
This is the **accepted version** of the journal article:

Lengagne, Thierry; Ferrandiz-Rovira, Mariona; Superbie, Clara; [et al.]. «Geographic variation in marmots' alarm calls causes different responses». *Behavioral Ecology and Sociobiology*, Vol. 74 (2020), art. 97. DOI 10.1007/s00265-020-02858-5

This version is available at <https://ddd.uab.cat/record/299920>

under the terms of the IN COPYRIGHT license

1 **Geographic variation in marmots' alarm calls causes different re-**
2 **sponses**

3

4 Thierry Lengagne^{1*}, Mariona Ferrandiz-Rovira^{2,3,4*}, Clara Superbie^{2,5}, Irene Figueroa^{3,4}, Coraline
5 Bichet⁶, Bernat Claramunt-Lopez^{3,4}, Aurélie Cohas²

6

7 ¹Laboratoire Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon ; ENTPE,
8 CNRS, Université Lyon1, 6 Rue Raphaël Dubois 69622 Villeurbanne, France.

9 ²Laboratoire Biométrie et Biologie Évolutive, Université de Lyon, CNRS, UMR 5558, Université
10 Lyon 1, 69622, Villeurbanne, Lyon 69000, France

11 ³CREAF, Cerdanyola del Vallès 08193, Catalonia

12 ⁴BABVE Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Catalonia

13 ⁵Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N
14 5E2, Canada

15 ⁶Institut für Vogelforschung "Vogelwarte Helgoland" (Institute of Avian Research), Wilhelmsha-
16 ven, Germany

17 * T.L. and M.F.-R. contributed equally to this manuscript and are designated for co-first author-
18 ship.

19

20 **Authors for correspondence:**

21 Mariona Ferrandiz-Rovira, e-mail: mariona.ferrandiz@uab.cat

22 Thierry Lengagne, e-mail: thierry.lengagne@univ-lyon1.fr

23 ORCID Mariona Ferrandiz-Rovira ID <https://orcid.org/0000-0001-8548-2851>

24 **Abstract**

25 Geographic variation in acoustic signals has been investigated for five decades to better under-
26 stand the evolution of communication. When receivers are able to discriminate among signals
27 and to react accordingly, geographic variation can have major impacts on the ability of conspecific-
28 ics to communicate. Surprisingly, geographic variation in alarm calls and its consequences for the
29 communication process have been so far neglected despite their crucial role on individual surviv-
30 al. Working with four wild populations of Alpine marmots (*Marmota marmota*), we found differ-
31 ences in the acoustic structure of their alarm calls. These differences cannot be explained by geo-
32 graphic or genetic distances but more likely by other mechanisms including random processes.
33 Moreover, playback experiments provided evidence that receivers discriminate between alarm
34 calls from their own *versus* other populations, with responses at lower intensity when the alarm
35 calls played back originated from their own population. Research on the mechanistic causes of
36 geographic variation and on the relationship between alarm call variation, familiarity and intelli-
37 gibility of signal and behavioral responses is now required to better understand how predation
38 pressure, and more widely natural selection, could drive the evolution of communication.

39

40 **Significance statement**

41 Dialects (*i.e.* geographic variation) can have major impacts on the ability of conspecifics to
42 communicate. Surprisingly, dialects in alarm calls have been neglected despite their crucial role
43 on survival of individuals. Alpine marmots have dialects in alarm calls and discriminate their own
44 dialects from others, being more frightened by alarm calls from another population than by those
45 from their own. Confronted with an unknown dialect, marmots may adopt a self-preserving strat-

46 egy and choose to run away before assessing the danger.

47

48 **Keywords:** accent, acoustic communication; dialect; genetic differentiation; geographic varia-
49 tion; alarm call

50

51 **Acknowledgements**

52 We thank all the students involved in marmot recording. We are grateful to the golf of Tignes for
53 allowing us to work on its green. We are deeply grateful to the commune of Tignes for the use of
54 the Santel chalet. In the Pyrenees, we warmly thank all the people involved in field campaigns
55 and special thanks to A. Planella and M. Unzeta (supported by a COLAB grant from the Catalan
56 Government). MFR thanks the Generalitat de Catalunya (2017 SGR 1006). We further
57 acknowledge James F. Hare, D. Blumstein and two anonymous reviewers for helpful and con-
58 structive comments and suggestions that helped us to improve a previous version of this paper.
59 We also thank F. Kirkpatrick Baird for carefully editing this paper.

60 **Introduction**

61 Considerable geographic variation among populations in acoustic signals, usually termed dialect
62 or accent (Conner 1982), has been documented across the whole animal kingdom (in mammals
63 (Lameira et al. 2010), in birds (Krebs and Kroodsma 1980), in anurans (Velásquez 2014), in fish
64 (Parmentier et al. 2005) and in invertebrates (Zuk et al. 2001), for reviews, see Wilczynski and
65 Ryan 2001, Podos and Warren 2007). Many factors can influence geographic variation in acoustic
66 signals, such as geographic barriers (Thomas et al. 1988; Cleator et al. 1989; Thomas et al. 1992;
67 Perry and Terhune 1999), that may imply environmental differences (habitat structure, back-
68 ground noise, Hunter and Krebs 1979; Wiley and Richards 1982; van Parijs et al. 2003; Nicholls
69 and Goldizen 2006) or variation in selection pressures, notably through sexual selection (*e.g.*, fe-
70 male preferences, Slater 1986). Various processes, such as genetic and/or cultural drifts between
71 isolated populations (Baker 1982; Mundinger 1982; Davidson and Wilkinson 2001; Janik and
72 Slater 2003; Irwin et al. 2008) are involved in geographic variation in acoustic signals, and study-
73 ing this variation is particularly relevant to understanding divergent evolution in communication
74 systems (Wilczynski and Ryan 2001; Campbell et al. 2010).

75 Geographic variation of signals implies divergences in the structure of the vocalizations
76 but must also involve detection and discrimination processes by the receiver. For instance, exten-
77 sive literature on songbirds shows that geographic variation can strongly affect breeding behav-
78 ior, especially mate attraction and intra-sexual competition (Searcy et al. 2002). Many studies
79 suggest that individuals are able to discriminate among songs from different populations, prefer-
80 ring the signal of their local population (Baker 1982; Searcy et al. 2002; Gray 2005; Boul et al.
81 2007; Podos 2007; Nicholls 2008; Uy et al. 2009; Bradley et al. 2013; Mortega et al. 2014; Lin et
82 al. 2016); even over geographically close populations (Leader et al. 2002; but see Colbeck et al.

83 2010; Danner et al. 2011). As such, dialects can act as prezygotic barriers and play an important
84 role in speciation (Baker and Cunningham 1985; Slabbekoorn and Smith 2002; Price 2008; Wil-
85 kins et al. 2013). Similar patterns and processes have also been suggested in mammals, although
86 evidence is much more limited (Maeda and Masataka 2010).

87 To date, geographic variation has been evidenced primarily in social calls and songs,
88 while knowledge about geographic variation in alarm calls and perception of this variation by the
89 receiver remains scarce, even though alarm calls could be as relevant to speciation as acoustic
90 sexual signals because of their direct consequences on the survival of individuals. Alarm calls are
91 often a repetition of a single call unit (Randler et al. 2011; but see for instance complex syntax in
92 mobbing calls, Suzuki et al. (2016) and the complex signal structure in monkey screams, Zuber-
93 bühler 2009). Both the structure of the note and its repetition rate can be used to encode infor-
94 mation (Manser 2001, but see Rendall et al. 2009). Geographic variation in alarm calls have been
95 documented in several mammalian species (Slobodchikoff et al. 1998; Francescoli 2002; Eiler
96 and Banack 2004; Matrosova et al. 2012; Schlenker et al. 2014; Loughry et al. 2019) while they
97 were absent in others (e.g. in yellow-bellied marmots, *Marmota flaviventris*, Blumstein and
98 Armitage 1997). When present, their perceptual salience remains unknown (Zuberbühler 2009).
99 Hence, the importance of alarm calls variation for the communication process is currently un-
100 known and playback experiments are necessary to determine their biological relevance.

101 Alpine marmots are cooperatively breeding ground-dwelling territorial squirrels living in
102 family groups. Territory surveillance is undertaken by all the individuals of the family group.
103 Once a predator is detected, marmots can produce alarm calls to warn other individuals before
104 hiding in their burrows (Perrin et al. 1993). Marmot alarm calls are usually composed of one ste-
105 reotyped and frequency-modulated single note (Perrin et al. 1993). Alpine marmots are naturally

106 distributed in the Alpine arc and the Carpathian mountains and were successfully reintroduced in
107 the Pyrenees from 1948 to 1988.

