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ABSTRACT We investigate the use and performance of the quasi-static memdiode model (QMM) when
incorporated into large cross-point arrays intended for pattern classification tasks. Following Chua’s mem-
ristive devices theory, the QMM comprises two equations, one equation for the electron transport based on
the double-diode circuit with single series resistance and a second equation for the internal memory state of
the device based on the so-called logistic hysteron or memory map. Ex-situ trained memdiodes with different
MNIST-like databases are used to establish the synaptic weights linking the top and bottom wire networks.
The role played by the memdiode electrical parameters, wire resistance and capacitance values, image
pixelation, connection schemes, signal-to-noise ratio and device-to-device variability in the classification
effectiveness are investigated. The confusion matrix is used to benchmark the system performance metrics.
We show that the simplicity, accuracy and robustness of the memdiode model makes it a suitable candidate
for the realistic simulation of large-scale neural networks with non-idealities.

INDEX TERMS RRAM, resistive switching, cross-point, memory, memristor, neuromorphic, pattern
recognition.

I. INTRODUCTION
Resistive memory (RRAM) or memristor-based cross-point
arrays (CPA, see Fig. 1) are nowadays in the spotlight as their
properties as programmable non-volatile memory (NVM)
devices have enormous potential application in fields such
as artificial intelligence (AI) [1], [2] and information storage
[3]. Moreover, the newly introduced paradigm of Internet of
Everything (IoE) requires the processing of large amounts of
data with a very reduced power consumption. In this regard,
the Matrix-Vector-Multiplication (MVM) method used by
many of these applications is particularly suitable for being
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performed by a CPA [4]. Additionally, the CPA structure
may be scaled down to 4F2, with F the feature size of the
technology node [5], which enables a large scale integration
of memory units. These features allow CPAs to solve a
number of computationally intensive specific AI tasks such
as the classification of a variety of patterns (sounds, images,
electrocardiograms, etc.) with a lower energy consumption
than conventional Von Neumann systems [4]. Such appli-
cations have been extensively studied in previous works
[1], [6]–[11] considering various CPA architectures as well
as different memristor models. Hu et al. reported in [1] a
simulation-based case study of a CPA for character recog-
nition with added noise using two CPAs of 256 × 26 (i.e.
256 rows by 26 columns, totalling∼13k devices) to represent
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FIGURE 1. (a) Sketch of the CPA structure. Red and blue arrows exemplify
the electron flow through the memdiodes connecting the top (Word lines
-WL-) and bottom lines (Bit lines -BL-). Different resistance states are
schematically represented (High Resistance State -HRS- to Low
Resistance State -LRS-). The dashed blue line depicts the so-called sneak
path problem. The parasitic wire resistance is indicated for WLi and BLi .
(b) Equivalent circuit representation of the CPA sketched in (a).

both the positive and negative synaptic weights using a
Verilog-A nonlinear memristor model [12]. To reduce both
the area and power consumption arising from having two
CPAs, Truong et al. presented in [6] a CPA architecture (64×
26, ∼1.6k devices) using the same memristive device model,
but with a single memristor array and a constant-bias circuit
for representing both the plus- and minus-polarity synaptic
weights. This model was also used in [8] for voice recognition
using a set of CPAs summing up to ∼2.5k memristors.
Nevertheless, beyond this promising capability, CPAs

are not exempted from practical limitations such as the
line or wire resistances (RW ), the resistance window of
the devices (RON and ROFF ), the degraded Signal-to-Noise
ratio, the inference latency, the device-to-device variability
(D2D) as well as the inherent conducting features of CPAs
like the so-called sneak path problem (see Fig. 1). While
the formers are mainly a consequence of the increase of
RW as the fabrication technology scales down [10], [13]
which in combination with a reduced resistance window
or low RON causes a significant voltage drop across the
CPA lines, the latter refers to the non-negligible current
flowing through the unselected devices. This is the origin of
errors in the read and write processes [13]. Both hardware
[14] and software [1], [6]–[11], [13], [15], [16] approaches
have been proposed to address these challenges. Although
hardware-based techniques include compensation methods
that improve the system performance, they are in general
time and cost demanding [14]. Software solutions allow a
more systematic study and can be split into three groups:
first, several authors [13], [15]–[20] opted for solving the
system of coupled differential equations which arises from
considering the current Kirchoff’s law at each junction in the
CPA assuming that the programmed memory devices act as
resistors of fixed value. Although promising, this approach
neither accounts for the CPA control circuitry nor it consid-
ers the nonlinear conducting behaviour of memristors, thus
limiting their applicability. Second, Python-based approaches
and similar [21], [22] allow incorporating realistic RRAM
models, but normally ignore the parasitic CPA effects or do
not account for the peripheral circuitry. Third and last, SPICE
simulation appears as the most suitable approach, as it allows

studying the full system (CPA and control electronics) [1],
[6]–[11]. However, this approach is constrained to the limita-
tions of the memristor model considered and to the size of the
memristor-based CPA given the high computational require-
ments [23]. As an example, the NVM-SPICE simulator [24]
is capable of simulating CPAs of up to 32×32 devices within
reduced times, but it seems unable to handle step functions as
well as if-statements in the memristor model [25].

Given its importance for reliable SPICE simulations, great
attention has been put on the memristor model considered,
though no general consensus has been reached on which con-
duction mechanism and memory equation (ME) better repre-
sent the wide spectrum of memristive behaviours [26]–[28].
The ME is a first order differential equation that links
the current flowing or the voltage applied to the structure
with its internal memory state. This results in a variety
of both behavioural and physical-phenomenological mod-
els, enabling a trade-off between simplicity and accuracy.
Roughly, memristor models can be classified into three
groups: first, simple behavioural models [12], [29], [30] are
useful in the early stages of circuit design, i.e. when a quick
proof of concept is required. Second, device specific models
such as the physical-phenomenological Pickett’s [31] and
the simple-phenomenological Bayat’s [32] models for TiO2-
basedMIM structures provide the highest accuracy. However,
given their high computational cost, they may not be suitable
in a scenario involving a large number of devices [33]. Last
but not least, general phenomenological models such as the
Yakopcic [34], TEAM [35], VTEAM [36], and Eshraghian
[37] models can successfully fit certain experimental data.
Nevertheless, the latter two groups rely on various internal
equations or the introduction of an artificial window function
in the ME (commonly used for modelling the SET/RESET
transitions) which pose serious mathematical drawbacks
causing convergence problems [33], [38]. A promising mem-
ristor compact model providing high simulation accuracy at
reduced computational cost was presented by Miranda et al.
in [39], [40]. Its closed-form expression for the I -V curve
(continuous and differentiable) and the recursive nature of
the state variable computation, makes it suitable for dealing
with arbitrary input signals (continuous and discontinuous,
differentiable and non-differentiable). This model is called
the quasi-static memdiode model (QMM) and is the central
subject of our analysis. Remarkably, the QMM has been
explored so far as a single device or as simple series/anti-
series/parallel/anti-parallel connections (just two devices)
[39]–[41], and its application to the case of large CPAs for
pattern recognition tasks is still to be addressed. This is the
central topic of this work.

In this article, we demonstrate that the QMM not only
accurately fits the experimental I -V loops for a wide range of
memristive devices, but that it can also be used for the SPICE
simulation of large-scale memristor-based CPAs intended
for pattern recognition tasks without increasing the com-
putational cost. By considering ex-situ training of a single
layer perceptron as a case study and the classification of
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grayscale images (among them the hand-written characters
of the MNIST database [42]) for benchmarking, we present a
comprehensive exploratory analysis of the CPA and QMM
performances, addressing the dependence of the inference
accuracy on: i) the RON /ROFF ratio, ii) the line resistance
(RW ), iii) the RW /RON ratio, iv) the CPA size and image res-
olution, v) the partitioning schemes of the full CPA structure
and vi) the device-to-device (D2D) variability. vii) The infer-
ence latency as a function of the feature size is also studied,
as well as viii) the power consumption and ix) signal-to-noise
ratio as a function of the RON /ROFF , RW and CPA size.
In addition, we report x) a comparison between the QMM
and a strictly linear model in terms of the CPA accuracy for
different applied voltages and xi) a comparison of the com-
putational complexity of CPAs comprising the QMM model
against other memristor models. To the best of the authors’
knowledge, such a detailed and comprehensive study within
a unified framework and considering a realistic memristor
model has not been published before. The rest of this article
is organised as follows: Section II describes the fundamentals
of the QMM: the I -V characteristic and thememory equation.
Section III explains the CPA’s training and simulation proce-
dures. Section IV discusses the obtained simulation results
in terms of the aforementioned features, providing useful
design considerations and trade-offs. Finally, in Section V the
general conclusions of this article are presented.

