately 0.5. The percentage of Bayesian outliers in each of the six models remains quite low (less

than 10%) for the period from 1980 to 2010, whereas values for 1970 are at odds with the rest of the

sample because of the political and economic changes experienced in Massachusetts and discussed in

Epifani and Nicolini (2013). DIC and LPML values suggest that the best specification has to embed

16



pM DIC 1970 1980 1990 2000 2010

Model 1 0.505 19474.5
Bayes Outliers 24.31% 8.5% 7.22% 5.01% 4.32%

LPML −1960.360 −1685.272 −1860.977 −1831.775 −1941.548

Model 2 0.494 18590.1
Bayes Outliers 24.02% 8.01% 5.45% 4.86% 4.39%

LPML −1963.865 −1586.516 −1729.097 −1720.948 −1839.882

Model 3 0.506 17858.6
Bayes Outliers 23.83% 8.53% 5.45% 4.79% 4.12%

LPML −1871.515 −1536.946 −1656.540 −1644.998 −1767.934

Model 4 0.505 17655.8
Bayes Outliers 0.10% 6.82% 6.76% 7.52% 7.41%

LPML −1737.717 −1582.664 −1707.496 −1688.804 −1798.088

Model 5 0.518 16971.9
Bayes Outliers 0.00% 4.94% 5.15 % 8.18% 8.03%

LPML −1697.888 −1542.292 −1641.051 −1609.181 −1724.413

Model 6 0.505 5067.8
Bayes Outliers 0.00% 0.26% 0.46 % 0.44 % 0.41%

LPML −645.402 −698.225 −805.926 −795.080 −828.763

Table 3: Bayesian posterior pM -values and DIC of Models 1-6 in the first two columns; Percentage of
Bayesian 90% Outliers (first row) and LPML (second row) per decade in the last five columns.

spatial CAR dependence between the census tracts. In that regard, Model 6 clearly outperforms the

others with respect to all the indicators.

A second step of the model selection analysis focuses on the posterior estimate of county random

heterogeneity. Our strategy consists of assessing the role of county random effects γgt’s when intro-

ducing a CAR census effect, for we want to test whether γgt’s (thus, global spatial effects) retain

statistical significance in shaping the population density distribution even in the presence of local

spatial effects. To that end, we computed the posterior median values of γgt’s for each county g and

decade t in Models 3, 5, and 6 that include them. Results are illustrated in Figure 1, which shows that

imposing a CAR structure into the census random effects, as in Model 6, dampens the impact of the

hierarchical county structure, especially in the most recent decades. These outcomes imply a cluster-

ing effect at the county level that captures a somewhat spatial-dependent structure in the absence of

spatially correlated census random effects, as in Models 3 and 5. But when introducing CAR census

effects, a part of that county effect is captured by the CAR structure. Figure 1 emphasizes that this

CAR effect is more prominent when referring to the counties with census tracts that are smaller in

size (namely, the ones in Suffolk, Worcester, and Middlesex) and for which connectivity and network

interaction across neighborhood units are more likely. Indeed, the posterior medians of these county

effects approach zero. In this respect, our CAR structure turns out to be effective in capturing local

spatial dependence, as is usually intended in the literature. This is reinforced by the effective local

spatial dependence that exists across neighboring census tracts, as clarified in the comparison between

Model 5 with all a priori independent census frailties and Model 6 with CAR census frailties.16

The previous findings suggest exploring the goodness-of-fit of a simplified version of Model 6 that

16Estimations for direct and indirect effects (see Section 7) are robust irrespective of the presence of the county
random effects too. Results are available upon request.
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Figure 1: Posterior medians of the county frailties γt under Models 3;5;6. Data are not available
for census tracts in Barnstable, Franklin, Hampden and Norfolk in 1970, 1980. Counties are sorted
horizontally in decreasing order according to the frailty posterior medians estimated under the simplest
Model 3.

includes spatially lagged covariates and CAR census effects only:

log Yit|γ0t, φit,βt, δt, σ2,ν
indep.∼ N

(
γ0t + φit + X

(1)
g(i)β

(1)
t + X

(2)
it β

(2)
t + WitX

(2)
t δt, σ

2 × νg(i)
)

(8)

Our final Model 7 is specified by the likelihood (8) and the CAR modeling of φit’s in (5). It emphasizes

local spatial dependence exclusively; thus, it is a SDEM-type model with CAR disturbances φit’s.