108 We investigated the existence of geographic variation in alarm calls produced by Alpine
109 marmots (*Marmota marmota*) from two native populations of French Alps (Vanoise) and two re-
110 introduced in the Pyrenees. One of the reintroduced population originated from the Vanoise and
111 the other from the Mercantour mountain range (Bichet et al. 2016). The comparison between the
112 native populations in the Alps and the reintroduced populations in the Pyrenees is of particular
113 interest to investigate the relationship between signal variation and genetic differentiation, as well
114 as their consequences in terms of between-population recognition. In this study, we investigated
115 whether geographic variation is encoded in the acoustic structure of alarm calls produced by
116 marmots living in the four studied populations. Although dynamic interplay between song learn-
117 ing mechanisms and geographic isolation have been evidenced to be at the origin of geographic
118 variation in bird song (Podos and Warren 2007), the processes underlying the evolution of geo-
119 graphic variation in alarm calls remain to be described. While oscines songs are usually learned
120 (Kroodsma 2004), and display geographic variation likely to result from short-term, cultural, or
121 ecological processes (e.g. Ruegg et al. 2006; Halfwerk and Slabbekoorn 2009), rodents alarm call
122 structures are suspected to have a substantial genetic basis (Blumstein 2007; Blumstein et al.
123 2013) rather than being affected by cultural drift. Therefore, we expected to observe a strong rela-
124 tionship between alarm call variation and genetic differentiation.

125 We also investigated whether receivers would discriminate among the alarm calls, de-
126 pending on the population they originated from. We conducted playback experiments to deter-
127 mine whether receivers perceived alarm call variation produced by different populations and
128 changed their antipredatory response. Given that antipredatory response has direct consequences

129 on the survival of individuals but could be costly in terms of time and energy, animals should re-
130 spond to an alarm call only when relevant. We thus expected marmots to discriminate between
131 alarm calls originating from their own population and alarm calls originating from foreign popu-
132 lations, and to increase their antipredatory response to alarm calls of their population.

133

134 **Methods**

135

136 **Study populations**

137 We studied Alpine marmots from four populations (Supplementary Material S1): Sassi  re and
138 Tignes were native populations of the Western Alps (Vanoise mountain range) located 10 km
139 apart, while Cerdanya and Ripoll  s, located 40 km apart and 500 km away from the native ones,
140 are reintroduced populations from the South-eastern Pyrenees (Couturier 1955; Ramousse et al.
141 1992). Although all these populations showed a significant genetic differentiation, the source
142 population of Ripoll  s originated from the Vanoise mountain range and was therefore genetically
143 closer to the native populations (Sassi  re and Tignes) than Cerdanya, the other Pyrenean popula-
144 tion, which was genetically closer to native populations from the Mercantour mountain range
145 (Bichet et al. 2016). All four populations were characterized by short vegetation typical of alpine
146 meadows. In all populations, foxes were present, and hikers were common, sometimes accompa-
147 nied by dogs on leash. Hunting was forbidden in all populations and no marmot killed by dogs
148 were reported.

149 Within each population, intensive behavioral observations allowed us to precisely identify
150 family groups and to locate main burrows and territory borders. To conduct genetic analyses, 151
151 unrelated individuals were captured in these four populations (all the details about the sampling

152 and the genetic analyses are given in the Supplementary Material S2).

153

154 **Does the acoustic structure of alarm calls differ between populations?**

155 From 2011 to 2014, alarm calls were recorded between mid-April and mid-July from 8:00 am to
156 6:00 pm, during the main activity period of the marmots. Alarm calls from Sassi  re were record-
157 ed in 2011 and 2012, those from Tignes and Cerdanya in 2013 and those from Ripoll  s in 2013
158 and 2014. An omnidirectional microphone (Sennheiser ME62-K6P) connected to a Fostex
159 FR2LE recorder (frequency sampling: 44.1 kHz, resolution: 16 bits) was placed approximately 2
160 m from the main burrow entrance in order to maximize the chances of recording alarm calls.

161 Once a recording was obtained, we moved to another territory not adjacent to the previous one to
162 record another individual. Marmots typically retreated into their burrows during the setup of the
163 recording material but re-emerged within minutes. Once individuals had resumed their foraging
164 activity, they were exposed to a threatening situation in order to trigger the emission of alarm
165 calls by a focal individual: a human appeared promptly from a hide situated 60 to 80 m away
166 from the burrows and ran in the direction of the marmot. This protocol triggered alarm calls in
167 almost all cases. To avoid recording the same individuals several times, we did not record several
168 individuals within the same territory. Because body size and age might impact frequencies of vo-
169 calizations (Tubaro and Mahler 1998; Blumstein and Munos 2005; but see Matrosova et al.

170 2007), alarm emitters included in the study were all adults, of 3 years old or more (when they
171 reach adult size and stop growing). Given that Alpine marmots are monomorphic, we did not ex-
172 pect sex variation in alarm calls, although sex variation in alarm calls has been found in a dimor-
173 phic and closely related species, the yellow-bellied marmot (Blumstein and Munos 2005). If sex
174 variation is present in the alarm call of Alpine marmot, this would add unexplained variance to

175 our analysis and reduce our capacity to detect the effect of geographic variation.

176 Alarm call records were analysed by the same person (CS) using Avisoft SASlab Pro
177 (version 5.2.09). They were high-pass filtered to remove all noise corresponding to low frequen-
178 cy (*i.e.* less than 1 kHz, mainly wind noise, Hamming windows, FFT 1024pts). Each individual
179 emitting a single calling bout composed of a variable number of alarms calls was recorded. A
180 maximum of 6 alarm calls were processed per calling bout (median: 6, range: 1-6, mean: 4.61,
181 standard deviation: 1.85). From the 37 calling bouts from Sassi  re, the 23 from Tignes, the 55
182 from Cerdanya and the 35 from Ripoll  s, 135, 110, 275 and 145 alarm calls were respectively
183 selected and the modulation of their fundamental frequency was described. For each call, a spec-
184 trogram (FFT 1024pts, overlap 93.75%, Hamming windows, frequency resolution, 47Hz) was
185 performed and the frequency modulation pattern was described using a zero crossing analysis
186 (Staddon et al. 1978; Richard 1991). This gives a measure of a full cycle period and thus the in-
187 stantaneous frequency of the signal. Then, different acoustic parameters that describe the struc-
188 ture of a frequency modulation (see for instance Lengagne 2001) were measured with the same
189 settings (*i.e.* same temporal and spectral windows): the initial, maximum and final frequencies (in
190 kHz) and durations (in ms) of the ascendant (AD), stationary (SD) and descendant (DD) phases
191 of the fundamental frequency (Fig. 1). By doing so, we avoided measuring parameters such as
192 harmonics which are highly altered during the signal propagation in the transmission channel.
193 The maximum and final frequencies were discarded in subsequent analyses due to their strong
194 correlation with the other variables (see Table 1).

195

196 *Statistical analyses*

197 To test for differences in the acoustic structure of alarm calls between the four populations, we

198 fitted four linear mixed-effect models with either the ascendant phase (AD), the stationary phase
199 (SD), the descendant phase (DD) duration or the initial frequency (F1) as the response variable,
200 the population as a fixed effect and the calling bout (confounded with individual identity in our
201 study) as a random effect on the intercept.

202 We then tested for potential differences in the acoustic structure (AD, SD, DD and F1) of
203 alarm calls among the four populations using a Linear Discriminant Analysis (LDA). To further
204 compare each pair of populations, we built six other LDAs. To overcome bias due to uneven
205 sample size between individuals and populations, we randomly selected N calls per population
206 without replacement with N equal to the number of alarm calls of the population with the smallest
207 sample size involved in the comparison. Reclassification rates using cross validation were then
208 calculated with half the data set – the training sample – randomly selected to build the model and
209 the other half – the test sample – used to calculate the percentage of correct classification. The
210 entire procedure, including the random selection of N calls/population, was repeated 1,000 times.
211 We calculated the mean of all obtained percentages of correct classification and their 95% confi-
212 dence intervals. We assumed that the acoustic structure differed between the populations if the
213 percentage of correct classification corresponding to a random classification (%R) was not in-
214 cluded in the estimated 95% confidence intervals.

215 Then, we tested whether the acoustic distance (log-transformed pairwise differences of
216 the x-coordinates of the barycenter for each population in the linear discriminant analysis with
217 the four populations) between populations positively correlated with either the genetic distance
218 (pairwise F_{ST} values linearized as $F_{ST}=F_{ST}/(1-F_{ST})$; Weir and Cockerham 1984) or the geographic
219 distance (log-transformed linear distance in kilometres, see the Supplementary Material S2) be-
220 tween the populations using one-tailed Mantel tests (all permutations, Mantel 1967).

221

222 **Do marmot responses to alarm calls vary depending on the population of**
223 **origin of the emitter?**

224 *Preparation of acoustic stimuli*

225 Alarm calls previously recorded from Tignes, Sassi  re and Cerdanya were used to carry out a
226 playback experiment on marmots from Sassi  re and Tignes in 2015. To limit pseudoreplication,
227 we used 7 different alarm call bouts from 7 different individuals for each of the three populations.