II. QUASI STATIC MEMDIODE MODEL
RRAM devices are based on the resistive switching (RS)
mechanism, which in the case of CBRAMs and OxRAMs
relies on the displacement of metal ions/oxygen vacancies
within the dielectric film in a Metal-Insulator-Metal (MIM)
structure. The movement is originated by the application of
an external electrical stimulus, current or voltage [49]–[52].
This causes the alternate completion and destruction of a
conductive filament (CF) spanning across the insulating film.
The CF acts as a bridge allowing or blocking the pass of
electrons in one or the opposite direction. For a ruptured
CF, the device is in the high resistance state (HRS), often
characterised by an exponential I -V relationship, while the
completion of the CF leads to the low resistance state (LRS),
which often exhibits a linear current or voltage dependence
[48], [53]. Within these two extreme situations, the modu-
lation of the CF transport properties by voltage-controlled
redox reactions renders intermediate states. From the mod-
elling viewpoint, the compact model originally proposed by
Miranda in [39] and later extended by Patterson et al. in [40]
is able to describe these major (LRS) and minor (HRS) I -V
loops and the gradual transitions in bipolar resistive switches.
This is accomplished by considering a nonlinear transport
equation based on two identical opposite-biased diodes in
series with a resistor, as shown in the inset of Fig. 2a. The
I -V relationship resembles a diode with memory and that
is why this device was termed memdiode. For the sake of
completeness, the QMM is succinctly reviewed in the next
paragraphs.

FIGURE 2. (a) Hysteron model with logistic ridge functions 0+ (Eq. 3) and
0− (Eq. 4). � is the space of feasible states S. The red thick faded line
superimposed to the hysteron model indicates the trajectory of the state
variable λ inside � from an initial (S1) to a final (S2) state. The inset in
the left shows the equivalent circuit model for the current equation (1)
including the series resistance. The diodes are driven by the memory
state of the device and one diode is activated at a time. (b) Typical I-V
characteristic for a memdiode obtained via simulation of the proposed
model. Superimposed blue arrows indicate the current evolution.
(c) Detail of the HRS (exponential) to LRS (linear) transition, showing a
few intermediate states. Linear [13], [15], [16] and sinh()-like [34] models
are superimposed for comparison.

Physically, the memdiode is associated with a potential
barrier that controls the electron flow in the CF. The con-
duction properties of this non-linear device change according
to the variation of this barrier. Because of the uncertainty
in the area of the CF, instead of the potential barrier height,
the diode current amplitude is used as the reference variable.
Following Chua’s memristive approach, the proposed model
comprises two equations, one for the electron transport and
a second equation for the memory state of the device (ME)
which is based on a hysteresis operator. The equation for the
I -V characteristic of a memdiode is given by the expression:

I=sgn(V )

{
W
(
αRI0(λ)eα(abs(V )+RI0(λ))

)
αR

−I0(λ)

}
(1)

where I0(λ) = Imin(1 − λ) + Imaxλ is the diode current
amplitude, α a fitting constant and R a series resistance.
Eq. 1 is the solution of a diode with series resistance and
W is the Lambert function. Imin and Imax are the minimum
and maximum values of the current amplitude, respectively,
abs(V ) is the absolute value of the applied bias and sgn() the
sign function. As I0 increases in Eq. 1, the I -V curve changes
its shape from exponential to linear through a continuum of
states as experimentally observed for this kind of devices. λ
is a control parameter that runs between 0 (HRS) and 1 (LRS)
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and is given by the recursive operator (Eq. 2):

λ(V ) = min
{
0−(V ),max

[
λ(
←−
V ), 0+(V )

]}
(2)

where min() and max() are the minimum and maximum
functions, respectively and

←−
V is the voltage a timestep before

V . The positive and negative ridge functions in Eq. 2, 0+(V )
and 0−(V ) represent the transitions from HRS to LRS (SET)
and vice versa (RESET) and can be physically linked to the
completion and destruction of the CF [48], [53], respectively.
They are defined by Eqs. 3 and 4

0+ (V ) =
{
1+ e−η

+(V−V+)
}−1

(3)

0− (V ) =
{
1+ e−η

−(V−V−)
}−1

(4)

where η+ and η− are the transition rates and V+ and V− the
threshold voltages for SET and RESET, respectively. λ(V )
defines the so-called logistic hysteron or memory map of
the device and keeps track of the history of the device as a
function of the applied voltage (see Fig. 2a). λ calculated from
Eq. 2 yields the transition from HRS to LRS and vice versa
through a change in the properties of the diodes depicted in
the inset of Fig. 2a. The combination of Eq. 1 and 2 results
in a I -V loop as that illustrated in Fig. 2b, which starts in
HRS (λ = 0) and evolves as indicated by the superimposed
blue arrows. The name quasi-static comes from the fact that
the characteristic switching time is assumed to be infinite
for a state within the hysteron structure. The QMM can be
transformed into a dynamic model by incorporating the time
module described in [40].

Fig. 2c shows the HRS (exponential) to LRS (linear)
transition, altogether with some intermediate states (solid
blue lines). For comparison purposes, a linear [13], [15],
[16] (faded-thick red lines) and sinh()-like models [34]
(faded-thick black lines) are also plotted in Fig. 2c. Although
the three models coincide at low voltages and exhibit a clear
linear behaviour, significant discrepancies arise as the voltage
increases. As it can be seen, first, the linear model is not able
to capture the departure of the HRS curves at intermediate
voltages. Second, the sinh()-like model, requires the simul-
taneous modification of multiple parameters to mimic the
smooth linear-exponential to linear transition or even separate
expressions for the HRS and LRS regimes [16], [54]. On the
contrary, the memdiode model can accurately describe both
HRS and LRS curves by solely changing a single parameter
in the transport equation. As λ is swept from 10−7 to 1, I0
in Eq. 1 varies between Imin and Imax , causing the I -V curve
to gradually change its shape from linear-exponential (HRS
regime) to linear (LRS regime). This is a consequence of
the potential drop in the series resistance which linearizes
the transport equation. Another relevant feature of the pro-
posed model is that it can be described by a simple SPICE
sub-circuit as shown in Table 1.

The model was put under test by fitting the experimental
data extracted from different published works. In particular,
Fig. 3 shows the results obtained for HfO2 [43], Al2O3 [44],

TABLE 1. Memdiode SPICE model code.

MnO3 [45], CuO2 [46], La1-xCaxMnO3 [47] and TaOx [48]
structures at room temperature under DC voltage sweeps. The
experimental data were fitted by the SPICE model depicted
in Table 1 based on Eqs. 1 and 2, and applying driving sig-
nals as described in the corresponding references. The fitting
parameters are listed in each of the sub-figures of Fig. 3 as
reference, as well as the details of the stack structure. It should
be mentioned that the proposed QMM does not only provide
a simple SPICE-compatible implementation for the resistive
memory devices but also a versatile one, as it can accurately
fit the I -V loops experimentally measured in a wide range of
RRAM devices. Note that by the proper parameter selection,
the QMM is capable of accounting for both gradual or abrupt
transitions in the SET (see the SET in Figs. 3a and 3c) or
RESET (see the RESET in Figs. 3d and 3f).