After performing the canonical Bayesian goodness-of-fit and model selection analysis, we show in

pM DIC 1970 1980 1990 2000 2010

Model 7 0.496 4077.0
Bayes Outliers 0% 0.17% 0.31% 0.22% 0.41%

LPML −553.445 −615.534 −739.822 −702.266 −744.244

Table 4: Bayesian posterior pM -value, DIC, Percentage of Bayesian 90% Outliers, and LPML per
decade for Model 7.

Tables 3 and 4 that Models 6 and 7 are definitely more efficient than the other competing models.

18



But according to all of these indicators, Model 7 turns out to be the most efficient specification.

As a further indicator for the assessment of the most suitable model for our analysis, given the

importance of CAR effects, an interesting (and more sophisticated) statistical indicator to take into

account for the model choice is the pattern of CAR effects across time. Table 5 presents the posterior

estimate of the percentage of non-null census random effects under Models 4 –7. Model 7 records

1970 1980 1990 2000 2010
Model 4 17.06% 0.00% 0.00% 0.00% 0.00%
Model 5 12.68% 0.26% 0.00% 0.00% 0.00%
Model 6 62.82% 49.19% 47.31% 45.91% 47.29%
Model 7 70.45% 58.06% 55.38% 55.93% 54.84%

Table 5: Percentage of posterior non-null census random effects in relation to the corresponding 95%
credible interval for each model specification including either independent or CAR φit’s.

more than 50% of significant (i.e., non-null) census random effects, whereas that percentage drops

in the case of independent census random effects. Such statistics confirm that census random effects

are effective in modeling the population density distribution at any time, although their effectiveness

improves when a CAR structure is introduced. Given that evidence at hand, the key role for census

tracts might be a consequence of improvements in the transportation system - for instance, changes

that improve the accessibility to different spatial units and favor the redistribution of agents across a

territory.17

7 Bayesian estimation: direct and indirect effects

According to goodness-of-fit and model selection analysis, Model 7 is the most effective framework to

estimate the determinants that shape the population density distribution.

Preliminary descriptive statistics reveal the spatial dimension to be crucial, and our Bayesian es-

timations embed it. Estimates for β
(1)
t ,β

(2)
t , δt appear in Table 6 and Figure 2. Furthermore, given

that the final structure of Model 7 replicates a SDEM, we can easily discuss direct and indirect ef-

fects. Importantly, the spatial autocorrelation among census tracts appears positive and important,

as documented in the last row of Table 6, which contains a summary of the posterior distribution for

the spatial autoregressive coefficients αt, t = 1, . . . , 5.

17This result aligns the content of Figure 5, which depicts the estimated temporal evolution of CAR census random
frailties versus the distance from Boston, as well as the maps in Figures 3-7 in Appendix D, which display the evolution
of the CAR census random effects in Massachusetts, under Model 7.
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Response Parameters (Covariates) 1970 1980 1990 2000 2010
0.217 (0.079) 0.146 (0.054) 0.010 (0.048) −0.066 (0.045) −0.120 (0.047)

Intercept γ0t for time t (0.068, 0.378) (0.039, 0.250) (−0.086, 0.104) (−0.154, 0.021) (−0.212,−0.031)
0.002 0.008 0.829 0.137 0.009

0.086 (0.069) −0.195 (0.051) −0.215 (0.044) −0.163 (0.040) −0.065 (0.042)

β
(1)
1 (Amenities) (−0.043, 0.222) (−0.300,−0.098) (−0.302,−0.129) (−0.241,−0.085) (−0.145, 0.017)

0.210 0.000 0.000 0.000 0.122
−0.274 (0.084) −0.384 (0.055) −0.233 (0.046) −0.221 (0.042) −0.149 (0.043)

