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ABSTRACT
Increased planktonic foraminifera shell weights were recorded during the course of Termination
II at a tropical site off the shore of the Mauritanian coast. In order to investigate these increased
shell mass values, a series of physicochemical analyses were performed, including X-ray
computed tomography (CT). The data are given here. Furthermore, the relevant CT setup,
scanning, reconstruction, and visualization methods are explained and the acquired datasets
are given, together with 3D volumes and models of the scanned specimens.

Subjects Imaging, Marine Biology, Morphology

INTRODUCTION
Planktonic foraminifera are unicellular, marine microorganisms (protists) that produce
calcium carbonate (CaCO3) shells (tests). Their biomineralization plays a major role in
controlling the alkalinity and carbonate chemistry of the photic zone of the world ocean and
is intimately related to atmospheric pCO2 and the regional or global budgets of the carbon
system [1]. Planktonic foraminifera are known to considerably alter their shell weight
throughout the paleoceanographic record [2] and the degree of this alteration is a function
of latitude [3]. In an accompanying study of a tropical Atlantic core [4] we report relatively
small variation in the shell weights of the planktonic species Globigerina bulloides (NCBI:
txid69025; urn:lsid:marinespecies.org:taxname:113434) during the last two climatic cycles,
with the exception of an increased weight event during Termination II. In order to identify
the cause of these elevated shell mass values prior to their dissolution for geochemical
analyses, specimens from samples that surround this event were tomographically analyzed
to gain insights about the microscopic fossils. Analyses showed that the observed increase
in the recorded shell weights is the result of both thicker and thus more massive or heavier
tests, but also partly an artifact caused by increased sediment contamination.
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Figure 1. Location of the sampling site of the studied core GeoB 8502-2 along the north-western African margin,
located approximately 250 km off the shore of the Mauritanian coast and viewed in OpenStreetMap.

Laboratory X-ray micro-computed tomography (μCT) is a fast-growing method in various
scientific research applications, including micropaleontology, that allows non-destructive
imaging of fossils [5]. μCT analysis can give valuable information about seawater carbonate
chemistry [6], the preservation state of fossil foraminifera specimens [7, 8], changes in the
morphology [9] and the thickness of foraminifera shells [10–12], while its combination with
shell geochemical measurements is a powerful tool in the study of foraminifera shell
biomineralization [13, 14]. Despite the multiple uses of CT microscopy in foraminifera or
paleoceanographic studies, and its potential to archive specimens that are frequently
destroyed for geochemical analyses, only limited raw data are available for reanalysis.

The present dataset consists of tropical foraminifera samples that record a weight
anomaly during the penultimate deglaciation period. The direct impact of foraminifera
shell-building intensities on the alkalinity of the ocean and its atmospheric CO2 exchanges
stresses the importance to closely examine their shell mass and keep a record until their
role is better understood. Because weighing and CT scanning are non-destructive analytical
techniques, they are ideal to precede any destructive paleoceanographic analysis. CT
analysis focused mainly on the biometric characteristics of the specimens that underwent
geochemical analysis. However, although the specimens have been dissolved, their virtual
models, together with the original acquisition data, are provided here and readily available
for future use.

IMPLEMENTATION
The specimens used in the present analysis are from core GeoB850-2 (19° 13.27’ N,
18° 56.04’ W), which was retrieved from a depth of 2,956 m approximately 250 km off the
shore of the Mauritanian coast (Figure 1). The core samples were initially wet-sieved, and
the coarse fraction (<63 μm) was subsequently separated in different sieve fractions. The
analyzed specimens were picked from the 300–355 μm size fraction, and, after scanning,
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Figure 2. Customized sample container for foraminifera X-ray computer tomography analysis.

were dissolved for geochemical analyses. Samples from GeoB cores can be obtained from
MARUM GeoB Core Repository. Additional information about the study area, the materials
and the methods used for the present analyses can be found in the accompanying paper [4].
Nano-CT scanning was conducted with a Zeiss Versa 520 3D X-ray microscope at the X-ray
Microscopy (XRM) facility of the Natural History Museum, London. Samples were analyzed
in batches of nine shells using a customized sample container. The container was made
using a crystal clear quartz capillary cylinder piece of 2 cm height and 1 mm inner
diameter, blocked at one end with a 1 mm glass rod. The glass rod was forced into the
quartz cylinder until approximately 1 mm from its open end, creating a space of ≈0.8 mm3

for the microfossils (Figure 2). The cylindrical piece was stabilized around the glass rod with
nail varnish and the rod was inserted in the sample mounting pin vise. The foraminifera
specimens were subsequently transferred into the container with a saddle brush, together
with a calcite microcrystal as standard, and were stabilized with a drop of tragacanth gum.
The samples were left to dry before being loaded into the scanner for analysis.