The model also allows the device to be set to a given con-
ductance (resistance) value by using a Write-Verify iterative
loop approach as the one schematically depicted in Fig. 4a.
In such method, pulses of incremental amplitude are applied
to the devices (Write) until the required conductance is
reached (Verify) [56]. If the target conductance is exceeded,
then increasing pulses with the opposite polarity are applied
in a similar fashion to gradually reach the target conductance
value (within an error margin). This writing methodology
implies a transition as the one depicted in Fig. 2a by the
red-thick faded line, where the incremental pulses cause the
system to evolve from the initial state S1 up to the final
state S2 following 0+. If the conductance target is exceeded,
then the system moves down along 0− by the application
of voltage pulses with the appropriate polarity. The latter
procedure is experimentally presented in Fig. 4b for a RRAM
stack comprising a SiOx dielectric layer [55], and accurately
modelled by the QMM model. In order to fully represent
the intermediate states from LRS to HRS altogether with
the major I -V loops, 7 successive ramped voltage pulses
were considered omitting the verify step, as shown in the
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FIGURE 3. Experimental I-V loops of different materials reported in the literature fitted with the QMM model: (a) HfO2 [43], (b) Al2O3 [44], (c) MnO3
[45], (d) CuO2 [46], (e) La1-xCaxMnO3 [47] and (f) TaOX [48]. The QMM fitting parameters are shown for each case. As reference, the HRS and LRS
curves are indicated in (a) and the SET and RESET points in (b). Note that in (a) a current compliance of 200 µA was imposed to prevent permanent
dielectric breakdown, which can be also represented by the QMM.

inset of 4b. Additional details on the writing procedure are
beyond the scope of this work and thereby will not be further
discussed.

III. PROCEDURE FOR MEMDIODE CPA CREATION,
TRAINING AND SIMULATION
To systematically evaluate the feasibility of the memdiode
model when implemented in CPAs for large dataset pattern
recognition tasks, a procedure for creating and simulating the
single-layer feed-forward Artificial Neural Network (ANN)
(single-layer perceptron, SLP) used as a case study is pro-
posed. For the sake of simplicity, ex-situ supervised learning
will be considered here. The recognition of patterns from dif-
ferent databases (MNIST [42], MINST-F [57] and MNIST-K
[58]) is considered for benchmarking. The workflow is sum-
marised in the chart depicted in Fig. 5. The tasks can be split
into two parts: the first one comprises a set of MATLAB
sub-routines for creating, training and writing the SPICE
netlist for an ideal feed-forward ANN, while the second part
relates to the SPICE simulation of the proposed circuit during
the inference phase. It is worth mentioning that although a
simpler approach than themore complex RRAMbased neural
networks explored in the literature (Multi-layer Perceptron
[56], [59], [60], Convolutional Neural Networks [61], Spike
Neural Networks [62], etc., see Supplementary Table 1),
the SLP allows studying and clarifying the ANN limita-
tions caused by parasitic effects and non-idealities occurring

in the synaptic layers implemented with CPAs, as well as
benchmarking the computational costs of the QMM based
simulations against other available models.

Regarding the MATLAB-implemented part of the proce-
dure, the first step consists in creating the image (n × n
pixels) database. This includes rescaling each of the images
of the original database (item 1 in the flowchart shown
in Fig. 5). For the sake of brevity, the MNIST database will
be considered for the vast majority of the studies in this
article, yet the same procedures apply to all the previously
mentioned datasets. The detailed results obtained with the
MNIST-F and MNIST-K datasets can be found in the Sup-
plementary Material (Supplementary Figs. 2-5). The MNIST
(Modified National Institute of Standards and Technology)
is a large database of handwritten digits from 0 to 9 com-
monly used for training and testing image processing sys-
tems including ANN in the field of machine learning. This
database contains 60,000 training images and 10,000 testing
images, both in grayscale and with a 28 × 28 pixels reso-
lution [42]. A few examples of these images can be seen
in Fig. 6a where the x and y axis stand for the pixel index.
Pixel’s brightness is codified in 256 gray levels between 0
(fully OFF, black) and 1 (fully ON, white). Databases
MNIST-F (Fig. 6b) and MNIST-K (Fig. 6c) are similar to
the MNIST database but comprising 10 different classes of
fashion articles and handwritten Japanese Kanji ideograms,
respectively.
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FIGURE 4. (a) Schematic representation of the Write-Verify procedure for
programming the CPA memdiodes. The upper waveform stands for the
alternating write and verify voltage pulses, while the lower plot
represents the associated conductance changes. A simplified circuit
schematic for the writing connection is indicated in the upper right inset.
(b) Experimental and simulation results for the reset characteristics of
SiOX from UCL (Data from [55]) using the QMM model. Notice the control
of the intermediate memory states. The inset shows the input signal.

Then a software-based single layer perceptron of size
n2×10 (with therefore 10 n2 synapses) is created (2) and
trained (3) using the previously rescaled database of training
images (4). The ANN is ex-situ trained with the built-in
functions of the MATLAB software for supervised learning,
in this case considering the Scaled Conjugate Gradient (SCG)
[63] as the training algorithm, as it provides a good trade-off
between accuracy and learning time for the different datasets
considered. Moreover, although the Levenberg-Marquardt
(LM) learning algorithm [64] provides the highest accuracy
at the cost of the highest CPU run-time among those consid-
ered [63]–[70], the difference between the inference accuracy
obtained with this model and the SCG is not statistically
significant, as shown in the 5-fold cross validation study with
10 repeats reported in Supplementary Fig. 6 and Supple-
mentary Tables 2-7. Further details concerning the training
function lie beyond the scope of this work, as we focus on
the CPA-based implementation of the ANN. This training
stage produces a n2×10 weight matrixWM ∈ R (5). To allow

FIGURE 5. Flowchart diagram for the simulation procedure. Starting with
the image size specification, RW , Vread , and connection scheme,
the routine creates the database, trains the ANN (single layer perceptron),
translates it into a CPA, adds the peripheral control circuit, performs the
simulations and processes the results. MATLAB tasks are grouped by the
red box and SPICE operations by the green box.

FIGURE 6. Samples of the three different images databases considered in
this article. In all cases images are represented in 28× 28 px. Pixel
brightness (or intensity) is codified in 256 levels ranging from 0 (fully OFF,
black) to 1 (fully ON, white). (a) MNIST database of handwritten numeric
digits, (b) MNIST-F database [57] of fashion articles and (c) MNIST-K
database [58] of handwritten Kanji Japanese ideograms.

rendering both the positive and negative elements ofWM with
the always positive conductance of the CPA, each synaptic
weight is implemented using two memdiodes as suggested in
[71], [72] resulting in two CPAs of n2×10 (20 n2 synapses).
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TABLE 2. Conductance ranges used in the literature.

This representation method has been chosen as it doubles the
dynamic range of the CPA, making it less susceptible to noise
and variability [73]. Thereby WM is split into two matrices
W+M and W−M as:

w+Mi,j

{
wMi,j , wMi,j > 0
0, wMi,j ≤ 0

(5)

w−Mi,j

{
0, wMi,j ≥ 0
−wMi,j , wMi,j < 0

(6)

each of them containing only positive weights, so thatWM =

W+M − W−M . In the next step, the conductance matrices G+M
and G−M (6 and 7) to be mapped into the CPAs are calculated
by the linear transformation [20], [74]:

G+,−M =
Gmax − Gmin

max {WM } − min {WM }
W+,−M

+

[
Gmax −

(Gmax − Gmin) max {WM }

max {WM } − min {WM }

]
(7)

where [Gmin, Gmax] is a selected conductance range for a lin-
ear computation in matrix-vector calculations. For simplicity,
we consider Gmax = GLRS = 1/RON and Gmin = GHRS =
1/ROFF , where max{WM } and min{WM } are the maximum
andminimum synaptic weight values in the software obtained
WM . In this way, the synaptic weights in the W+M and W−M
matrices are converted to conductance values within the range
[GHRS ,GLRS ].