β
(1)
2 (Surface) (−0.446,−0.114) (−0.491,−0.276) (−0.322,−0.143) (−0.303,−0.136) (−0.234,−0.065)

0.001 0.000 0.000 0.000 0.000
−0.371 (0.304) −0.819 (0.261) −1.251 (0.400) −1.328 (0.436) −1.286 (0.431)

β
(2)
1 (Distance from CBD) (−1.118, 0.026) (−1.400,−0.370) (−2.229,−0.662) (−2.376,−0.692) (−2.288,−0.599)

0.038 0.001 0.000 0.000 0.000
−0.025 (0.044) −0.002 (0.040) −0.011 (0.043) −0.077 (0.039) −0.159 (0.050)

β
(2)
2 (Mix) (−0.116, 0.058) (−0.079, 0.081) (−0.090, 0.078) (−0.155, 0.001) (−0.257,−0.065)

0.284 0.457 0.379 0.026 0.001
−0.184 (0.033) 0.426 (0.042) 0.285 (0.039) 0.160 (0.035) 0.153 (0.032)

β
(2)
3 (Gini) (−0.250,−0.118) (0.346, 0.509) (0.209, 0.363) (0.088, 0.230) (0.090, 0.216)

0.000 0.000 0.000 0.000 0.001
0.042 (0.030) −0.031 (0.041) −0.038 (0.039) −0.113 (0.039) −0.122 (0.037)

β
(2)
4 (Education) (−0.013, 0.021) (−0.118,−0.056) (−0.112,−0.064) (−0.194,−0.138) (−0.193,−0.147)

0.078 0.213 0.160 0.001 0.000
NA −0.121 (0.041) −0.216 (0.039) −0.279 (0.040) −0.303 (0.041)

β
(2)
5 (Income) NA (−0.201,−0.040) (−0.294,−0.140) (−0.358,−0.203) (−0.383,−0.222)

NA 0.002 0.000 0.000 0.000
NA −0.144 (0.037) −0.129 (0.036) −0.173 (0.035) −0.207 (0.036)

β
(2)
6 (Income*Distance) NA (−0.217,−0.075) (−0.200,−0.058) (−0.244,−0.102) (−0.279,−0.137)

NA 0.000 0.000 0.000 0.000

δ1 (W × Distance)
0.260 (0.312) 0.164 (0.266) 0.294 (0.401) 0.345 (0.435) 0.319 (0.434)

(−0.114, 1.049) (−0.293, 0.761) (−0.295, 1.287) (−0.291, 1.376) (−0.366, 1.324)
0.167 0.271 0.225 0.213 0.232

δ2 (W × Mix)
−0.306 (0.095) −0.107 (0.065) −0.089 (0.067) −0.133 (0.065) −0.129 (0.070)

(−0.488,−0.371) (−0.235,−0.149) (−0.221,−0.134) (−0.264,−0.176) (−0.268,−0.176)
0.000 0.049 0.093 0.020 0.031

δ3 (W × Gini)
−0.403 (0.089) 0.819 (0.088) 0.814 (0.079) 0.634 (0.073) 0.455 (0.068)

(−0.583,−0.462) (0.648, 0.760) (0.660, 0.760) (0.492, 0.583) (0.319, 0.409)
0.000 0.000 0.000 0.000 0.000

δ4 (W × Education)
0.026 (0.048) 0.020 (0.051) 0.010 (0.045) −0.001 (0.045) −0.016 (0.051)

(−0.039,−0.002) (−0.066,−0.007) (−0.078,−0.014) (−0.097,−0.023) (−0.133,−0.043)
0.295 0.361 0.427 0.490 0.394

δ5 (W × Income)
NA 0.213 (0.113) 0.122 (0.078) 0.096 (0.075) 0.054 (0.076)
NA (0.008, 0.431) (−0.018, 0.285) (−0.046, 0.244) (−0.097, 0.207)
NA 0.015 0.049 0.090 0.230