228 Hence, we used 21 different alarm call bouts during our playback experiments to avoid behavioral
229 responses of marmots to be due to the uniqueness of one soundtrack. We selected bouts with
230 the best signal to noise ratio to ensure an efficient propagation of the signal during playback tests.

231 Each bout was composed of 5 randomly chosen alarm calls emitted by the same individuals and
232 separated on average by 0.5s of silence (range 0.46 - 0.58s). The silence duration between calls
233 was adjusted to obtain a bout duration of 3s thus mimicking the average bout duration previously
234 observed in our study.

235

236 *Electroacoustic material and playback test*

237 To our knowledge the amplitude of alarm calls of Alpine marmots has never been measured accurately (*i.e.* by taking into account the precise distance between the exact position of the head of
238 the emitter and the sound level meter). Hence, we decided to match by ear the amplitude of the
239 calls broadcast to a natural call amplitude during a pilot study, with the estimation of the call am-
240 plitude at 20m from the speaker. This amplitude was then measured with a sound level meter Lu-
241 tron SL-4001, (C weighting, slow settings at 1m in front of the loudspeaker) and corresponded to
242 an average value of 100 dB(C). This amplitude is close to the value measured on yellow-bellied

244 marmot (95-100 dB, Lea and Blumstein 2011). To perform playback tests, we used a speaker
245 (SMC8060 Beyma amplified loudspeaker) connected to a Fostex FR2LE. The speaker was placed
246 on the ground in the upper part of the focal territory at 20-30m of the main burrow entrance.
247 Marmots typically retreated into their burrows during the installation but they re-emerged within
248 minutes and usually went back to the same place. Once marmot displayed a normal activity such
249 as foraging between 5 m and 10 m away from any burrow entrance and at 10-25m from the loud-
250 speaker, an observer placed outside of the focal family group triggered the alarm call playback
251 (beginning of the trial). Once the alarm call played, observers filmed the focal adult individual
252 with a digital video camera (Sony® Handycam model DCR-DVD650 or JVC® digital video
253 model GZ-E 209). The trial was considered completed when the focal individual entered into a
254 burrow, resumed a normal activity (*i.e.* foraging) or 5 minutes after the beginning of the trial.

255 Between mid-May and mid-July, 2015, from 8:00 am to 6:00 pm, 43 tests were performed
256 in Sassièr (16, 17 and 10 tests with alarm calls from Sassièr, Tignes and Cerdanya respectively)
257 and 34 tests were done in Tignes (12, 8 and 13 tests with alarm calls from Tignes, Sassièr and
258 Cerdanya respectively). To avoid habituation as well as pseudoreplication, each territory was
259 tested once with a playback bout from Cerdanya, Sassièr or Tignes (*i.e.* a given marmot could
260 never be tested more than once under the same experimental setting) and two neighboring territo-
261 ries were never tested successively. Moreover, to avoid a neighbor-stranger effect (e.g. Wei et al.
262 2011; Hyman 2005, reviewed in Stoddard 1996) and to use unfamiliar calls to the receiver we
263 chose carefully the soundtrack used for each test to ensure that it was recorded in another part of
264 the population, at least 500m away from the tested marmot (*i.e.* receiver).

265

266 *Video processing*

267 All video records were displayed in AVS Video Editor (version 7.1) in slow motion (x0.25 result-
268 ing in 6 frames per second) by a unique observer (CS), blind to playback treatment, to ensure an
269 accurate identification of behaviors as well as to record their duration with an accuracy of 0.01s.
270 In one case out of 77, more than a single animal was present, we thus conducted the statistical
271 analyses with and without this trial but given that the results were qualitatively identical and
272 quantitatively similar, we chose to keep this trial in the analyses. We collected the occurrences
273 (coded as a binary outcome) of vigilance, the occurrences of flight/running, the occurrences of
274 entrance into a burrow, the time (in s) spent vigilant and the time (in s) until the focal individual
275 resumed foraging whenever possible. Vigilance behavior was defined as any posture where mar-
276 mots were standing on their rear feet, or standing on their four feet but suddenly putting their
277 head up and maintaining it above the horizontal plane of their body. Flight/running was defined
278 as an escape-related behavior towards a burrow entrance and was considered to be a more ex-
279 treme response than any vigilance posture.

280

281 *Statistical analyses*

282 To test whether the response to alarm calls depends on the population of the emitter, the occur-
283 rence of flight and of the entry to a burrow were entered as response variables in two generalized
284 linear models (GLMs) with a logit link and the variance given by a binomial distribution. Since in
285 nearly all playback trials (72 of 77) individuals became vigilant, the frequency of this behavior
286 could not be considered. The time spent vigilant and the time before resuming a normal activity
287 were further entered as response variables in two other GLMs with a logarithmic link and the var-
288 iance given by a Gamma distribution. In the last model, we categorized the intensity of the focal
289 individual response in four categories: no response, vigilance, flight and entry in a burrow. We

290 entered this ordinal variable as the response variable in an ordered logistic regression model. In
291 each of these five models, we first tested whether the responses were different when the playback
292 alarm calls originated from the population of the focal individual or from another population by
293 entering the origin of the playback (two-modalities factor: same or other population) in interac-
294 tion with the population of the focal individual (Tignes or Sassi  re) as explanatory fixed varia-
295 bles. Second, in five other models, we tested whether the geographic distance between the popu-
296 lation of the focal individual and the population of the signaler could further impact the responses
297 by entering the origin of the playback (three-modalities factor: same, close, remote) in interaction
298 with the population of the focal individual (Tignes or Sassi  re) as explanatory fixed variables.
299 Since interactions were not significant, only additive effects are presented in the results. The ab-
300 sence of interactive effects indicates that Tignes and Sassi  re (focal individuals) behave similarly
301 when they are faced towards the same and other populations (five first models) or towards the
302 same, close and remote populations (five other models).

303

304 All statistical analyses conducted in this study were performed using the R software version 3.4.4
305 (R Core Team 2018) and the packages 'vegan' (Oksanen et al. 2018), 'nlme' (Pinheiro et al. 2018),
306 'multcomp' (Hothom et al. 2008), 'ade4' (Dray and Dufour 2007) and 'MASS' (Venables and Rip-
307 ley 2002).

308

309 **Data availability**

310 The datasets generated during and/or analysed during the current study are available from the
311 corresponding author on reasonable request.

312

313 **Results**

314 **Does the acoustic structure of alarm calls differ among populations?**

315 Marmot alarm calls from the four populations differed significantly in their initial frequencies ($F_{3, 146} = 2.63, P = 0.05$), ascendant phase durations ($F_{3, 146} = 11.33, P < 0.001$), stationary phase dura-
316 tions ($F_{3, 146} = 7.27, P < 0.001$) and in their descendant phase durations ($F_{3, 146} = 3.49, P = 0.02$).

318 Despite a strong overlap among the four populations when compared altogether (Supple-
319 mentary Material S3), alarm calls were always assigned more often to the population their emitter
320 originated from than to any other population. Calls were correctly classified in 44.14 [41.14;
321 47.05] % of the cases (while the percentage of random classification would have been 25%).
322 When populations were compared two by two, alarm calls were once again always better attribut-
323 ed to the population their emitters originated from than to the other one (percentage of random
324 classification: 50%). Percentages of correct classification ranged from 57.04 [54.07; 59.63] % to
325 76.18 [71.82; 80.91] % when comparing Sassi   with Ripoll  s and Tignes with Cerdanya re-
326 spectively (Table 2). All the acoustic variables (initial frequencies, ascendant, stationary and de-
327 scendant phase durations) contributed to the discrimination among the populations, but they
328 seemed to contribute differently to the variation between each pair of populations (Fig. 2).

329 The acoustic distances between two populations was neither explained by their genetic
330 distance (Mantel Spearman = -0.37, N = 6, p = 0.76) nor by their geographic distance (Mantel
331 Spearman = -0.26, N = 6, p = 0.80). Moreover, there is no evidence of genetic isolation by dis-
332 tance in our four populations (*i.e.* the genetic distances and geographic distances were not corre-
333 lated, Mantel Spearman = 0.43, N = 6, p = 0.17).