The subsequent sub-routines generate the circuit netlist for
the dual-n2 × 10 memdiode CPA-based ANN (8), adding
the parasitic wire resistance, connection scheme, and con-
trol logic necessary to perform the inference phase. Each
memdiode in the CPAs is set to the corresponding conduc-
tance value from the G+M and G−M matrices by adjusting the
control parameter λ (H0 in the sub-circuit). The required
value of λ is obtained by solving Eq. 1 for I = gi,j · V ,
with gi,j being each of the elements of G+M (G−M ). In our
implementation, a Dual Side Connection (DSC) scheme was
considered, as shown in the simplified equivalent circuit from
Fig. 7. Despite the increased peripheral circuitry complexity,
this scheme improves the voltage delivery to each synapse
[13] by connecting the wordline terminals to the same input

FIGURE 7. Simplified equivalent circuit of the single layer perceptron
with n2 inputs and m outputs (n2 ×m). 2 CPAs are considered, one of
them is used to represent the positive weights and the other the negative
weights. The Dual Connection Scheme (DSC) implies biasing the wordline
terminals. Vi1

-Vi
n2

indicates the elements of the input image vectors

(n2 × 1).

stimuli. The input stimuli are obtained by unrolling each of
the rescaled grayscale n×n images of the test database (9) into
an equivalent n2 × 1 vector and scaling it by a voltage Vread .
Vread is chosen such as to prevent altering the memdiode
states during the inference simulation. In this way, during
the inference process each of the test images is presented
to the CPA as a vector of analogue voltages in the range
[0, Vread ]. Once the circuit netlist has been generated, it is
passed to a SPICE simulator (10) which evaluates the voltage
and current distributions in the CPA circuit while it processes
and classifies the input images (11), and then passes the
resulting waveform back to the MATLAB routine for metrics
extraction (12). For brevity, in this article we present only the
total accuracy metric as well as the confusion matrix. Other
relevant metrics such as the Sensitivity, Specificity, Precision,
F-1 score and κ-coefficient are summarised in the Supple-
mentary Material (Supplementary Figs. 1-5). In this article
we consider the HSPICE simulator from the Synopsysr
CAD Suite.

IV. SIMULATION RESULTS AND DISCUSSION
The inference accuracy of the memdiode-based CPA consid-
ered in this work was evaluated using the MNIST-like testing
sets. These sets contain 10,000 images not used during the
training phase. An exploratory analysis of the design space
was carried out with the aim of evaluating the classification
performance in terms of three different variables with ranges
within the values reported in the literature. These variables
are: the memristor resistance window (RON and ROFF ) [14],
[56], [59], [60], [75], the wire resistance of the CPA intercon-
nections (RW ) [15], [76] and the representation size of the
dataset images (n × n pixels) [56], [59], [60]. Additionally,
the accuracy sensitivity to device-to-device variability, and
Signal-to-Noise ratio are also analysed. Besides the classi-
fication accuracy, the CPA power consumption and inference
latency are also reported in this study. For clarity these aspects
are organised in Sub-Sections IV-A to IV-D, respectively.
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Finally in Sub-Section IV-E the inference accuracy and com-
putational cost is presented for different datasets and mem-
ristor models.

A. INFLUENCE OF THE DEVICE RESISTANCE WINDOW
(RON AND ROFF )
Low-power operation of memdiode-based CPAs requires
RRAM devices with reduced IHRS and ILRS currents, or in
other words, large ROFF and RON resistances, respectively.
This can be achieved by limiting the CF size [77], at the
cost of introducing significant variability in the resistance
value, especially in ROFF [56], [77]. This trade-off between
device variability and low-current operation can be partially
solved by using memory cells with large resistance windows.
From this standpoint, a number of device stacks and RS
mechanisms (RRAM, CBRAM, PCM) associated with dif-
ferent RON and ROFF values were studied for neuromorphic
applications (see Table 2) [14], [56], [59], [60], [75]. In order
to address how the memdiode model is able to cope with such
variety of resistance windows and in turn how this variety
affects the classification accuracy, different I -V loops were
considered by carefully tuning the fitting parameters of the
model described in Sec. II to render a series of scaled I -V
curves with different IHRS − ILRS (ROFF/RON ) ratios.

Starting from a reference curve, Fig. 8a shows four I -V
loops (including SET and RESET) where both IHRS and ILRS
are simultaneously increased by a factor of ∼10, thereby
keeping the ILRS/IHRS ratio constant (∼10). Each loop cor-
responds to a different play of the model referred to as A1-A4
(constant ROFF/RON ratio of 10 for ROFF equal to 1 M�,
100 k�, 10 k� and 1 k�, respectively). Similarly, Fig. 8b
and 8c explore the case of scaling the current trace for a single
resistance state (IHRS or ILRS ): First, in Fig. 8b, IHRS is sys-
tematically increased while keeping ILRS constant, causing
the reduction of the ILRS/IHRS ratio by a factor of ∼10 for
each model play (named B1-B4, with RON fixed at 1 k� and
ROFF/RON ratios of ∼ 104,103,102,101, respectively). The
complementary case (scaling ILRS while keeping IHRS fixed)
is evaluated in Fig. 8c andmodelled by playsC1-C4 (constant
ROFF of 1 M� and ROFF/RON ratios of ∼ 101,102,103,104,
respectively). To provide a guide to the eye, the values of IHRS
and ILRS evaluated atVread are pinpointed for model playsA2,
B2 and C2 in Figs. 8a, 8b and 8c, respectively.

CPA simulations were performed for each model play (A1-
A4, B1-B4 and C1-C4) considering DSC, RW = 0.1− 10 �,
Vread = 300 mV and assuming full-size images (28 × 28
px., i.e. the resulting ANN comprises 15,680 synapses). For
brevity only the MNIST dataset is considered in this sub-
section. The obtained classification accuracy is presented
in Figs. 8d and 8e against the ON (RON ) and OFF (ROFF )
resistance of each model play, respectively. Figure 8d shows
a clear inference accuracy degradation as ROFF decreases
(the resistance window shifts upward), for model plays A1
to A4, with the recognition performance for A1 being close
to the software results for a single layer perceptron (90.9%)
[78]. On the contrary, no clear dependence exists between the

FIGURE 8. Impact of the memdiode resistance window on the detection
performance. Different resistance windows are considered (RON and
ROFF ) by scaling the LRS and HRS curves (a) HRS and LRS are scaled,
(b) only HRS is scaled and (c) only LRS is scaled. Recognition accuracy as
function of the models OFF resistance (d) and ON resistance (e). For every
model each point represents a different value of RW , swept from 100 m�
to 10 � (darker markers indicate higher values or RW ). CPAs are
connected from both sides (DSC) and images are not downsized (img.
resolution: 28× 28 px.). Confusion matrix with RW =4.53 � for model
plays (f) A1, (g) A2, (h) A3, (i) B1, (j) B2, (k) B3, (l) C1, (m) C2 and (n) C3.

classification accuracy and ROFF when testing model plays
B1-B4 (the resistance window widens for a fixed RON ). Last,
the inference performance obtained for model plays C1-C4
(widening resistance window for a fixed ROFF ) is studied as
function of RON and compared against the results for A1-A4
in Fig. 8e. Both A1-A4 andC1-C4 present an almost identical
dependence on RON despite the remarkable differences in
the resistance window scaling. To shed more light on these
aspects, Figs. 8f to 8n show the so-called confusion matrices
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for models Ai-Ci respectively (models A4-C4 are not shown
as the error is too high to remain a case of interest) and
considering the case RW = 4.53 �. The confusion matrix
is a useful tool for capturing the ability of a neural network
to associate each input pattern with its corresponding class
(in this case a digit from 0 to 9) and allows to graphically
represent the inference accuracy for each possible input.
Despite the large inference error reported for all digits when
considering model plays B1-B3 (Figs. 8i-8k), plays A1-A3
and C1-C3 show a similar behaviour, with C2 showing a
better classification performance than A2, due to a higher
RON /ROFF ratio for the same RON .
All these observations indicate that although the increase

in the resistance window is expected to improve the classifi-
cation accuracy, the simulated results are strongly limited by
the value of the ON resistance, as shown by the very similar
behaviour of model plays A1-A4 and C1-C4. The reason
behind this observation is that the parasitic voltage drop along
the selected wordline and bitlines substantially increases as
the ON state resistance (RON ) reduces. As a result, the RRAM
devices ‘‘see’’ a much smaller effective read voltage than the
applied voltage to the CPA inputs (namely the read margin,
defined as Vcell/Vread ) [76]. This is well in agreement with
previous results by Liang et al. [76] showing that the read
margin is mainly governed by RON with a much reduced
dependency on the ROFF/RON ratio, showing a clear degra-
dation of the read margin as RON reduces. In fact, if the
inference accuracy data from Figs. 8d-8e is plotted against
the corresponding read margin, there is a strong correlation
between them for average read margin values below 10%
(see Fig. 9a). As the voltage drop in the interconnect wires
is jointly determined by both the memdiodes and wire resis-
tance, accuracy dependence on the wire resistances will be
specifically addressed in the following section.

