
This is the **accepted version** of the journal article:

Guerrero-Vaca, Darío; Granero, Roser; Fernández-Aranda, Fernando; [et al.].
«Explicit and Implicit Emotional Expression in Gambling Disorder Measured by
a Serious Game : A Pilot Study». *Journal of Gambling Studies*, Springer-Verlag,
2020. DOI 10.1007/s10899-020-09945-2

This version is available at <https://ddd.uab.cat/record/301988>

under the terms of the IN COPYRIGHT license

1

2 **Explicit and implicit emotional expression in gambling disorder 3 measured by a serious game: a pilot study**

4

5 Darío Guerrero-Vaca¹, Roser Granero^{2,3}, Fernando Fernández-Aranda^{3,4,5,6}, Gemma Mestre-Bach^{3,4},
6 Virginia Martín-Romera⁷, Núria Mallorquí-Bagué^{3,4}, Teresa Mena-Moreno^{3,4}, Neus Aymami⁴,
7 Amparo del Pino-Gutiérrez^{4,8}, Mónica Gómez-Peña⁴, Laura Moragas⁴, Zaida Agüera^{3,4}, Cristina
8 Vintró-Alcaraz^{3,4}, María Lozano-Madrid^{3,4}, José M. Menchón^{4,5,9}, Salomé Tárrega², Lucero
9 Munguía⁴, and Susana Jiménez-Murcia^{3,4,5,6*}

10

11 ¹Departament de Psicologia Clínica i de la Salut, Universitat Autònoma de Barcelona, Spain

12 ²Departament de Psicobiologia i Metodología de les Ciències de la Salut, Universitat Autònoma de Barcelona, Spain

13 ³Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Spain

14 ⁴Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain

15 ⁵Department of Clinical Sciences, Faculty of Medicine, University of Barcelona. Barcelona, Spain

16 ⁶European Union.FP7-ICT

17 ⁷Departamento de Educación y Psicología, Centro Universitario Cardenal Cisneros, adscrito a la Universidad de
18 Alcalá, Madrid, Spain

19 ⁸Nursing Department of Public Health, Maternal and Child Health, University of Barcelona, Barcelona, Spain

20 ⁹CIBER Salud Mental (CIBERSAM), Instituto de Salud Carlos III. Madrid, Spain

21

22 **Abstract**

23 Behavioral addictions have been related with biased emotional reactions to risky choices. However,
24 few studies have analyzed the role of both explicit and implicit emotional expression in gambling
25 disorder (GD). This pilot study aims to examine emotion regulation in treatment-seeking patients
26 with GD. The sample included $n=35$ participants classified into three groups: patients with current
27 GD, patients with GD in remission, and a control group without GD. Implicit emotional expressions
28 were evaluated through a serious videogame (Playmancer) and explicit emotions were measured
29 through self-reports. Patients in the current GD group had, compared to the remission and control
30 groups, lower levels of implicit emotion expression and higher levels of explicit emotion
31 expression. The patients in GD remission group endorsed better emotion regulation capacity in
32 comparison to patients with current GD. We conclude that differences in emotion expression
33 profiles (such as anger and anxiety) should be considered both in the development of screening and
34 diagnostic measures and in the planning of prevention and treatment programs.

35

36 **Keywords:** Anger; Anxiety; Emotion Regulation; Gambling Disorder; Serious Videogames.

37

1 **1. INTRODUCTION**

2 Serious videogames (SVG) have aroused considerable scientific interest in recent years as
3 an alternative and complementary method to facilitate learning processes and as platforms with
4 potential to provide self-reinforcement during psycho-therapeutics interventions (van der Kuil,
5 Visser-Meily, Evers, & Ham, 2018; Yahyaoui & Menelas, 2017). Although SVG present a structure
6 similar to games used for entertainment purposes, they are designed to address a specific trait
7 (Serret et al., 2017; Stieler-Hunt, Jones, Rolfe, & Pozzebon, 2014) and have proved to be effective
8 for disorders into the impulsive-compulsive spectrum (Giner-Bartolomé et al., 2015; Savazzi et al.,
9 2018).