334

335 **Do marmot responses to alarm calls vary depending on the population of**

336 **origin of the emitter?**

337 Marmots exhibited lower intensity responses to alarm calls from their own population than to
338 alarm calls from another one (close or remote) ($\beta = -1.23 \pm 0.52$, $z = -2.40$, $N = 76$, $p = 0.02$). The
339 odds of a marmot showing a higher response decreased by a factor of 0.29 [0.10; 0.78] when the
340 alarm calls originated from its own population compared to another one. More specifically, mar-
341 mots showed a significantly lower propensity to flee (same = 57.14% vs. another = 83.33%, $\beta = -$
342 1.45 ± 0.58 , $z = -2.50$, $N = 76$, $p = 0.01$, Fig. 3-a) when the alarm calls originated from their own
343 population than from another one (close or remote). The rest of our results were not significant,
344 marmots were as likely to enter their burrow (same = 7.14% vs. another = 16.67%, $\beta = -0.96 \pm$
345 0.83 , $z = -1.15$, $N = 76$, $p = 0.25$, Fig. 3-b), to remain vigilant (same = 23.37s vs. another =
346 34.58s, $\beta = 0.002 \pm 0.006$, $z = 0.40$, $N = 74$, $p = 0.68$, Fig. 3-c), and to resume a normal activity
347 (same = 24.88s vs. another = 39.35s, $\beta = 0.003 \pm 0.005$, $z = 0.49$, $N = 68$, $p = 0.62$, Fig. 3-d)
348 when the alarm calls originated from their own population or from another one. The intensity of
349 the response was similar for alarm calls produced in a close or in a remote population (odds ratio
350 = 0.73 [0.19, 2.64], $\beta = -0.31 \pm 0.66$, $z = -0.47$, $N = 76$, $p = 0.64$). The propensity to flee (close =
351 80.00% vs. remote = 86.96%, $\beta = -0.20 \pm 0.83$, $z = -0.24$, $N = 76$, $p = 0.81$, Fig. 3-a), or to enter a
352 burrow (close = 88.00% vs. remote = 78.26%, $\beta = -0.71 \pm 0.80$, $z = -0.89$, $N = 76$, $p = 0.37$, Fig.
353 3-b), the amount of time spent vigilant (close = 34.58s vs. remote = 31.9s, $\beta = -0.02 \pm 0.33$, $z = -$
354 0.06, $N = 74$, $p = 0.95$, Fig. 3-c) and elapsed time before resuming a normal activity (close =
355 38.16s vs. remote = 39.35s, $\beta = -0.001 \pm 0.006$, $z = -0.29$, $N = 68$, $p = 0.77$, Fig. 3-d) did not vary
356 with the geographic distance between the focal and the other population. Marmots of different
357 populations behave similarly since no significant interaction between the population of the focal
358 individual (Tignes or Sassière) and the origin of the playback was detected.

359

360 **Discussion**

361 In the present study we described for the first time the acoustic structure of alarm calls produced
362 by adult Alpine marmots from two native and two reintroduced wild populations. We found that
363 the acoustic structure of Alpine marmots' alarm calls differed among the four populations and
364 that neither the genetic distance nor the geographic distance explained these differences. Moreo-
365 ver, the playback experiments provided evidence that receivers discriminate among alarm calls
366 from their own *versus* other populations.

367 Although alarm calls are a stereotyped signal, we found that the acoustic structure of Al-
368 pine marmots' alarm calls differed among the four studied populations. The presence of geo-
369 graphic variation in acoustic signals has been shown repeatedly in rich vocal repertoires such as
370 in bird songs (Nottetbohm 1969; Mundinger 1982; Zimmermann et al. 2016). The richness of avi-
371 an vocal repertoires offers a wide range of possibilities for geographic variation in note combina-
372 tions, presence or absence of some notes and/or rhythm of emission of different notes (Baker and
373 Jenkins 1987; Handford 1988; Shieh et al. 2013). However, such variation has been found also
374 within single stereotyped acoustic elements (e.g. those produced by bottlenose dolphins, *Tursiops*
375 *spp.*, Campbell 2004). In line with Campbell's (2004) study, we found that the structure of alarm
376 calls, short of 0.2 s, differed among marmot populations.

377 Furthermore, we found a clear difference in the structure of alarm calls used by two popu-
378 lations originating from two mountain ranges but also between populations separated by only 10
379 km (*i.e.* Sassière and Tignes). Acoustic variation is well documented at a large spatial scale
380 (Lougeard and Handford 1992; Wilczynski and Ryan 1999; Shizuka et al. 2016), but they can
381 also be observed at a microgeographic scale. Leader et al. (2008) documented geographic varia-

382 tion in orange-tufted sunbird (*Nectarinia osea*) song within two sub-populations separated by 100
383 m and a sharp boundary. Studies conducted simultaneously at different geographic scales remain
384 scarce, especially in mammals. To the best of our knowledge, only three studies on a phylogeneti-
385 cally close species to the Alpine marmot, the Gunnison's prairie dog (*Cynomys gunnisoni*), have
386 documented both large and microgeographic differences in alarm calls (Slobodchikoff and Coast
387 1980; Slobodchikoff et al. 1998; Perla and Slobodchikoff 2002), although a recent study contra-
388 dicts those results (Loughry et al. 2019).

389 We found that multiple sets of acoustic variables stood out as different between each pair
390 of populations. This lack of consistency suggests that the evolution of alarm call characteristics
391 could be explained by multiple selective forces or random processes rather than by a unique se-
392 lective process. Four main hypotheses (*i.e.* genetic distance, learning local adaptation and random
393 processes) have been proposed to explain the existence of geographic variation. In the present
394 study, we did not find any correlation between the acoustic and the geographic distances or be-
395 tween the acoustic and the genetic distances. The peculiar status of our studied populations is un-
396 likely to explain such a lack of relationship: the two reintroduced Pyrenean populations, although
397 originating from Alpine populations, are farther away both geographically and genetically than
398 the two native Alpine populations (Sassière and Tignes) are from each other (Bichet et al. 2016).

399 The learning hypothesis attributes acoustic variation among populations to the coloniza-
400 tion of a new area by young individuals before they have learned the song structure from their
401 parents (Thielcke 2008) or from social learning (Wich et al. 2012). The learning process is un-
402 likely to generate the pattern we observed since the founders caught for the reintroduction events
403 in Pyrenees were all adults (Ramousse and Le Berre 1995). Moreover, a genetic basis of vocali-
404 zations has been shown in several mammals including yellow-bellied marmots (e.g. Scherrer and

405 Wilkinson 1993; McCowan and Hooper 2002; Blumstein 2007).

406 Local adaptation resulting from differences in habitat characteristics or morphology could
407 result in the signal of geographic variation we observed. Geographic variation could result from
408 the optimization of sound transmission within the local environment (Morton 1975). Signal alter-
409 ation depends on vegetation cover density, atmospheric turbulence, height above the ground at
410 which a signal is transmitted (Wiley and Richards 1978; Lengagne et al. 1999) and the intensity
411 and the quality of the background noise (Ryan and Brenowitz 1985; Lengagne and Slater 2002).
412 In our study, although we did not measure vegetation coverage, the predominant vegetation for-
413 mation (high altitude alpine meadows) is similar in all populations. Vegetation is thus unlikely to
414 affect alarm call propagation here, as it was also concluded in a previous study on four other spe-
415 cies of marmots (Daniel and Blumstein 1998). Background noise level has been hypothesized to
416 influence signal evolution (e.g. in speckled ground squirrels, Matrosova et al. 2016). The Tignes
417 population is located in a mountain resort disturbed by anthropogenic noises but we did not ob-
418 serve higher minimum or maximum frequencies in the alarm calls recorded in Tignes compared
419 to the other less-disturbed populations. Alternatively, the geographic variation observed in alarm
420 calls may be due to mechanistic processes involved in sound production. For instance, in a study
421 between two (Sassière and Cerdanya) of the four studied populations significant differences in
422 both morphology and body mass have been found (Ferrandiz-Rovira et al, in prep) and could ex-
423 plain the differences observed in alarm calls. Further studies are needed to firmly establish a di-
424 rect link between morphology and alarm call structure.

425 Finally, rather than consider alarm call geographic variation due to selective forces, this
426 variation could also be due to random processes. The intra-population variance found in this
427 study may indeed be due to the effect of different stochastic processes that occurred in each popu-

428 lation, which could have led to the existence of divergent alarm calls.

429 As fleeing in response to alarm calls should provide a selective advantage by increasing
430 survival, marmots should react to all alarm calls despite discrimination abilities (but see trade-off
431 between vigilance and foraging, Lima and Dill 1990). Surprisingly, our tests revealed that receiv-
432 ers perceived acoustic differences and discriminated between local and foreign alarm calls. Such
433 behavioral consequences imply that these acoustic differences are meaningful for them (Soha et
434 al. 2016). In our study, marmots reacted more strongly to playback of alarm calls originating
435 from foreign populations. Moreover, the intensity of the response was similarly heightened for
436 alarm calls produced in a close or in a remote population, suggesting that these signals are simi-
437 larly perceived. Many studies focusing on male territorial defense or female attraction in birds
438 provide contrasted results about geographic variation perception: stronger response to local songs
439 in some cases, absence of preferences or mixed responses in others (see Becker 1983; Catchpole
440 and Slater 2008). However, studies on whether animals distinguish and react differently to con-
441 specific alarm calls originating from different populations were missing. Our study suggests that
442 mammals may discriminate between calls recorded in their own population and calls recorded in
443 other populations and react accordingly.