It is worth mentioning that the read margin changes among
the devices in the CPA, with the memdiodes located close
to the input drivers or output terminals having a greater
read margin than those being further away, as depicted
in Fig. 9b. Given that RRAM devices normally present a
linear-exponential characteristic [81] in the HRS regime, this
may lead to errors in the computation of the cell’s current
when using a simple linear model for the RRAM device [13],
[15], [16] as illustrated in Fig. 9c. For a given linear model,
fit for ILRS and IHRS at a nominal Vread , the reduction of the
effective read voltage applied to the cells as the read margin
decreases lead to an overestimation of the device current,
causing errors in the pattern recognition and increasing power
consumption. Instead, themodel considered in this work [39],
[40] can easily handle the effects of the read voltage reduc-
tion, given the linear-exponential – linear I -V characteristic
considered. This is represented in Fig. 9d, where two different
linear approximations of the HRS characteristic of the model
play C2 (fitted for nominal Vread values of 0.2 and 0.6V)
are used to compute the CPA accuracy under different read
voltages. As expected, the simulation results show no depen-
dence on the read voltage, since such model does not account

FIGURE 9. (a) CPA Inference accuracy for different model plays
(RON /ROFF ) and wire resistances (RW ) plotted against its associated read
margin. Avg. Read margins below 10% increasingly affects the CPA
inference accuracy. (b) Map of read margin as function of the spatial
location for a 784× 10 CPA, with RW =1 �. Significant voltage variation
can be seen. (c) I-V characteristics of the memdiode showing the
exponential (HRS) to linear (LRS) transition by varying λ. The red shaded
region indicates the possible voltages applied to the device as the read
margin reduces. IHRS and ILRS currents are pinpointed at nominal Vread
with the grey and white circle markers, respectively. Overestimation of
IHRS may occur when considering a linear model for the HRS regime and
lower effective Vread voltages as indicated by the cyan, blue and black
ball markers. The Linear model does not account for the RON /ROFF ratio
reduction with Vread , and thereby cannot account for its impact on the
accuracy (d), as well as on the CPA Power consumption (e).

for the HRS-LRS transition. Instead, the QMMmodel shows
how the increment of the read voltage generates a reduction
of the devices resistance window, clearly indicating a limit
for the read voltages (in this case, Vread<∼0.5V). In the same
way, the fully-linear approach causes an overestimation or
underestimation of the CPA power consumption, as shown
in Fig. 9e. Thereby, they are only valid for a limited range of
the possible read voltages.

Lastly, it is worth evaluating the CPA power consumption
as a function of the memdiode RON /ROFF ratio and CPA size,
considering the framework proposed in this article. This is
shown in Fig. 10a for model plays C1-C4. It can be seen
that, as expected, as the RON value decreases from C1 to
C4, the power consumption increases. Regarding the CPA
size, there is an almost linear dependence between the power
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FIGURE 10. (a) CPA Power consumption vs. CPA size (in number of
devices). Note that Power increases as RON reduces from model plays
(C1-C4). As reference, reported CPA power for other works [6], [8], [14],
[79], [80] is also plotted. (b) Ratio between the memdiode power and the
total CPA power consumption. (c) Obtained Signal-to-Noise ratio (SNR)
for different model plays (C1-C4) as function of the line resistance. The
marker color indicates the inference accuracy for each simulation case.
Note that reduced RON in C1 comes at the cost of a reduced SNR and
thereby limits accuracy.

consumption and the number of devices in the CPA. The
influence of the wire resistance is also another parameter to
have in mind, specially when considering resistive devices
with a reduced RON . Also, when considering the parasitic
wire resistance, it is important to address the ratio between
power dissipated in the memdiodes and the total CPA power,
which also includes the power in the interconnections. This
provides a possible metric of the power efficiency. In this
context, the efficiency reduces for large CPAs implemented
with devices with low RON . Although Figs. 8e, 10b and 10a
jointly point toward C1 being the best case scenario, as it
combines low power operation and high inference accuracy,
if the thermal and flicker noise sources form the CPA circuit
are considered, the Signal-to-Noise ratio (SNR) of the output
signal is expected to degrade and thereby cause classification
errors. This is shown in Fig. 10c, where the extracted SNR
from the simulations is plotted against different values of
RW for the C1-C4 model plays. The marker color indicates
the associated accuracy for each simulation based on the
colorbar scale in the right side. Interestingly, the classification
accuracy from model play C1 significantly reduces when
considering the added noise, as the SNR severely degrades
(the high values of RON implies reduced CPA currents, in fact
below the noise floor). Thereby there is a trade-off between

improving the SNR and reducing the parasitic voltage drop
in the line interconnections. In this work, model play C2
(RON ∼ 10 k�, ROFF ∼1 M�) shows the optimal case
among those considered.

B. INFLUENCE OF THE WIRE PARASITICS (RW AND CW )
In a realistic scenario, the metallic wordlines (WL) and bit-
lines (BL) interconnections of the CPA are characterised by
a parasitic wire resistance (RW ) and a parasitic wire capaci-
tance (CW ), both a function of the wire geometry andmaterial
properties. While the first one severely degrades the read
margin of the CPA, the second one affects the operational
speed of the CPA, often measured as the CPA latency, defined
as the settling time of the output vector after a change in the
input pattern. In this Sub-Section both limiting phenomena
are addressed within the framework of the QMM-based mod-
elling of the CPA.

Regarding the first point, the resistance between the nearest
cells (R = ρ ·L/(W ·T ), L andW are the wire length between
adjacent cells and wire width respectively, and taken equal to
the feature size (F) and T is the wire thickness) ranges from
1 to 10 � when T >10 nm is assumed, as the resistivity of
conventional metal wires (ρ) ranges from 10−8 to 10−7�·m.
Thereby, for a 4F2 cross-point structure, the resistance of the
interconnect wires (RW ) between two adjacent cells can be
estimated to be∼4.53, 2.97, and 1.55� under the 16, 22 and
32 nm technology nodes, respectively [15]. Nevertheless, for
the novel technology nodes (10 nm and below) both sur-
face and grain boundary scattering causes a size-dependent
resistivity of Cu wires [82]–[84] as the mean free path of
electrons becomes comparable to the wire dimensions. These
two effects are well-known and can be quantified using
the Fuchs-Sondheimer (FS) [85] and the Mayadas-Shatzkes
(MS) [86] models, revealing that for highly scaled nodes
(∼5 nm) RW can be as large as ∼100 k� [76]. The increase
in ρ is shown by Eq. 8:

ρ

ρCu

=
3
4
(1−p)

l0
W
+3

[
1
3
−
α

2
+α2−α3ln

(
1+

1
α

)]−1
,

α =
l0
d

R
1− R

(8)

where ρCu is the bulk Cu resistivity (1.9 µ�·cm), p is the
specular scattering fraction, l0 is the bulk mean free path
for electrons in Cu (39 nm at room temperature), W is the
wire width, R is the probability for electrons to reflect at
the grain boundaries, and d is the average grain size. In this
article we consider p = 0.25 and R = 0.3 based on the
average values reported in the literature, and d is assumed
equal to the wire width [82], [84]. An aspect ratio of 1 is
assumed (W equal to the feature size) with a barrier thickness
of 2nm on each side of the wire [76]. To study the impact of
the voltage drop across the wire interconnects, in this Sub-
Section the memdiode-based CPA performance is addressed
for the 28 × 28 px. images (∼15.6k synapses) with RW
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FIGURE 11. (a) Impact of the wire resistance (RW ) on the detection
performance considering four different resistance windows
corresponding to models plays C1-C4. (b) Inference accuracy is plotted
against the RW /RON ratio showing a unified trend among all model
plays. Confusion matrix for model C2, with RW equal to (c) 0.1 �,
(d) 4.53 � (16 nm [15]) and (e) 81.3 � (10 nm [76]). In all cases CPAs are
connected from both sides (DSC) and images are not downsized
(image resolution: 28× 28 px.).

ranging between 10−1-104 � and compared against the ideal
case (RW = 0 �). For the sake of brevity, only model plays
C1-C4 are considered as they exhibit the best performance as
shown in Sub-Section IV-A.