δ6 (W × Income*Distance)
NA −0.269 (0.077) −0.271 (0.070) −0.272 (0.064) −0.283 (0.062)
NA (−0.417,−0.121) (−0.409,−0.134) (−0.397,−0.149) (−0.404,−0.162)
NA 0.000 0.000 0.000 0.000

αt (spatial CAR parameter)
0.842 (0.014) 0.796 (0.018) 0.763 (0.021) 0.778 (0.019) 0.811 (0.017)
(0.813, 0.868) (0.759, 0.830) (0.721, 0.801) (0.739, 0.814) (0.777, 0.843)

Table 6: Summaries of the posterior distribution of the direct β
(1)
t ,β

(2)
t and indirect δt effects and the

spatial autocorrelation αt for Model 7. Posterior means are followed by (standard deviations) in first
row; 95% credible intervals are in second row, Bayesian posterior-predictive p-values are in third row.

Concerning the direct effects, the distance to Boston is the key determinant event if its size shrinks

over time. In economic terms, this result aligns with the idea that residents prioritize proximity to

services and the urban environment offered by Boston once they discount the benefits of living in a

specific county. In turn, the result confirms the existence of competition effects to settle near Boston

and the drawback of commuting costs to reach the city (cf. Glaeser, 2008). In that sense, a specific

centripetal force seems to exist in Boston that is not likely to be compensated by other types of ag-
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Figure 2: Plot of the Bayesian posterior means (solid black circles) and 95% credible intervals (gray
vertical bars) of the regression coefficients in Model 7, from 1970 to 2010 (data in 1970 for Income are
not available).
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glomeration effects at a local level in other spatial units. This type of effect is strongly associated with

a single spatial unit, and there are no (statistically significant) indirect effects arising from spillovers

from neighborhood units.

As for the spatial dimension, the posterior mean of the coefficient β
(1)
2t associated with the county

size Sg is negative, as is the posterior mean of β
(1)
1t associated with the county amenities Zg; with the

exception of 1970, amenities and agglomeration effects at the county level seem to be important in

individuals’ location choices.

Regarding the other covariates, it is interesting to remark the interplay between distance and other

covariates across time. The estimated direct effects suggest that when the size of the coefficient as-

sociated with the distance from Boston shrinks, the population density distribution in Massachusetts

is enforced by a spread guided by discrimination aptitude. The direct effects associated with the

variables Mix, Education, and Income have been mostly statistically significant in recent decades and

display negative coefficients. At the same time, the direct effect of the Gini index is always posi-

tive (excluding 1970). These dynamics suggest a dual reading of the effects. First, (white) residents

seem to favor settling in census tracts with a high density of white residents, populated by relatively

well-educated people, and in wealthy areas where inhabitants prefer to live in individual dwellings.

This dimension of segregation is reinforced by the posterior distribution of the coefficients β
(2)
6t associ-

ated with the interaction Distance×Income that are concentrated in negative intervals. The proposed

discrimination-guided attitude in individuals’ location decisions is confirmed by the estimate of the

Gini direct effect as well as by the estimated indirect effects for the other covariates (when statisti-

cally significant). A joint reading of all the previous results yields a simple interpretation. Overall, a

general attitude driven by discrimination in location choices has been reinforced over time with a pos-

itive dependence across all census tracts in a sort of complementarity effect. As already discussed in

Epifani and Nicolini (2017), people with high income tend to settle in selective and exclusive locations

where they have access to individual dwellings and, hence, where the population density is lower. As

a consequence, the concentration of people with similar income levels in a spatial unit reduces the

degree of heterogeneity in terms of average income in that unit and, hence, the Gini index approaches

zero and the association with a positive (estimated) direct effect yields low population density. It is

interesting to note that the results of indirect effects confirm the existence of local spatial dependence,

given the existence of a spatial segregation aptitude (mostly driven by the income component). Such

behavior is not limited to a spatial unit but spills over into the surrounding units likely for networking

mechanisms across individuals, for instance. Hence, the spatial segregation configuration spans over
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more than a single census tract. However, the local spatial dependence effect is a relatively recent

phenomenon. When we focus on the indirect effect for Income, we appreciate that the estimated coef-