444 Experimental approaches with alarm call playbacks emphasized that intensity of animal
445 response varies according to the familiarity (Hare and Warkentin 2012) or to the intelligibility of
446 the signal. The classical familiar *versus* unfamiliar discrimination cannot explain our results be-
447 cause all animals were tested with unknown signals (*i.e.* signals never heard before either due to
448 its novelty or unfamiliarity), even when originating from their own population. However, famili-
449 arity *sensu lato* could explain our results. Indeed, calls emitted by conspecific living within a
450 same population could sound more familiar to the receivers than calls emitted by conspecific

451 from another population, even if the receivers do not have prior knowledge about the identity of
452 the signaler, as would be for humans the dialect of our natal region compared to another dialect.

453 Also, the fact that tested marmots reacted more strongly to alarm calls from other popula-
454 tions could be due to the fact that the existing alarm call differences among populations could
455 make alarm calls hardly intelligible for individuals hearing alarm calls from another population.
456 Thus, unintelligible signals could lead individuals to react more strongly to signals from other
457 populations than their own as a precautionary reaction. If an individual is not sure to have under-
458 stood the message of an alarm call (*i.e.* kind, localization and immediacy of the danger) but reacts
459 accordingly it has higher chances to save its life in case of a real danger. On the contrary, if an
460 individual hears an intelligible alarm call message (*i.e* from their own population) it can quickly
461 assess the situation and, once proven that no danger is around because no predator was present
462 during the playback trials, goes back to its normal behavior.

463 Finally, predator characteristics and associated perceived threats are known to alter alarm
464 calls (Dutour et al. 2016, 2017). Indeed, signal characteristics could differ according to predator
465 characteristics (Zuberbühler 2009). For instance, mammals can produce different alarm calls for
466 aerial versus terrestrial predators (e.g. in mustached tamarins, *Saguinus mystax*, Kirchhof and
467 Hammerschmidt 2006) or for the level of perceived threats (e.g. in bonnet macaques, *Macaca*
468 *radiata*, Coss et al. 2007). Although this is unlikely to explain the observed geographic variation
469 in marmots because alarm calls were elicited by a human at the same distance from burrows (60-
470 80 m). However, we cannot definitely rule out that marmots had different perceptions of this
471 same danger in the different populations, that they could modify the structure of their alarm call
472 accordingly and that receivers' behavior was altered in response.

473 The existence of geographic markers in acoustic signals could arise from both random

474 and selective processes that may act via genetic, cultural transmission or local adaptation path-
475 ways. In the context of alarm calls, further research on the proximate causes of geographic varia-
476 tion, the perception of dangers and the resulting emitted signals as well as the following behav-
477 ioral responses of the receivers are now required to better understand how predation pressure and
478 natural selection could drive the evolution of communication.

479

480 **Electronic supplementary material**

481 The online version of this article contains supplementary material, which is available to author-
482 ized users.

483

484 **Ethical statement**

485 *Funding*

486 This project was supported by COLAB and SGR (2017 SGR 1006) grants from the Catalan Gov-
487 ernment.

488 *Conflict of interest*

489 The authors declare that they have no conflict of interest.

490 *Ethical approval*

491 Fieldwork was conducted under permit number AP n82010/121 by the Préfecture de la Savoie.

492 All handling and sampling were done by three co-authors (M.F.R, A.C and I.F) who are author-
493 ized for experimentation with animals by the French Ministry of Agriculture and Fisheries or
494 Catalan Government (diplomas 0ETRY20090520, R45GRETAF110 and 53707-UAB-FELASA).

495 The protocol was approved by the ethical committee of the University of Claude Bernard Lyon 1
496 (n8BH2012-92 V1).

497 **REFERENCES**

498 Baker M (1982) Genetic population structure and vocal dialects in *Zonotrichia* (*Emberizidae*). In:
499 Acoustic communication in birds, p. 209–235. New York: Academic Press

500 Baker MC, Cunningham MA (1985) The biology of bird-song dialects. *Behav Brain Sci* 8:85

501 Baker AJ, Jenkins PF (1987) Founder effect and cultural evolution of songs in an isolated popula-
502 tion of chaffinches, *Fringilla coelebs*, in the Chatham Islands. *Anim Behav* 35:1793–1803

503 Becker PH (1983) The coding of species-specific characteristics in bird sounds. In: Kroodsma D,
504 Miller E (eds) Acoustic communication in birds , New York: Academic press, New York pp
505 213–252

506 Bichet C, Sauzet S, Averty L, Dupont P, Ferrandiz-Rovira M, Ferrari C, Figueroa I, Tafani M, Ré-
507 zouki C, López BC, Cohas, A (2016) Multiple geographic origins and high genetic differen-
508 tiation of the Alpine marmots reintroduced in the Pyrenees. *Conserv Genet* 17:1157–1169
509 (DOI: 10.1007/s10592-016-0851-4).

510 Blumstein DT, Armitage KB (1997) Alarm calling in yellow-bellied marmots: I. The meaning of
511 situationally variable alarm calls. *Anim Behav* 53:143–171

512 Blumstein DT, Munos O (2005) Individual, age and sex-specific information is contained in yel-
513 low-bellied marmot alarm calls. *Anim Behav* 69:353-361

514 Blumstein DT (2007) The evolution, function, and meaning of marmot alarm communication.
515 *Adv Study Behav* 37:371–400

516 Blumstein DT, Nguyen KT, Martin JGA (2013) Ontogenetic variation of heritability and maternal
517 effects in yellow-bellied marmot alarm calls. *Proc R Soc B* 280:20130176

518 Boul KE, Funk WC, Darst CR, Cannatella DC, Ryan MJ (2007) Sexual selection drives specia-
519 tion in an Amazonian frog. *Proc R Soc B* 274:399–406

520 Bradley DW, Molles LE, Waas JR (2013) Local–foreign dialect discrimination and responses to
521 mixed-dialect duets in the North Island Kōkako. *Behav Ecol* 24:570–578

522 Campbell GS (2004) Quantitative comparison of bottlenose dolphin (*Tursiops* spp.) whistles from
523 three geographic regions. MS thesis.

524 Campbell P, Pasch B, Pino JL, Crino OL, Phillips M, Phelps SM (2010) Geographic variation in
525 the songs of neotropical singing mice: testing the relative importance of drift and local ad-
526 aptation. *Evolution* 64:1955–1972

527 Catchpole C, Slater P (2008) *Bird song*. Cambridge: Cambridge university press.

528 Cleator HJ, Stirling I, Smith TG (1989) Underwater vocalizations of the bearded seal (*Erignathus*
529 *barbatus*). *Can J Zool* 67:1900–1910

530 Colbeck GJ, Sillett TS, Webster MS (2010). Asymmetric discrimination of geographical variation
531 in song in a migratory passerine. *Anim Behav* 80:311–318

532 Conner DA (1982) Dialects versus geographic variation in mammalian vocalizations. *Anim Be-*
533 *hav* 30:297-298

534 Coss RG, McCowan B, Ramakrishnan U (2007) Threat-related acoustical differences in alarm
535 calls by wild bonnet macaques (*Macaca radiata*) elicited by python and leopard models.
536 *Ethology* 113:352-367

537 Couturier M (1955) Acclimatation et acclimattement de la Marmotte des Alpes, *Marmota marmo-*
538 *ta* (Linné 1758), dans les Pyrénées françaises. *Saugetierkundliche Mitteilungen* 3:105–108

539 Daniel JC, Blumstein DT (1998) A test of the acoustic adaptation hypothesis in four species of
540 marmots. *Anim Behav* 56:1517-1528

541 Danner JE, Danner RM, Bonier F, Martin PR, Small TW, Moore IT (2011) Female, but not male,
542 tropical sparrows respond more strongly to the local song dialect: implications for popula-

543 tion divergence. *Am Nat* 178:53–63

544 Davidson SM, Wilkinson GS (2002) Geographic and individual variation in vocalizations by

545 male *Saccopteryx bilineata* (*Chiroptera: Emballonuridae*). *J Mammal* 83:526–535

546 Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. *J*

547 *Stat Softw* 22:1–20

548 Dutour M, Lena JP, Lengagne T (2016) Mobbing behaviour varies according to predator danger-

549 ousness and occurrence. *Anim Behav* 119:119–124

550 Dutour M, Lena JP, Lengagne T (2017) Mobbing behaviour in a passerine community increases

551 with prevalence in predator diet. *Ibis* 159:324–330

552 Eiler KC, Banack SA (2004) Variability in the alarm call of golden-mantled ground squirrels

553 (*Spermophilus lateralis* and *S. saturatus*). *J Mammal* 85(1):43–50

554 Francescoli G (2002) Geographic variation in vocal signals of *Ctenomys pearsoni*. *Acta Therio-*

555 *logica* 47:35–44

556 Gray DA (2005) Does courtship behavior contribute to species-level reproductive isolation in

557 field crickets? *Behav Ecol* 16:201–206

558 Halfwerk W, Slabbekoorn H (2009) A behavioural mechanism explaining noise-dependent fre-

559 quency use in urban birdsong. *Anim Behav* 78:1301–1307

560 Handford P (1988) Trill rate dialects in the Rufous-collared Sparrow, *Zonotrichia capensis*, in

561 northwestern Argentina. *Can J Zool* 66:2658–2670

562 Hare JF, Warkentin KJ (2012) The song remains the same: Juvenile Richardson's ground squirrels

563 do not respond differentially to mother's or colony member's alarm calls. *Curr Zool*

564 58:773–780

565 Hunter M, Krebs J (1979) Geographical variation in the song of the great tit (*Parus major*) in re-

566 lation to ecological factors. *J Anim Ecol* 48:759–785

567 568 Hyman J (2005) Seasonal variation in response to neighbors and strangers by a territorial songbird. *Ethology* 111(10):951-961

569 570 Irwin DE, Thimgan MP, Irwin JH (2008) Call divergence is correlated with geographic and genetic distance in greenish warblers (*Phylloscopus trochiloides*): a strong role for stochasticity in signal evolution? *J Evol Biol* 21:435-448

571

572 573 Janik V, Slater P (2003) Traditions in mammalian and avian vocal communication. In: Fragazy

574 MD, Perry MD (eds) *The biology of tradition: models and evidences*. Cambridge Universi-

575 ty Press, Cambridge, pp 213–235.