The specimens were picked from the 300–355 μm size fraction and were analyzed at a
magnification of 4× by acquiring 1601 projections. Sample mount, X-ray source and detector
geometry were kept constant throughout the scans. For optimum foraminifera shell
acquisition, the voltage was set to 100 kV, the current at 90 μA (providing an overall power
of 9 W), and the exposure time was set to 2 s. A scan resolution voxel size of ∼1.2 μm3 was
typically achieved using this set up. The exact voxel of each scan, as provided by the
instrument, is given in the text file that accompanies each data set, and it is the one used for
segmentation.

Image segmentation followed by a surface determination function was performed using
Avizo® software without applying a de-noising filter. The watershed algorithm was mainly
used, which automatically separates adjacent areas on a grayscale image into different
‘materials’, based on user-defined attributes of certain pixels. The segmented areas involve
the shell area, the sediment contaminated area (dirt area) and the total internal void area
(protoplasm area). Initially, the test, the dirt and the background areas were defined,
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Figure 3. Example tomograph of scan GeoB 8502-2_Depth825, in which the HMASCII 3D volume of a processed
shell is superimposed.

whereas background marked were the pixels that did not refer to the two previous
attributes (shell, dirt). Subsequently the background ‘material’ was deleted and the internal
void area of the shell was segmented, using the ambient occlusion module, as ‘protoplasm’.
The three different areas were then added together to produce the ‘cell’ area, which is the
total area occupied by the foraminifer (Figure 2 in [4]).

AVAILABILITY OF SOURCE DATA AND REQUIREMENTS
The data presented here in detail accompany a recent paper [4], where they are
summarized and discussed further. Analysis of the high-resolution CT scan images of the
foraminifera specimens led to accurate determination of their cell volumes. This, combined
with their weighed masses, allowed volume normalized test weights (or shell densities) to
be reported for the first time. CT data are provided in the form of 16-bit TIFF image stacks,
with associated voxel size and other scan settings in the accompanying text file. The virtual
specimens, together with the different spatial information that resulted from the analyses
of the tomographs, are given in Tables 1–3, where Shell volume is the volume of shell calcite
mass, shell area is the outer surface area of the calcite mass. The ratio of shell volume/shell
area (or ‘specific surface area’ [6]) is a measure of average shell thickness. Total cell volume
is the sum of shell and internal void (protoplasm) volumes, and dirt % is the percentage of
the volume segmented as contamination within the total cell volume.

The processed 3D volumes of each specimen created using the surface determination
function are also provided with the scan dataset in HMASCII file format. The 3D volumes
can be viewed with any 3D model viewer, while the two datasets can be combined in CT
image analysis software (Figure 3). Interactive views of the 3D models available in the
Sketchfab repository are also embedded in the tables, enabling the virtual specimens to be
interactively explored.

DISCUSSION
Acquisition and segmentation of tomographic images is a tedious and time-consuming task.
To this extent, the availability of virtual micropaleontological specimens, together with
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Table 1. Measurements based on the segmentation of specimens in a sample at 785 cm below the sea floor of
core GeoB 8502-2, corresponding to 122.5Kyrs before present.

Sample 785 cm Interactive
3D Models

Shell Volume
(µm3)

Shell Area
(µm2)

Shell thickness
(µm)

Cell Volume
(µm3)

Dirt

GeoB 8502-
2_Depth785_

Shell 1

5,319,397 973,457 5.5 20,133,400 7%

GeoB 8502-
2_Depth785_

Shell 2

5,228,296 1,069,520 4.9 23,128,400 7%

GeoB 8502-
2_Depth785_

Shell 3

5,014,924 988,223 5.1 20,624,600 3%

GeoB 8502-
2_Depth785_

Shell 4

5,699,836 1,127,470 5.1 25,106,100 9%

GeoB 8502-
2_Depth785_

Shell 5

4,867,658 921,172 5.3 18,882,400 2%

GeoB 8502-
2_Depth785_

Shell 6

5,548,905 1,126,413 4.9 24,397,400 9%

GeoB 8502-
2_Depth785_

Shell 7

4,542,654 1,030,054 4.4 21,945,300 6%

GeoB 8502-
2_Depth785_

Shell 8

5,566,874 1,035,128 5.4 22,689,200 1%

GeoB 8502-
2_Depth785_

Shell 9

4,918,244 1,105,755 4.4 24,028,000 2%

Average 5,189,643 ± 7% 1,041,910 ± 7% 5.0 ± 7% 22,326,089 ± 9% 5%

curated CT scan data, is an innovative characteristic of the present work. The provided 3D
foraminifera shell volumes in HMASCII format retain the segmentation coordinates and
can be used together with the TIFF image stack in any CT image analysis software to mask
out the pixel areas that correspond to each specimen. This can be particularly useful for
studies that focus on the grayscale intensity distribution of the image stack in the present
dataset.
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Table 2. Measurements based on the segmentation of specimens in a sample at 825 cm below the sea floor of
core GeoB 8502-2, corresponding to 132.2 Kyrs before present.