As it can be seen in Fig. 11a, detection accuracy shows a
sustained reduction as RW increases from 10−1 to ∼104 �,
downshifted as RON scales down from 100 k� to 100 �
in model plays C1-C4. For the C2 case (RON = 10 k�
and ROFF = 1 M�) the accuracy remains above 80%
when considering the wire resistance expected for the 32
(1.55�), 22 (2.95�) and 16 (4.53�) nm technology nodes
(87.00%, 83.84% and 81.35% respectively). Nevertheless,
severe degradation is to be expected for further scaling as
the wire resistance rapidly increases for the 10 nm node and
beyond. For the latter, a resistance RW = 80 � is predicted
in [76], causing the inference accuracy to drop to 48.63%.
Then, intensive research is needed in the material engineering
domain to take advantage of the 4F2 scalability of the CPA
without penalising the inference performance.

As discussed in Sub-Section IV-A, the CPA inference accu-
racy is severely affected by the CPA’s read margin. Given
that each memdiode is in series connection with a number of
interconnect resistors with value RW , it can be demonstrated
that the read margin is proportional to the ratio RW /RON .
Thus, this metric is used to represent the inference accuracy
data in Fig. 11b. Interestingly, data from different model
plays (C1-C4) and RW exhibit a unique trend. For values
of RW /RON below 10−4 there is no influence of RW , as it
results negligible against the value of RON and the entire
input voltage is applied to each RRAM cell. Similarly, when
the RW /RON ratio surpasses the 10−1 threshold, the voltage
drop across RW dominates the voltage distribution, causing

significant recognition errors. For values in between these
two limits, there is a constant increment in the part of the
applied voltage that drops across the wire resistance, and
therefore a sustained decrease in the detection accuracy is
observed. Such a behaviour can be approximately captured
by the following empirical model derived from assuming a
simple voltage divider between resistors RON and 〈Sij〉.RW

Acc =
AccRW=0� + Accmin

RW
RON
〈Sij〉

1+ 〈Sij〉
RW
RON

(9)

〈Sij〉 =
n2 +M

2
+ 1 (10)

where 〈Sij〉 is the average number of interconnect resistances
of value RW in series connection to each memdiode in a
n2 × M CPA, AccRW=0� is the inference accuracy for the
ideal case (RW = 0�) and Accmin is the minimum accuracy
(∼10% as there are 10 possible outputs). As an example of the
RW impact on the inference accuracy, the confusion matrices
obtained from model play C2 with RW being equal to 0.1,
4.53 and 81.3 � are shown in Figs. 11c-11e, respectively.
The gradual decrease of the detection accuracy is visible for
each individual digit. Similar trends were obtained for the
MNIST-F and MNIST-K datasets and they are reported in
the Supplementary Material (Supplementary Figs. 2 and 4).
Although showing a slightly lower inference accuracy than
the MNIST case, the CPA implementation also matches the
ideal software-based model when RW tends to 0.
With regard to the second point, and in addition to the wire

resistance, the parasitic line capacitance (CW ) has a major
role in determining the CPA latency, which is an essential per-
formancemetric of interconnect.Moreover, with the dramatic
increase of RW at the single-digit-nm scaling regime, wire
latency severely deteriorates and has become a primary limit
to achieving fast CPA operation. According to Liang et al.
and Meindl [76], [87] the wire latency (τ ) can be modelled as
in Eq. 11:

τ = RWCWL2 (11)

in which L is the total wire length, RW is the wire resistance
per unit length calculated according to Eq. 8 and CW is the
wire capacitance per unit length calculated as in [88]:

CL = ε
1
2

[
1.15
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+ 2.8
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]

+ε2

[
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+ 0.83
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− 0.07

(
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H

)0.222
]

×

(
H
S

)1,34

(12)

where W and T are the width and thickness of the wire
(assume W = T ), S is the inter-wire spacing (assume
S = W ), andH is the inter-metal layer spacing (assumed to be
20nm). ε is the dielectric permittivity of the inter-metal layer
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FIGURE 12. (a) Expected inference latency for a CPA of 1Mb
(1,000× 1.000) as function of the process feature size, considering the
model proposed by Meindl et al. in [76], [87], SPICE simulations
considering the QMM, and the simplified circuital model depicted by
Eq. 13. (b) Circuit schematic of a RRAM cell in a CPA structure considering
the associated wire parasitic resistance and capacitance. (c) Schematic
representation of the simplified model of Eq. 13. (d) Estimated Latency
based on Eq. 13 as function of ROFF .

and is assumed to be 20 times the vacuum permittivity. It can
be inferred from Equation 11 that the larger the memory array
size and the smaller the wire width (higher RW ), the larger
the wire latency. The wire latency calculated with Eq. 11 is
presented in Figure 12a for a 1Mb memory CPA as a function
of the feature size showing how it severely degrades in highly
scaled processes.

Given its relevance, in this article we studied the infer-
ence latency within the framework of SPICE simulations
using the QMM model. To do so, the inter-wire and wire-
to-ground capacitance are included in the SPICE netlist. This
results in a RRAM cell as the one schematically represented
in Fig. 12b. In this way, each memdiode terminal is con-
nected to two adjacent wire resistors, and two inter-line wire
capacitors. Simulation results properly follows the results
from Liang et al. [76] and Meindl [87], capturing the latency
increase for the smaller feature sizes.

An interesting point to notice about the approach followed
by Meindl [87], is that it does not take into account the
resistance of the memristor devices. To do so, we propose
an equivalent simplified circuit for the latency calculation in
a CPA structure, as shown in Fig. 12c. Then the latency is
studied as the settling time of the output current at the BL
terminal, which is indicated in Eq. 13.

τ =
L2RWCW

1+ LRW gmin
=
L2RWROFFCW
LRW + ROFF

(13)

Following this approach, the impact of the memristor resis-
tance on the inference latency is studied in Fig. 12d. The
resistance in the OFF state is considered, as it supposes the
worst case scenario (higher latency). As the OFF resistance
increases, the latency value calculated by Eq. 13 approaches
the limit defined by Eq. 11. On the contrary, as the OFF state
resistance decreases, the latency also decreases asymptoti-
cally to the OFF resistance.

C. INFLUENCE OF THE IMAGE SIZE (n× n PX.)
The MNIST database has been widely used in the literature
to benchmark the inference accuracy of CPA-based ANNs.
To deal with the hardware limitations imposed by the size
of the available CPAs, it is a usual practice to downscale the
pixelation of the images in the database. For example, both
the training and testing images are resized to 8×8 px. in [60],
14 × 14 px. in [56] and 22 × 24 px. in [59] by using the
bicubic interpolation method. However, it is clear from Eq. 9
and 10 that for a given RW /RON ratio, the size of the CPA
(determined by the image size) directly affects the inference
accuracy. Thereby it is reasonable to expect the classification
accuracy to increase for down-scaled images. Nevertheless,
MNIST input images become barely recognisable for the
human eye when resolution is reduced beyond 12 × 12 px,
as shown in Fig. 13a. This issue also affects the accuracy of
the software-based ANNs, as shown in Fig. 13b for images
smaller than 8 × 8 px (CPA size ∼1.2k synapses). This
suggests that there may be a trade-off between readability
loss and read margin improvement, resulting in an optimal
image (CPA) size. To investigate how the representation
size of the images affects the general performance of the
memdiode-based CPAANN, the inference accuracy has been
studied for image sizes ranging from 3×3 px. to the full rep-
resentation size (28×28 px.). Images were down-scaled with
the bicubic interpolation method and the wire resistance was
parametrically swept from 1 to 100 �. Cases corresponding
to 28× 28 (I), 20× 20 (II), 12× 12 (III) and 8× 8 px. (IV)
image resolution used as example in Fig. 13a are pinpointed
in Fig. 13b for comparative purposes.