576 577 Kirchhof J, Hammerschmidt K (2006) Functionally referential alarm calls in tamarins (*Saguinus* *fuscicollis* and *Saguinus mystax*) evidence from playback experiments. *Ethology* 112:346–

578 354

579 580 Krebs J, Kroodsma D (1980) Repertoires and geographical variation in bird song. *Adv Study Behav* 11:143–177

581 582 Kroodsma D (2004) The diversity and plasticity of birdsong. In: Marler P, Slabbekoorn H (eds) *Nature’s Music*. London: Elsevier Academic, London, pp 108–130

583 584 Lameira AR, Delgado RA, Wich SA (2010) Review of geographic variation in terrestrial mam-
585 malian acoustic signals: Human speech variation in a comparative perspective. *J Evol Psychol* 8:309–332

586 587 Lea AJ, Blumstein DT (2011) Age and sex influence marmot antipredator behavior during peri-
ods of heightened risk. *Behav Ecol Sociobiol* 65:1525-1533

588 589 Leader N, Wright J, Yom-Tov Y (2002) Dialect discrimination by male Orange-Tufted sunbirds (*Nectarinia osea*): reactions to own vs. neighbor dialects. *Ethology* 108:367–376

590 Leader N, Geffen E, Mokady O, Yom-Tov Y (2008) Song dialects do not restrict gene flow in an
591 urban population of the orange-tufted sunbird, *Nectarinia osea*. *Behav Ecol Sociobiol*
592 62:1299–1305

593 Lengagne T, Aubin T, Jouventin P, Lauga J (1999) Acoustic communication in a king penguin
594 colony: importance of bird location within the colony and of the body position of the listen-
595 er. *Polar Biol* 21:262–268

596 Lengagne T (2001) Temporal stability over several years in the calls of eagle owl (*Bubo bubo*).
597 *Behaviour* 138:1407-1419.

598 Lengagne T, Slater PJB (2002) The effects of rain on acoustic communication: tawny owls have
599 good reason for calling less in wet weather. *Proc R Soc B* 269:2121–5

600 Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and
601 prospectus. *Can J Zool* 68:619-640

602 Lin A, Liu H, Chang Y, Lu G, Feng J (2016) Behavioural response of the greater horseshoe bat to
603 geographical variation in echolocation calls. *Behav Ecol Sociobiol* 70:1765–1776

604 Lougheed SC, Handford P (1992) Vocal dialects and the structure of geographic variation in mor-
605 phological and allozymic characters in the rufous-collared sparrow, *Zonotrichia capensis*.
606 *Evolution* 46:1443–1456

607 Loughry WJ, Oeser M, Anderson CD, Hoogland JL (2019) The importance of individual varia-
608 tion in the alarm calls of Gunnison's prairie dogs. *Anim Behav* 150:59-68

609 Maeda T, Masataka N (2010) Locale-specific vocal behaviour of the tamarin (*Saguinus I. labi-*
610 *atus*). *Ethology* 75:25–30

611 Manser MB (2001) The acoustic structure of suricates' alarm calls varies with predator type and
612 the level of response urgency. *Proc R Soc B* 268:2315–2324

613 Mantel N (1967) The detection of disease clustering and a generalized regression approach. Can-
614 cer Res 27:209-220.

615 Matrosova VA, Volodin IA, Volodina EV, Babitsky AF (2007) Pups crying bass: vocal adaptation
616 for avoidance of age-dependent predation risk in ground squirrels?. *Behav Ecol Sociobiol*
617 62:181-191.

618 Matrosova VA, Pivanova S V., Savinetskaya LE, Volodin IA, Volodina EV, Shekarova ON (2012)
619 The between-population variation of the alarm call in the speckled ground squirrel (*Sper-
620 mophilus suslicus*, Rodentia, Sciuridae): effects of sex, age and body mass. Zool Zhurnal
621 91:453–463

622 Matrosova VA, Rusin MY, Volodina EV, Proyavka SV, Savinetskaya LE, Shekarova ON,
623 Rashevska HV, Volodin IA (2016) Genetic and alarm call diversity across scattered popula-
624 tions of speckled ground squirrels (*Spermophilus suslicus*). *Mamm Biol* 81:255–265

625 McCowan B, Hooper SL (2002). Individual acoustic variation in Belding's ground squirrel alarm
626 chirps in the High Sierra Nevada. *J Acoust Soc Am* 111(3):1157-1160

627 Mortega KG, Flinks H, Helm B (2014) Behavioural response of a migratory songbird to geo-
628 graphic variation in song and morphology. *Front Zool* 11:85

629 Morton ES (1975) Ecological sources of selection on avian sounds. *Am Nat* 109:17–34

630 Mundinger P (1982) Microgeographic and macrogeographic variation in the acquired vocaliza-
631 tions of birds. In: Kroodsma D, Miller E (eds) *Acoustic communication in birds* New York:
632 Academic Press, New York, pp 147–208

633 Nicholls JA, Goldizen AW (2006) Habitat type and density influence vocal signal design in satin
634 bowerbirds. *J Anim Ecol* 75:549–558

635 Nicholls JA (2008) Site specificity in advertisement calls and responses to playbacks of local and

636 foreign call variants in satin bowerbirds, *Ptilonorhynchus violaceus*. Behav Ecol Sociobiol
637 62:831–841

638 Nottebohm F (1969) The song of the chingolo, *Zonotrichia capensis*, in Argentina: description
639 and evaluation of a system of dialects. Condor 71:299–315

640 Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB,
641 Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan R package ver-
642 sion 2.5-2. Community Ecology Package.

643 Parmentier E, Lagardère J, Vandewalle P, Fine M (2005) Geographical variation in sound produc-
644 tion in the anemonefish *Amphiprion akallopisos*. Proc R Soc B 272:1697–1703

645 Perla BS, Slobodchikoff CN (2002) Habitat structure and alarm call dialects in Gunnison's prairie
646 dog (*Cynomys gunnisoni*). Behav Ecol 13:844–850

647 Perrin C, Allainé D, Leberre M (1993) Socio-spatial organization and activity distribution of the
648 Alpine marmot *Marmota marmota* - preliminary results. Ethology 93:21–30

649 Perry EA, Terhune JM (1999) Variation of harp seal (*Pagophilus groenlandicus*) underwater vo-
650 calizations among three breeding locations. J Zool 249:181–186

651 Pinheiro J, Bates D, DebRoy S, Sarkar D (2018) nlme: Linear and Nonlinear Mixed Effects
652 Models.

653 Podos J (2007) Discrimination of geographical song variants by Darwin's finches. Anim Behav
654 73:833–844

655 Podos J, Warren PS (2007) The evolution of geographic variation in birdsong. Adv Study Behav
656 37:403–458

657 Price T (2008) Speciation in birds. Greenwood: Roberts and Company Publishers

658 Ramousse R, Martinot JP, Le Berre M (1992) Twenty years of re-introduction policy of alpine

659 marmots from the national park of La Vanoise (French Alps). In: Proceedings of the 1st In-
660 ternational Conference on Genus *Marmota*, p. 171–177

661 Ramousse R, Le Berre M (1995) Pour un projet de charte de réintroduction de la Marmotte Al-
662 pine en France. In: Ramousse R, Le Berre M (eds) Laboratoire de Socioécologie et Conser-
663 vation. International Marmot Network, Villeurbanne

664 R Core Team (2018) R: A language and environment for statistical computing. R Foundation for
665 Statistical Computing, Vienna

666 Randler C, Förtschler MI (2011) Heterospecifics do not respond to subtle differences in chaffinch
667 mobbing calls: message is encoded in number of elements. *Anim Behav* 82:725–730

668 Rendall D, Owren MJ, Ryan MJ (2009) What do animal signals mean? *Anim Behav* 78: 233-240

669 Richard JP (1991). Sound analysis and synthesis using an Amiga, micro-computer. *Bioacoustics*
670 3: 45-60

671 Ruegg K, Slabberkoorn H, Clegg S, Smith TB (2006) Divergence in mating signals correlates
672 with ecological variation in the migratory songbird, Swainson's thrush (*Catharus ustula-*
673 *tus*). *Mol Ecol* 15:3147–3156