ficient was positive and statistically significant up the 2000s, albeit with a decreasing magnitude. This

result implies that up to that time period, the income effect was a factor driving individual location

choices, but without the local spatial dependence component. This condition, for instance, implies

that high-income census tracts featuring low density population values could neighbor low-income

census tracts with high population density values. This type of spatial organization of land stems

from the adoption of a specific regulation for the real estate market that prevents free access to all

the residential options for everyone. In this respect, Epifani and Nicolini (2017) discuss important

features that limited the development of the housing market and free residential access in the US up

to 1980s: limited access to credit or racial discrimination drove groups of citizens to concentrate in

selected places. Under this perspective, the highly regulated housing and credit markets limited the

potentially positive spillovers effects across census tracts. Once this regulation was repealed and free

accessibility to the real estate market was restored, the local spatial spillovers effects became effective

in shaping the population distribution. This transforming effect is taken into account in our estimation

by the CAR effects that became truly relevant components for the population density distribution

from the 1990s onward.

On the whole, the introduction of CAR census effects helps to shape spatial features at the ter-

ritorial level, and thus improves the model’s fit. In Figure 3, which plots the posterior 95% credible

intervals and actual values of the population log-density versus Distance, our specification captures

the highest population densities fairly well.

Regarding heteroscedasticity, Figure 4 shows that the highest variances occur in the most remote

counties (i.e., Nantucket, Berkshire, and Hampshire) and are similar, whereas the other counties can

be clustered in one group with a smaller population log-density variance. Those results suggest that

using CAR random effects can better pinpoint residual heteroscedasticity. Referring to the tem-

poral dimension (and returning to the discussion about free accessibility to the real estate market),

Figure 5 reveals the existence of a persistent structural break between the first two decades (1970

and 1980) and the others (1990, 2000, and 2010). In the second period, the core counties (i.e, those

closest to Boston) display strictly negative estimated posterior medians of the CAR census effects; the

remaining counties (i.e, the ones farther from Boston) either tend toward zero or are strictly positive.

Those outcomes stress that people who settled in the most remote counties farthest from Boston
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Figure 3: Bayesian 95% credible intervals of the census-tract population log-densities for Model 7
(light gray vertical bars). Intervals are ranked according to their distance from Boston. Real census-
tract population log-densities are denoted by gray circles and Bayesian census-tract outliers by solid
black circles.

continue to be weakly attracted by it and experience a lower degree of local spatial dependence.

8 Conclusion

In this paper, we propose a new strategy to model spatial dependence in shaping the population

density distribution in Massachusetts over the period 1970-2010. Data suffer from heterogeneity and
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Figure 4: Bayesian 95% credible intervals of the standard deviations σ1, . . . , σ14 of the population log-
density in each county under Model 7. Posterior means are labeled with black crosses and posterior
medians with solid gray circles. Counties are sorted horizontally in decreasing order of the posterior
medians of σ1, . . . , σ14.

heteroscedasticity problems, which we propose to control for with both county and census random

effects, the latter being effective in representing local spatial dependence. The principal novelty of our

empirical strategy is controlling for local heterogeneity by introducing CAR census effects, along with

county random frailties that control for global heterogeneity. The selected model specification confirms

that the distance from Boston is the dominant covariate in defining the population density distribution

across time. Furthermore, we detect an increasing discrimination effect with an important positive

spatial association in modeling population density distribution across time: the ethnic and income

characteristics of a neighborhood as well as of the surrounding areas clearly factor into residents’

location decisions. However, all of these effects have an important local imprint because CAR spatial

dependence among census random effects is a crucial ingredient in guaranteeing the goodness-of-fit of

the model. One interesting finding of our contribution is the identification of the importance of spatial

dependence at a local level, which has become crucial during the most recent decades. This result

witnesses the change in land organization that is taking place in the modern integrated (or globalized)

society. Overall, improvements in accessibility, driven by better connections arising from enhanced

communication networks, generally seem to rationalize the way activities or agents are distributed

across space, entailing spillovers effects involving neighboring territories. Our idea to develop a CAR

framework to introduce local spatial dependence in the analysis stems from the advances in other
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Figure 5: Bayesian 95% credible intervals of the time-independent CAR census random frailties in
Model 7 (light gray vertical bars). Solid gray circles denote the posterior medians of non-null φ; solid
dark black circles denote the estimated posterior medians of null φ.