Simulation results in Fig. 13b reveal that variations in
RW have more impact in large arrays than in the small
ones. In this way, Case I exhibits a clear degradation of the
inference accuracy, as it goes from 88.21% down to 46.43%
for RW 1-100 �. Instead, case IV presents a more reduced
variation of the inference accuracy, as it changes between
88.91% and 84%. This could be explained if we consider
that for a given value of the RW /RON ratio, larger arrays
are subjected to a higher total voltage drop across the wire
resistances, reducing the read margin and hence the pattern
recognition accuracy. In this regard, for each value of RW
there is a CPA size (image resolution) that maximises the
inference accuracy. Such values are indicated in Fig. 13b,
being 2000, 3380 and 5780 devices, for RW equal to 100,
10 and 1�, respectively, clearly following a decreasing trend
as RW grows. Deeper analysis of the CPA size influence is
provided in Fig. 13c, where the accuracy results obtained for
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FIGURE 13. (a) Readability loss as the resolution decreases from
28× 28 px (case I) to 8× 8 (case IV). (b) Impact of the CPA size on the
detection performance for model C2 and with RW swept from
1 � to 100 �. Two different partitions schemes are considered:
P1 indicates non-partitioned arrays whereas P4 stands for CPA
partitioned in 4 sub-arrays. Markers indicate max. size with max.
accuracy. Partitioned arrays allow higher accuracy in larger CPAs.
(c) Recognition accuracy against the ratio RW /RON for two different array
sizes: 28× 28 images (two 784× 10 arrays, ∼15.6k devices, empty
markers) and 8× 8 images (two 64× 10 arrays, ∼1.2k devices, filled
markers). Resulting confusion matrix considering model play C2 and
RW =10 � for (d) 28× 28, (e) 20× 20 and (f) 8× 8 px. image sizes,
considering non-partitioned CPAs.

the smallest CPA (1280 devices) simulated with model plays
C1-C4 are plotted altogether with the data fromFig. 11b. This
figure shows that the Accuracy–RW /RON relationship fol-
lows a common trend right shifted as the CPA size decreases.
In this way, the RW /RON ratio ranges for which the CPA
behaviour remains independent of the wire resistance extends
up to one order of magnitude when changing the CPA size
from ∼15.6 k deices (28 × 28 px. image) to ∼1.2 k devices
(8× 8 px image).

From these results, and as expected, it becomes clear that
it is not efficient to implement large matrices using one
single cross-point array. Given that both RW and RON /ROFF
are normally defined by the selected fabrication node and
RS mechanism, respectively, a widely accepted [73], [76]
design alternative consists in dividing the large matrices into
small partitions, whose reduced size improves their read
margin. Fig. 14 shows the simplified circuit schematic of
the partitioned CPAs and the interconnections required to
realise the completeMatrix-VectorMultiplication. Exploding
the integrability of the CPA with CMOS circuitry, vertical
interconnects used to connect the outputs of the vertical
CPA partitions may be placed under the partitioned struc-

FIGURE 14. Simplified equivalent circuit schematic for a partitioned CPA
based single layer perceptron. Each CPA is subdivided into N identically
sized partitions to minimise the parasitic voltage drops. Partial output
current vectors are indicated in the output of each partition.

ture, as well as the analogue sensing electronics, allowing
the partitioned CPA to maintain a similar area consumption
than the original non-partitioned case [73]. The vertical inter-
connects are grounded through the sensing circuit to absorb
the currents within the same vertical wire. When compared
against the original non-partitioned arrays, subdivided CPAs
show a clear improvement in terms of classification accuracy,
as shown in Fig. 13b for the three wire resistance values
considered (1,10 and 100 �). For example, the inference
accuracy for the 28×28 px. andRW = 100� image increases
from 46.33% to 72.63%. Similarly, pinpointed Accuracy-size
maximums shift to the right for the partitioned arrays, being
the corresponding values 3920, 5120, 11520 synapses for RW
equal to 100, 10 and 1�, respectively. It is worth mentioning
that for the other MNIST-like datasets considered, the same
dependencies of the inference accuracy (in terms of parti-
tioning scheme, CPA size and line resistance) were found as
it is shown in the Supplementary Material (Supplementary
Figs. 3 and 5), altogether with the sensitivity, specificity, pre-
cision, F1-score and κ-coefficient metrics.

D. DEVICE-TO-DEVICE AND PROGRAMMING
VARIABILITY
The RS technology has been successfully demonstrated in
amorphous and poly-crystalline materials. These materials
have the advantage of low temperature deposition, somultiple
matrix layers can bemanufactured without disturbing the dig-
ital circuitry below. However, the uncontrolled high density
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FIGURE 15. Impact of the device variability on the test accuracy.
(a) Different sources of variability considered: RON , ROFF and λ.
(b) Impact of the λ variability on the accuracy. Model plays A1 and C1 are
equivalent and thereby only one is considered (See. Fig 8a-8c). Inference
accuracy is studied as function of the combined variability of RON and
ROFF for model plays A2 (c) and C2 (d) showing a similar behaviour to
the one exhibit by (b).

of defects in addition to the intrinsic stochastic nature of the
switching mechanism can induce a high degree of variability
[89]. Along with the read margin reduction caused by the lim-
ited resistance window (RON /ROFF ) and interconnection line
resistance (RW ), such variability in the memristive structures
also increases the possibility of a deviation of the weighted
sum from the target value [90]. Moreover, if each device
performs slightly different and its characteristics are allowed
to vary in time, programming to a desired state becomes a
challenging task.

The normalised device variability is expressed as σ/µ,
where σ is the standard deviation and µ the mean value of
the ON and OFF resistance (RON and ROFF ) distributions.
Variability can happen from cycle-to-cycle (intra-device) and
from device-to-device (inter-device). The variability of the
resistance states RON and ROFF across a matrix is largely
influenced by the choice of the stack’s materials (e.g., single
material HfOX vs. bilayer HfOX+TaOX ) [91], [92], as well as
the device scaling. Extreme scaling seems to reduce the vari-
ability, probably because of a reduction of the area where the
switching occurs [93]. Furthermore, the conductance value
set during theWrite-Verify procedure also presents variability
[56], [90]. As in this article we exclusively focus on the
inference phase, in this Sub-Sectionwe show that theQMM is
suitable to study the device variability in terms of theRON and
ROFF dispersion, as well as due to errors in� the conductance
programming, expressed by the variability of the QMM con-
trol parameter λ (see Fig. 15a). In this short study, different
model plays are considered to compare their susceptibilities

to device-to-device variations. For brevity, only the MNIST
dataset is considered.

In Fig. 15b the influence of the control parameter λ vari-
ability (σλ/µλ ranging from 0 to 30%) over the inference
accuracy is studied for different model plays (A1-A3, C1-C3)
and a wire resistance corresponding to a 16nm technology
node (RW=4.5 �). No variability in the major I -V loop
is considered (σROFF = σRON=0). Two trends are clearly
observed. On one hand, model plays having an ROFF/RON
equal to or greater than 100 (C2 and C3) exhibit a very
reduced sensitivity to λ variations (accuracy loss is below
5% for variabilities up to 30%). On the other hand, there is a
sustained accuracy reduction for model plays A1-A3 (A1 and
C1 are equivalent) over the same range of σλ/µλ. Both cases
were then more thoroughly studied by considering the joint
variability of RON and ROFF (σRON /µRON and σROFF /µROFF
respectively). As the variability is normally higher in HRS
than in LRS [61], they were swept independently, resulting in
the accuracy maps illustrated in Figs. 15c and 15d for model
plays A2 andC2, respectively. The trend observed in Fig. 15b
is repeated among Figs. 15c and 15d with a reduced sensitiv-
ity to the RON and ROFF variations for model play C2 (higher
ROFF/RON ratio). Interestingly, for the caseC2, σROFF /µROFF
has a higher impact on the inference accuracy, likely due to
a higher number of memdiodes mapped close to the ROFF
value.