674 Ryan MJ, Brenowitz EA (1985) The role of body size phylogeny and ambient noise in the evolu-
675 tion of bird song. *Am Nat* 126:87–100

676 Scherrer JA, Wilkinson GS (1993). Evening bat isolation calls provide evidence for heritable sig-
677 natures. *Anim Behav* 46(5):847-860

678 Schlenker P, Chemla E, Arnold K, Lemasson A, Ouattara K, Keenan S, Stephan C, Ryder R,
679 Zuberbühler K (2014) Monkey semantics: two 'dialects' of Campbell's monkey alarm calls.
680 *Linguist Philos.* 37:439–501

681 Searcy WA, Nowicki S, Hughes M, Peters S (2002) Geographic song discrimination in relation to

682 dispersal distances in song sparrows. *Am Nat* 159:221–230

683 Shieh B-S, Liang S-H, Yuan H-W, Chen CC (2013) Experimental evidence that distinct song
684 phrases in the Grey-cheeked *Fulvetta Alcippe morrisonia* permit species and local dialect
685 recognition. *Ibis* 155:32–41

686 Shizuka D, Lein MR, Chilton G (2016) Range-wide patterns of geographic variation in songs of
687 Golden-crowned Sparrows (*Zonotrichia atricapilla*). *Auk* 133:520–529

688 Slabbekoorn H, Smith TB (2002) Bird song, ecology and speciation. *Philos Trans R Soc Lond B
689 Biol Sci* 357:493–503

690 Slater PJB (1986) The cultural transmission of bird song. *Trends Ecol. Evol.* 1:94–97

691 Slobodchikoff CN, Coast R (1980) Dialects in the alarm calls of prairie dogs. *Behav Ecol Socio-
692 biol* 7(1):49-53

693 Slobodchikoff CN, Ackers SH, Van Ert M (1998) Geographic variation in alarm calls of Gun-
694 nison's prairie dogs. *J Mammal* 79:1265–1272

695 Soha JA, Poesel A, Nelson DA, Lohr B (2016) Non-salient geographic variation in birdsong in a
696 species that learns by improvisation. *Ethology* 122:343–353

697 Staddon JER, McGeorge LW, Bruce RA Klein JJ (1978). A simple method for the rapid analysis
698 of animal sounds. *Z. Tierpsychol* 48: 306-330

699 Stoddard PK (1996) Vocal recognition of neighbours by territorial passerines. In: *Ecology and
700 evolution of acoustic communication in birds*. p. 356-374. Cornell Univ. Press, Ithaca, NY

701 Suzuki TN, Wheatcroft D, Griesser M (2016) Experimental evidence for compositional syntax in
702 bird calls. *Nat Commun*, 7:10986

703 Thielcke G (2008) On the origin of divergence of learned signals (songs) in isolated populations.
704 *Ibis* 115:511–516

705 Thomas JA, Puddicombe RA, George M, Lewis D (1988) Variations in underwater vocalizations
706 of Weddell seals (*Leptonychotes weddelli*) at the Vestfold Hills as a measure of breeding
707 population discreteness. In: Biology of the Vestfold Hills, Antarctica. p. 279–284. Dor-
708 drecht: Springer Netherlands

709 Thomas J, Golladay C (1992) Geographic variation in leopard seal (*Hydrurga leptonyx*) underwa-
710 ter vocalizations. In: Sensory systems of aquatic mammals. p. 201–221. Woerden: De Spil
711 Publishers

712 Tubaro PL, Mahler B (1998) Acoustic frequencies and body mass in New World doves. Condor
713 100:54–61

714 Uy JAC, Moyle RG, Filardi CE (2009) Plumage and song differences mediate species recognition
715 between incipient flycatcher species of the Solomon Islands. Evolution 63:153–164

716 Van Parijs S, Lydersen C, Kovacs K (2003) Vocalizations and movements suggest alternative
717 mating tactics in male bearded seals. Anim Behav 65:273–283

718 Velásquez N (2014) Geographic variation in acoustic communication in anurans and its neu-
719 roethological implications. J Physiol 108:167–173

720 Venables WN, Ripley BD (2002) Modern Applied Statistics with S. Fourth Edition. New York:
721 Springer

722 Wei M, Lloyd H, Zhang Y (2011) Neighbour–stranger discrimination by Yellow-bellied Tit *Parus*
723 *venustulus*: evidence for the “dear-enemy” effect. J Ornithol 152(2):431–438

724 Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure.
725 Evolution 38:1358–1370

726 Wich SA, Krützen M, Lameira AR, Nater A, Arora N, Bastian ML, Meulman E, Morrogh-
727 Bernard HC, Atmoko SSU, Pamungkas J, Perwitasari-Farajallah D, Hardus ME, van

728 Noordwijk M, van Schaik CP (2012) Call Cultures in Orang-Utans? PLoS One 7(5):
729 e36180

730 Wilczynski W, Ryan MJ (1999) Geographic variation in animal communication systems. In: Fos-
731 ter SA, Endler JA (eds) Variation in behavior: perspectives on evolutionary mechanisms.
732 Oxford University Press, Oxford, pp 234–261

733 Wiley RH, Richards DG (1978) Physical constraints on acoustic communication in the atmos-
734 phere: Implications for the evolution of animal vocalizations. Behav Ecol Sociobiol 3:69–
735 94

736 Wiley HR, Richards DG (1982) Adaptations for acoustic communication in birds : sound trans-
737 mission and signal detection. In: Kroodsma D, Miller E (eds) Acoustic Communication in
738 Birds , New York: Academic Press, New York, pp 131–181

739 Wilkins MR, Seddon N, Safran RJ (2013) Evolutionary divergence in acoustic signals: causes
740 and consequences. Trends Ecol Evol 28:156–166

741 Zimmerman HD, Ramsay SM, Mesias V, Mora M, Murray BW, Otter KA (2016) Evolution of
742 white-throated sparrow song: regional variation through shift in terminal strophe type and
743 length. Behaviour 153:1839–1861

744 Zuberbühler K (2009) Survivor signals: the biology and psychology of animal alarm calling. Adv
745 Study Behav 40:277–322

746 Zuk M, Rotenberry JT, Simmons LW (2001) Geographical variation in calling song of the field
747 cricket *Teleogryllus oceanicus*: the importance of spatial scale. J Evol Biol 14:731–741

748

749 **FIGURE LEGENDS**

750 **Fig. 1** Description of the acoustic structure of an Alpine marmot alarm call. (a) Spectrogram of a
751 calling bout composed of two calls (FFT 1024pts, windows Hamming, overlap 100%). The col-
752 ours represent the amplitude of the sound from blue (low amplitude) to red (high amplitude). (b)
753 Tracking of the fundamental frequency of an alarm call by zero-crossing allowed us to measure
754 three temporal parameters (in s): duration of the ascendant phase (AD), stationary phase (SD) and
755 descendant phase (DD) and three frequency parameters (in Hz): initial (F1), maximum (F2) and
756 final (F3) frequencies.

757

758 **Fig. 2** Linear Discriminant Analysis (LDA) on the ascendant (AD), stationary (SD) and descend-
759 ant (DD) phases' durations and the initial frequencies (F1) between each pair of populations:
760 Sassièr *versus* Tignes (a); Cerdanya *versus* Ripollès (b); Sassièr *versus* Cerdanya (c); Sassièr
761 *versus* Ripollès (d); Tignes *versus* Cerdanya (e); and Tignes *versus* Ripollès (f). The plots on the
762 left part of the figure represent the first axis of the LDA. The plots on the right part of the figure
763 represent the contribution of the different acoustical variables to the discrimination between the
764 considered pair of populations.

765

766 **Fig 3** Flee proportion (a), entry in burrow proportion (b), time spent vigilant (in s) (c) and time
767 before resuming normal activity (in s) (d) in relation to the geographic distance between the pop-
768 ulation of the receiver and the emitter (same, close - *i.e.* a geographically close population being
769 Sassièr and Tignes - and remote - *i.e.* a geographically remote population being Cerdanya). The
770 black dots show the trials conducted in Sassièr and the white dots show the trials conducted at
771 Tignes. The error bars represent standard errors. Marmots showed a significantly lower propensi-

772 ty to flee ($\beta = -1.45 \pm 0.58$, $z = -2.50$, $N = 76$, $p = 0.01$, (a)) when the alarm calls originated from
773 their own population than from a close or a geographically remote population. The other results
774 were non significant.