disciplines. Van Hoef et al. (2018b) discuss that CAR processes are suitable for modeling cases of

connectivity among agents in which the network component is an important factor in understanding

socioeconomic phenomena. Further advances in this direction would be testing the adoption of our

framework of analysis with micro-spatial data in which one is able to control -in a more precise way-

for personal relationships in the same spatial units and, above all, for peer effects as incentives that are

likely to enforce local spatial dependence. Along the same lines, another interesting extension would
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be to assess the strength of local spatial dependence for a more micro-spatial setting, for instance, at

the census block level. Small spatial units are definitively more suitable for controlling the intensity of

individuals’ relationships and, hence, for assessing the effectiveness (and magnitude) of local spillovers

effects.

From a technical viewpoint, however, our CAR approach suffers from an important limitation: it is

unable to control for the temporal evolution of the spatial dependence among census tracts. Because

the number of census tracts changes over time, tracking them precisely is not always possible. In

that respect, a promising natural extension of our framework is to make it dynamic. The potential

availability of panel data is also expected to favor the implementation of the most suitable functional

form to jointly model spatial and temporal dependence to enrich our setting and, more precisely, track

the evolution of the importance of local spatial dependence. Furthermore, this type of setting would

allow for developing a setting of analysis embedding dynamics dimensions and, eventually, being able

to extend our framework in the spirit of Costa et al. (2017) so as to explore the potential association

between local spatial dependence and population growth.
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A Appendix: Descriptive statistic on density population in

Massachusetts

Table 1 jointly with Figures 1 and 2 track changes of the population distribution in Massachusetts.

Table 1 shows that the number of census tracts increased progressively from 1970 to 2010, whereas

1970 1980 1990 2000 2010
Barnstable 0 0 50 50 56
Hampshire 27 25 30 31 35
Berkshire 15 32 34 41 39
Middlesex 249 271 277 297 317

Bristol 102 105 106 116 125
Nantucket 0 0 4 5 5

Dukes 0 0 4 4 4
Norfolk 101 103 117 121 130
Essex 112 136 146 156 162

Plymouth 46 84 90 90 99
Franklin 0 0 15 16 18
Suffolk 168 177 183 175 193

Hampden 71 83 87 92 103
Worcester 158 157 159 163 171

Massachussets 1049 1173 1302 1357 1457

Table 1: Number of census tracts for each county per decade.

Figure 1 displays that –after 1970– the county population densities (on average) are almost constant

over time whereas their standard deviations proportionally shrink, except for the most remote counties.

Furthermore, after 1970, heterogeneity in terms of population size across counties appears jointly

with county variance heteroscedasticity. Figure 2 evidences that the greatest concentration of popu-

lation is in the county of Suffolk which includes the city of Boston.

In Table 2, we carry out Kendall’s τ index per year as a non-parametric measurement of the

association between population density and each covariate. Table 2 depicts that, excluding 1970, the

1970 1980 1990 2000 2010
Distance from Boston 0.046 -0.275 -0.412 -0.422 -0.441

Ethnic Mix -0.285 -0.368 -0.468 -0.509 -0.538
Per capita Income -0.231 -0.226 -0.227 -0.225
Income Gini Index -0.108 0.412 0.357 0.355 0.364

Education 0.033 -0.214 -0.231 -0.248 -0.239
Amenities 0.189 0.192 0.139 0.145 0.149

Surface -0.242 -0.255 -0.190 -0.192 -0.195

Table 2: Kendall’s τ between density population and each predictor per decade.
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Sample Means  over time on log scale
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Sample Standard Deviations  over time on log scale
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Figure 1: Sample means in Figure 1(a) and sample standard deviations in Figure 1(b) of the census-
tract population densities per square mile of every county in Massachusetts, on a logarithmic scale.
Source: US Bureau of the Census; Calculus: authors.

distance from Boston is expected to be relevant in the description of the evolution of the population

density distribution, given the strong, negative dependence between Distance and density population.
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(a)

(b)

Figure 2: Maps of the distribution of the census-tract population densities in Massachusettes for 1970
(in Figure 2(a)) and for 2010 (in Figure 2(b)), on a logarithmic scale. The counties of Barnstable,
Nantucket, Duke and Franklin do not appear in 1970 map (white spaces indicate no census tracts in
1970).