Sample 825 cm Interactive
3D Models

Shell Volume
(µm3)

Shell Area
(µm2)

Shell thickness
(µm)

Cell Volume
(µm3)

Dirt

GeoB 8502-
2_Depth825_

Shell 1

5,327,092 962,894 5.5 20,825,700 39%

GeoB 8502-
2_Depth825_

Shell 2

5,916,615 967,372 6.1 20,921,000 8%

GeoB 8502-
2_Depth825_

Shell 3

5,375,810 1,055,036 5.1 23,055,000 8%

GeoB 8502-
2_Depth825_

Shell 4

6,885,647 1,178,105 5.8 27,290,900 9%

GeoB 8502-
2_Depth825_

Shell 5

6,205,883 1,220,864 5.1 28,907,800 25%

GeoB 8502-
2_Depth825_

Shell 6

6,233,948 1,000,779 6.2 22,787,800 26%

GeoB 8502-
2_Depth825_

Shell 7

7,657,985 1,387,413 5.5 34,866,200 21%

GeoB 8502-
2_Depth825_

Shell 8

5,139,404 964,780 5.3 19,186,100 19%

GeoB 8502-
2_Depth825_

Shell 9

6,106,162 935,082 6.5 19,301,100 15%

Average 6,094,283 ± 14% 1,074,703 ± 14% 5.7 ± 9% 24,126,844 ± 22% 19%

X-ray microscopy and accessible curated CT data in processable forms can offer vast
amounts of morphological data on foraminifera fossils and have the potential to promote
better (more accurate) species descriptions (see video summary (Figure 4)). The availability
of larger databases can advance virtual and distant learning, or complement
computer-aided species digital identification software [15] to conduct larger-scale
morphometric studies of foraminifera that can help to quantify the ecological and
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Table 3. Measurements based on the segmentation of specimens in a sample at 865 cm below the sea floor of
core GeoB 8502-2, corresponding to 139.1 Kyrs before present.

Sample 865 cm Interactive
3D Models

Shell Volume
(µm3)

Shell Area
(µm2)

Shell thickness
(µm)

Cell Volume
(µm3)

Dirt

GeoB 8502-
2_Depth865_

Shell 1

4,171,795 926,927 4.5 19,457,800 2%

GeoB 8502-
2_Depth865_

Shell 2

4,570,961 1,058,658 4.3 23,419,300 1%

GeoB 8502-
2_Depth865_

Shell 3

3,401,100 654,190 5.2 11,831,500 5%

GeoB 8502-
2_Depth865_

Shell 4

5,002,276 913,557 5.5 18,774,900 0%

GeoB 8502-
2_Depth865_

Shell 5

4,173,558 903,174 4.6 18,207,700 5%

GeoB 8502-
2_Depth865_

Shell 6

4,052,656 947,705 4.3 19,036,800 4%

GeoB 8502-
2_Depth865_

Shell 7

4,917,115 985,332 5.0 21,232,100 9%

GeoB 8502-
2_Depth865_

Shell 8

5,439,635 967,690 5.6 21,157,000 6%

GeoB 8502-
2_Depth865_

Shell 9

3,847,958 910,403 4.2 18,705,500 7%

Average 4,397,450 ± 15% 918,626 ± 12% 4.8 ± 11% 19,091,400 ± 17% 4%

evolutionary dynamics of taxa in space and time. Apart from studies that uses CT analysis
to examine biometrical foraminifera parameters [9, 10, 16], there are studies that can use
the pixel’s gray levels to extract geochemical environmental information [6], or information
about the corrosion state of shells [17]. Knowledge of the degree of shell dissolution is of key
importance in the study of foraminifera shell mass.
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Figure 4. Video of example X-ray tomographic micropaleontological data from Globigerina bulloides sampled at
three different core depths. See: https://youtu.be/gQ0VoE4YNbc

CT information is particularly useful in the study of foraminifera shell mass because in
order to ascertain the cause behind shell mass changes in the paleoceanographic record, it
is important to have foraminifera biometric information (cell volumes) and information
about the quantity of calcite mass loss to dissolution [13]. It is also important to know the
degree of contamination caused by sediment infilling of chambers, which – as shown in the
recent study [4] – can yield considerable artifacts.

CONCLUSIONS
Micro-CT scanning is proving to be a particularly useful tool in micropaleontological
research. Apart from providing information about fossil specimen morphometry or state of
preservation, it can be also used to determine and quantify the degree of specimen
cleanliness.

DATA AVAILABILITY
Supporting data is available in the GigaScience GigaDB repository [18]. Sketchfab specimen
3D models are also available [19], alongside 3D printable models in the Thingiverse
repository [20].
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