The clear differences in the sensitivity of the inference
accuracy to the device variability between model plays with
varying ROFF/RON ratios shows that the QMM is also able
to deal with the device variability within the SPICE simu-
lation framework. In addition, the obtained results indicate
that apart from the high RON value required to minimise the
parasitic voltage drop that limits the read margins, a high
resistance window is necessary to improve both the tolerance
to errors in the mapping of the CPA conductances and the
device variability (σRON /µRON and σROFF /µROFF ).

E. COMPUTATIONAL COMPLEXITY COMPARED TO OTHER
MEMRISTOR MODELS
In this article we focus on the inference phase of the
CPA-based Neural Network, considering ex-situ training.
In this phase, the time complexity for the vector-matrix
multiplication performed on each input vector is O(1)
(defined in terms of the big − O notation [98]), regard-
less of the RRAM-algorithm considered (RRAM model) or
learning algorithm. The total accuracy obtained with the
memdiode-based CPA is shown to meet that one obtained
with an ideal ANN implemented in MATLAB, when the wire
parasitics becomes negligible as shown in Fig. 16, for all
the datasets considered (the CIFAR-10 [94] and SVHN [95]
datasets were included for the sake of comprehensiveness).
In fact, for the cases with RW ≤ 1 the differences between the
accuracy of the idealised network and the QMM implemen-
tation are not statistically significant [99]. Note that although
poor, the classification results for the CIFAR-10 and SVHN
results obtained with an idealised single-layer perceptron are
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FIGURE 16. Performance metrics of the memdiode-based CPA simulated
with the QMM, compared against the ideal Software case computed in
MATLAB. 5 different databases are considered: MNIST [78], MNIST-F [57],
MNIST-K [58], CIFAR-10 [94] and SVHN [95]. Each CPA is divided into
4 partitions to further reduced the impact of RW . Note that as RW tends
to 0, the CPA mimics the MATLAB results.

matched by the memdiode-based CPA classifier. Therefore,
the limitation is not in the CPA implementation but in the
Neural Network itself, i.e. for this kind of datasets more
complex networks are required, as shown in [90], [100],
where a Deep Neural Network comprising 6 Convolutional
Layers and 2 Fully Connected layers are considered. How-
ever, in both studies no parasitic effects taken into account.

Nevertheless, studying both the time complexity and space
complexity of the resulting SPICE code for different RRAM
models is a powerful metric to compare their performance
in terms of computational complexity in electrical simulation
platforms. As an analytic determination of the time complex-
ity is not plausible, we have opted for empirically measuring
the running time and RAM memory usage for the SPICE
simulation of CPA circuits involving 320 to 15680memristive
devices. To minimise errors induced by the hardware where
the simulations are performed, we have carried out multiple
simulations for each case and reported the mean values.
Additionally, other 4 different RRAMmodels proposed in the
literature (Yakopcic model [34], Laiho-Biolek model [96],
the University of Michigan Model [97] and a linear model
[15], i.e. a fixed resistance defined upon the corresponding
synaptic value) were considered apart from the QMM model
for comparison purposes. The time and memory require-
ments are shown in Figs. 17a and 17b, respectively. It can
be seen, that regardless of the model considered the CPU
usage increases proportionally to the square of the number
of devices suggesting an O(n2) time complexity, while the
RAM usage increases linearly with the number of devices,
indicating an O(n) space complexity.

Further details regarding the comparison are provided for
two CPA sizes (1280 and 15680 devices) and two different
circuit simulators (HSPCE and FineSim -A Fast SPICE cir-
cuit simulator-). Both the run-time and RAM memory usage
are reported in Figs. 17c and 17d, respectively, normalised
respect to the metrics from the linear model case (simplest

FIGURE 17. The computational cost (run-time and RAM memory usage)
of the memdiode-based CPA implemented with the QMM model is
compared against other memristor models reported by
Yakopcic et al. [34], Laiho et al. [96] and the University of Michigan [97].
(a) Simulation run-time as function of the CPA size (in number of devices)
increases quadratically. (b) Simulation RAM memory usage increases
linearly with the CPA size. (c) Total CPU time normalised against the case
of a resistor of fixed value to represent the programmed memristor.
(d) Total RAM memory usage normalised against the resistor case (linear
model). In both cases simulations were performed both in HSPICE and
Fast-SPICE (FineSim) environments and for different image sizes.

possible model), for each simulator-CPA size scenario. From
the comparison among the QMM and other memristor mod-
els, considering both the normalised CPU and RAMmemory
usage, we conclude that the QMM is capable of providing a
very accurate fit to the experimental I -V loops as shown in
Section II without increasing the time and space complexity
in the simulation of large circuits.

V. CONCLUSION
In this article, we have demonstrated the viability of the
Quasi-Static memdiode compact model (QMM) for realis-
tic SPICE simulations of large (up to ∼15.6 k synapses)
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RRAM-based cross-point arrays (CPA) intended for neuro-
morphic applications. A single layer perceptron and differ-
ent datasets (including the MNIST database of greyscale,
handwritten digits) were considered as case study. Although
a simplistic approach when compared with more sophis-
ticated multi-layer Artificial Neural Networks (ANN),
the single layer perceptron allows studying and clarify-
ing the ANN limitations caused by parasitic effects and
non-idealities occurring in the synaptic layers implemented
with CPAs, as well as benchmarking the computational
costs of the QMM based simulations against other available
models.

Apart from its versatility, which allows it to accurately fit
the experimental results from multiple devices, the proposed
model provides a number of intrinsic features which are
quite helpful in connection with the Matrix-Vector Multipli-
cation (MVM) method. First, the unified expression for the
HRS and LRS I -V characteristics simplifies the conductance
mapping stage: once the synaptic weights are obtained by
an ex-situ training procedure, they can be translated into the
GHRS -GLRS range by tuning one single control parameter
(λ) in the memdiode model. Second, as the mapped conduc-
tance runs from GHRS to GLRS (for λ ranging between 0 and
1) the shape of the I -V curve progressively changes from
linear-exponential to linear. In this way, the memdiode model
allows accounting for both the non-linear behaviour in HRS
and the linear I -V characteristic in LRS. Capturing the com-
monly exponential dependence of the high resistance state is
relevant as the reduction in the read margins causes different
voltages to be applied to the CPA memristors depending on
their spatial location. Last but not least, the proposed model
admits a simple sub-circuit description independent of the
simulation timestep parameter. This is of utmost importance
for circuit simulations in which the time evolution of the
system is under the control of the simulator itself and not
in hands of the user. Consequently, the QMM provides high
fitting accuracy of the device experimental results without
increasing the computational complexity (run-time and RAM
memory usage) with regard to other memristor models.

An exploratory analysis of the main features governing
the CPA performance was conducted considering the clas-
sification accuracy of MNIST-like datasets. Different I -V
loops were generated with the memdiode model to account
for the variety of resistance windows (ROFF/RON , or equiva-
lentlyGLRS/GHRS ratio) reported in the literature. Simulation
results for different wire resistances (RW ) calculated for dif-
ferent technological nodes are in line with previous analytical
results showing that the RW /RON ratio plays a major role in
the readmargin of the CPA devices and thereby in the classifi-
cation accuracy. As RW is expected to maintain an increasing
trend in the upcoming technology nodes, RRAMdevices with
improved ON resistance and reasonable resistance windows
(to reduce the sensitivity to device variability) are mandatory
to minimise the parasitic voltage drops. However, higher
values of RON (and thereby lower power operation) comes at
the cost of degrading the Signal-to-Noise Ratio (SNR), which

also limits the inference accuracy, suggesting a trade-off
between niminising the parasitic voltage-drop and increasing
the SNR. The increase in RW also causes a sensitive incre-
ment in the inference latency, which severely limits the high
frequency operation of highly-scaled CPAs. In addition, for
a given read margin/classification accuracy we have shown
that the RW /RON ratio also limits the maximum size of the
realisable CPA. In this regard, partitioning techniques are
mandatory for large size CPAs to maintain an acceptable
classification accuracy. It is also worth mentioning that the
usual downscaling procedure tomatch the input databasewith
the size limitation of the CPA should be carried out having
in mind the possible classification accuracy reduction arising
from the readability loss of the input images. In this regard,
an optimumCPA size is shown for the case of theMNIST-like
datasets classification using the single layer perceptron.
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