As for the other covariates, a negative dependence exists between population density and ethnic Mix,

and a positive dependence exists between population density and the Gini index. Accordingly, we

expect that people prefer to move to places (e.g, to live in individual dwellings) where the ethnic

4



composition is distinguished by a high percentage of white people.

B Appendix: Technical details concerning econometric imple-

mentation

The Markov Chain Monte Carlo simulation was carried out on a MacBook Pro with CPU at 2.70

GHz with i5 Intel Core, 4 threads, and 16 GB of RAM. All statistical computations and graphics were

performed with the R package (R CORE TEAM, 2017). All the models were coded in Stan (Stan

Development Team, 2017), which is designed to work closely with the R package. Once the prior

distributions and the likelihood have been specified, the code is automatically translated in C++, and

a Hamiltonian Monte Carlo routine generates the chains. For each model, we ran a simulation of one

chain with 65,000 iterations, 15,000 iterations of burn-in, and a thinning of 10. Therefore, our final

sample is made up of 5,000 simulated values. The execution of the simulation took a minimum of 3

hours for Model 1 and a maximum of 80 hours for Model 6.

Following Browne (2009), to improve the performance of the MCMC estimation algorithms in the

models including random county effects, we employed a hierarchical centering reparameterization of

the county random effects γgt on the spatial surface Sg and the water areas Zg. In this respect,

Sg, Zgs are a sort of fixed effects for all census tracts belonging to the same county. The hierarchical

centering reparameterization both speeds up the MCMC algorithm and introduces some good mixing

benefits in the MCMC generations (i.e., the trace plots are dense, and the autocorrelation plots have

fast drop-offs).

As far as the models including CAR census random effects are concerned, we coded exact sparse

CAR census random effects as documented in Maxwell (2016) in the following way:

• we implemented a sparse representation of the matrices Wt, Dt in (φ1t, . . . φntt)|τt, αt ∼

MN(0, τt[Dt − αtWt]
−1) (which scales well for large spatial data sets and expedites computation);

• we manually specified the logarithm of the distribution of the vector (φ1t, . . . φntt), given τt, αt,

directly via the log-probability accumulator (Maxwell, 2016 notes that this trick increases computa-

tional efficiency);

• we efficiently computed the determinants of Dt − αtWt using the result

det(Dt − αtWt) ∝
n∏

i=1

(1− αtλit)
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where λ1t, . . . , λnt;t are the eigenvalues of D
−1/2
t WtD

−1/2
t , for t = 1, . . . , 5, which can be computed

only once and passed in as data. This procedure avoids the computation of det(Dt − αtWt) at each

iteration, which is a very computationally demanding operation.

As far as the hyperparameters αt, τt of the CAR census effects (φ1t, . . . φntt) are concerned we

assumed prior independence such that

logit(αt)
iid∼ N(0, 0.02), τt

iid∼ InverseGamma(0.5, 0.0005) ∀t = 1, . . . , T

The choice of a logit-normal prior density for the spatial autocorrelation αt’s has been borrowed from

R-INLA software. This software implements by default that kind of prior for the spatial autocorrela-

tion parameter. First it guarantees that (φ1t, . . . φntt) has a multivariate normal density probability

at each decade t, as each αt ∈ (0, 1) with probability 1. Second, that prior centers αt at 0.5 (with

a prior variance of around 0.0012) without having have heavy tails. In this way, we are assuming a

priori the presence of spatial correlation in the model, and this is consistent with the high values of

the empirical Moran’s I-index of the census tract population log-density per year shown in Table 1. In

addition, from a computational viewpoint, a logit-normal(0, 0.02) (rather than the more heavy-tailed

Uniform(0, 1)) prevents the simulation of αt from being stuck near the boundary one, without limiting

its point estimate to approach it, if so demanded by data. In general, heavy-tailed distributions make

Stan perform poorly since sampling from them is difficult for the Hamiltonian Monte Carlo algorithm

(Gelman, 2019 in https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations).