775 **TABLES AND TABLE LEGENDS**

776

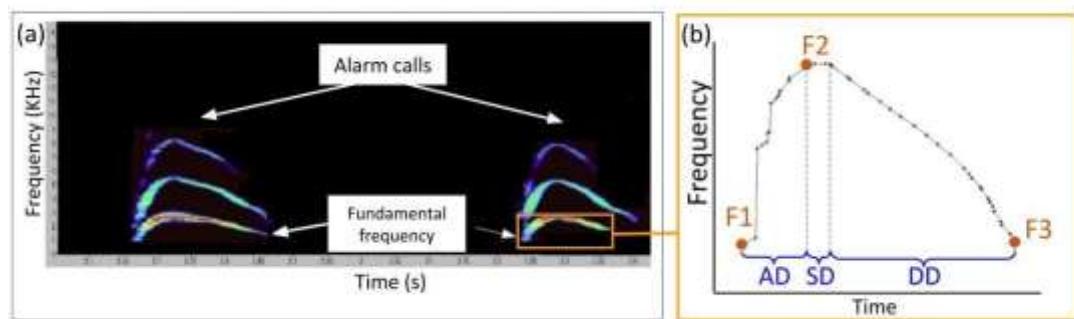
777 **Table 1** Pearson's correlation coefficients between acoustic variables (N = 665 alarm calls). *:

778 $0.05 < P > 0.01$; **: $0.01 < P > 0.001$; ***: $P < 0.001$.

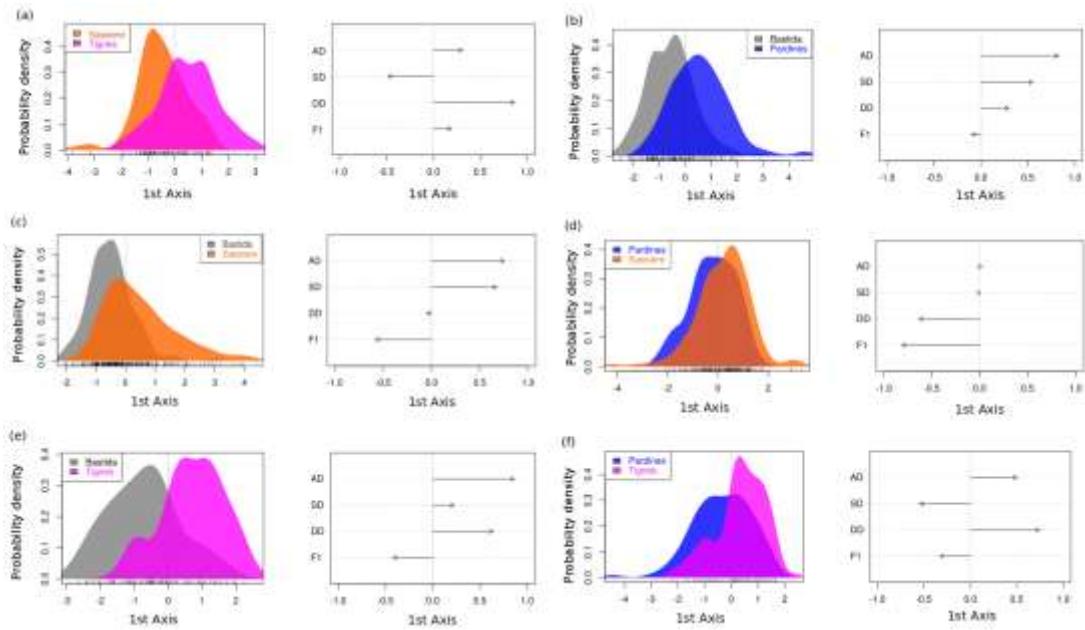
	Maximum frequency	Final frequency	Ascendant phase	Stationary phase	Descendant phase
Initial frequency	0.56***	0.56***	-0.14***	-0.02 (P=0.58)	0.12**
Maximum frequency		0.99***	0.39***	0.10**	0.32***
Final frequency			0.39***	0.10*	0.32***
Ascendant phase				0.06 (P=0.09)	0.28***
Stationary phase					-0.02 (P=0.68)

779 **Table 2** Percentage of correct classification and acoustic structure (AD, SD, DD and F1) correlations with the Linear Discriminant
 780 Analysis (LDA) canonical axis of the LDAs comparing each pair of studied populations. N: number of calls; AD: ascendant phases'
 781 durations; SD: stationary phases' durations; DD: descendant phases' durations; F1: initial frequency.

782


Compared populations	Mean correct classification [95% CI] (%)	Mean correlation [95% CI] of acoustical structures with the first canonical axis of each LDA				Pairwise differences in LD functions
		AD	SD	DD	F1	
Sassière vs. Tignes (N=110)	68.25 [65.45; 70.91]	0.33 [0.27; 0.46]	-0.41 [-0.49; -0.33]	0.87 [0.83; 0.92]	0.17 [0.07; 0.26]	46.51
Cerdanya vs. Ripollès (N=145)	69.89 [66.90; 73.10]	0.78 [0.71; 0.84]	0.60 [0.51; 0.69]	0.27 [0.16; 0.39]	-0.14 [-0.27; -0.02]	42.64
Sassière vs. Cerdanya (N=135)	67.60 [64.44; 70.74]	0.78 [0.69; 0.86]	0.63 [0.53; 0.73]	-0.03 [-0.17; 0.10]	-0.55 [-0.65; -0.44]	40.74
Sassière vs. Ripollès (N=135)	57.04 [54.07; 59.63]	0.03 [-0.07; 0.12]	0.06 [-0.02; 0.17]	-0.62 [-0.70; -0.54]	-0.81 [-0.87; -0.75]	42.15
Tignes vs. Cerdanya (N=110)	76.18 [71.82; 80.91]	0.89 [0.83; 0.94]	0.23 [0.10; 0.39]	0.63 [0.53; 0.73]	-0.32 [-0.44; -0.20]	46.90
Tignes vs. Ripollès (N=110)	66.00 [62.73; 69.55]	0.50 [0.36; 0.61]	-0.50 [-0.61; -0.38]	0.75 [0.67; 0.83]	-0.34 [-0.46; -0.21]	44.66

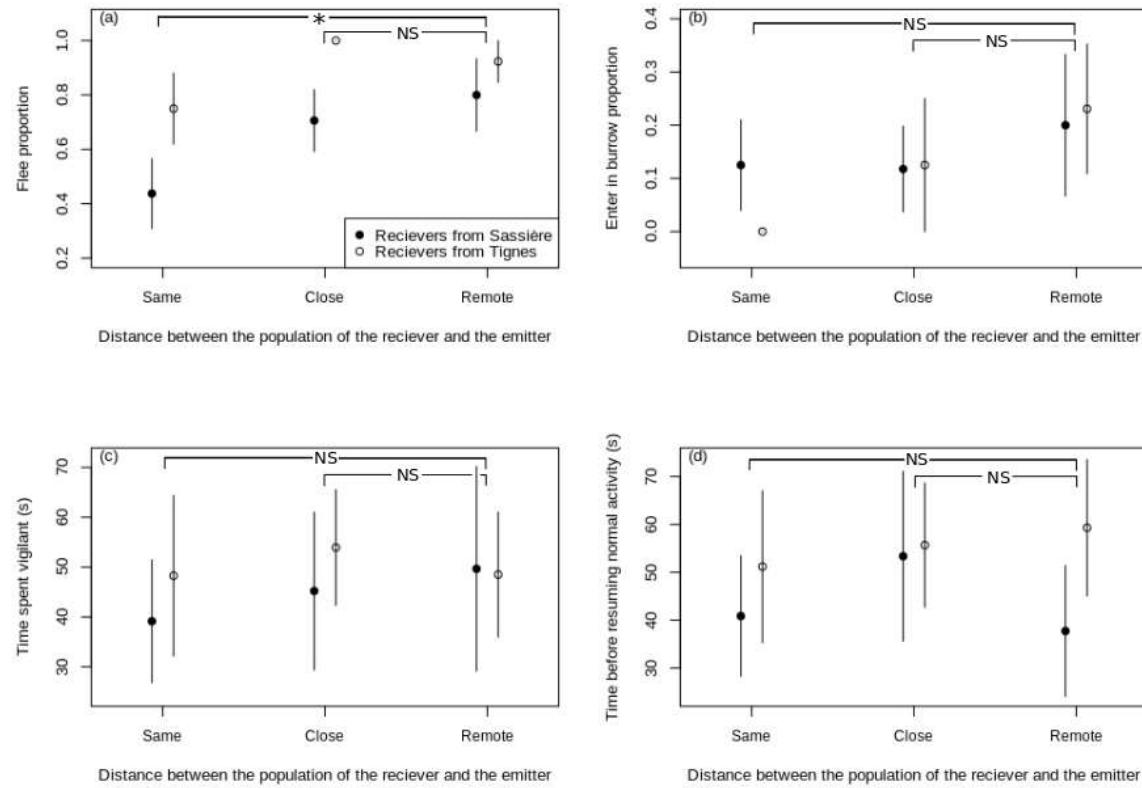
783 **FIGURES**


784

785 **Fig. 1**

786

787 Fig. 2
788



789

790 **Fig. 3**

791

792

793