For variances τt’s, the prior InverseGamma(0.5, 0.0005) distribution guarantees that all reasonable

levels of variability are considered while avoiding the exclusion of small values. As Kelsall and Wake-

field (1999) have posited, in case of CAR random effects, the most common prior

InverseGamma(0.001, 0.001) tends to place most of the prior mass away from zero (on the scale

of the standard deviation). In situations in which the true spatial dependence between areas is

negligible (i.e., with a standard deviation close to zero), this dynamic may generate an artefactual

spatial structure in the posterior. For that reason, following Kelsall and Wakefield (1999), we set the

InverseGamma(0.5, 0.0005) prior distribution for τt. According to that assumption, the prior belief

on the standard deviation of the CAR census random effects centers around 0.5 with a 1% prior

probability of being less than 0.01 or larger than 2.5 (refer to the GeoBUGS User Manual by Thomas

et al. 2014).

The convergence diagnostics (Geweke test, effective sample size, traceplot, autocorrelation func-

tion) were computed for all parameters, indicating that convergence was achieved for almost all of
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them.

C Appendix: Bayesian methods for goodness-of-fit and model

selection

We assessed the goodness-of-fit of our model specifications by computing the Bayesian posterior

p-values of the alternative econometric specifications on the basis of a discrepancy measure between

the data of population density y and each Model M , for M = 1, . . . , 7. We adopted the χ2 discrepancy

measure suggested in Gelman et al. (1996):

χ2(Y rep,θM ) =
∑
i,t

(
log(Y

rep
it )− E(log Y

rep
it |θM )

)2
Var(log Y

rep
it |θM )

where θM summarizes all the unknown parameters in Model M, and Y rep denotes the replicated data

from the posterior-predictive distribution f(Y rep|Data,M) under Model M. Hence, the Bayesian

posterior p-value pM of Model M is defined as the tail area posterior-predictive probability that the

discrepancy χ2(Y rep,θM ) exceeds the “realized” value χ2(y,θM ), given all Data, that is,

(1) pM = P
(
χ2(Y rep,θM ) > χ2(y,θM )|Data

)
Values of pM around 0.5 indicate that model M fits quite well, while values close to zero or one suggest

a limited fitting capacity. Computation of pM has been performed via Markov Chain Monte Carlo

simulation.

A Bayesian comparison of the alternative specifications for Model 1 –7 was performed by com-

puting the Bayesian Deviance Information Criterion (DIC), the Logarithm of the Pseudo-Marginal

Likelihood, and the Percentage of the Bayesian Census Outliers. The Bayesian DIC is a general-

ization of the Akaike’s Information Criterion (AIC), and it is given by the deviance (i.e., two times

the log-likelihood) calculated in the posterior means of all parameters plus two times the effective

numbers of parameters (pD). Models with a small DIC are preferred to those with a large DIC. For

each decade t, the Logarithm of the Pseudo-Marginal Likelihood (LPML) is defined as the sum of

the logarithms of the Conditional Predictive Ordinates (CPO), and each CPOit is given by the value

of the posterior-predictive population density evaluated at the actual yit, conditionally to the sample

7



y−it not containing any data from census tract i at decade t. Thus,

LPMLt =

nt∑
i=1

log(CPOit) .

The larger the value of the CPO’s (and hence the larger the value of the LPML), the better the fit

of the model.

Last, a census tract i at time t is defined to be a Bayesian Outlier with level 90% if its real

population density yit falls into one of the two 5% tails of the marginal posterior-predictive density.
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D Appendix: Map of Massachusetts color-coded according to

the posterior CAR census frailties
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