10 Playmancer is a SVG used as a complementary tool for the cognitive-behavioral therapy
11 (Conconi et al., 2008) with the aim to modify attitudinal and emotional problems characteristic of
12 psychiatric disorders, and it has demonstrated therapeutic effectiveness in different mental health
13 conditions including bulimia nervosa and gambling disorder (Fernando Fernández-Aranda et al.,
14 2012); Fagundo et al., 2013, 2014; Jiménez-Murcia et al., 2009a). This platform has also proven to
15 be effective in identifying and assessing aspects related to emotion regulation during the course of
16 these treatments (Claes et al., 2012).

17 Emotion regulation has been defined as a goal directed processes to influence the type,
18 intensity or duration of experienced emotions (Gross & Thompson, 2007). This requires adequate
19 flexibility when facing affective stimuli and on the long-term goals of the subjects. Different
20 classification systems for emotion regulatory processes exist, with the explicit (also called effortful)
21 versus implicit (also called automatic) dual-process conceptualization being the most common
22 (Gyurak, Gross, & Etkin, 2011). This dual model conceives explicit emotion regulation as the
23 processes required to consciously monitor and alter arousal levels. In contrast, implicit emotion
24 regulation an automatic process evoked by the stimulus that is carried out largely without much
25 insight or awareness. This dual model does not consider explicit and implicit regulation as mutually
26 exclusive processes, and although a relationship between the two categories is supported, it allows
27 for each process to vary over time and across situations.

28 The study of emotion regulation has led to many studies in the field of addictions and some
29 conditions included along the impulse-control spectrum, such as bulimia nervosa, binge eating
30 disorder or gambling disorder (Fernández-Aranda et al., 2012; Nikolaidou, Fraser, & Hinest, 2016;
31 Tárraga et al., 2014). Concretely, the explicit component of emotional regulation has received
32 notably scientific interest, while implicit emotion regulation has generated less empirical evidences.
33 This is particularly notably in the study of gambling disorder (GD).

1 **1.1. Explicit emotion expression in GD**

2 Different explicit emotion expression processes have been studied in GD, particularly those
3 relating to negative emotions. It has been observed that a high proportion of patients with GD
4 endorse difficulty in controlling anger (Aymamí et al., 2014). It has also been observed that, in
5 patients with problematic gambling, anger (expressed both verbally and physically) is accompanied
6 by other negative emotions (such as envy, resentment, hatred and disgust), and that high scores in
7 the expression of the anger correlate with greater GD severity (Maniaci et al., 2017). Anger levels
8 in pathological gamblers have also been related with more dysfunctional scores in certain
9 personality dimensions (particularly novelty seeking) (Schwebel et al., 2006).

10 Anxiety is also a commonly studied dimension of emotion expression in GD. Some studies
11 posit that gambling behaviors may act as a mechanism to reduce or avoid the expression of anxiety,
12 and that high levels of anxiety are associated with greater GD behavior (Stewart, Zack, Collins, &
13 Klein, 2008). Other studies conclude that patients who express greater aversion to losses linked to
14 gambling behaviors are those with higher levels of anxiety (Takeuchi et al., 2016). Finally, it has
15 also been observed that the pathological gamblers with the highest degree of severity also present
16 higher levels of anxiety during the gambling episodes and also after finishing those episodes
17 (Barrault & Varescon, 2013). This evidence has led some researchers to postulate that the anxiety
18 expressed by GD patients could even be part of the group of measures used to estimate the severity
19 of the disorder itself (Ciccarelli, Griffiths, Nigro, & Cosenza, 2017).

20 Studies that simultaneously measure different components of negative emotional expression
21 in GD outline that patients tend to present high levels of stress, anxiety and/or depression (Jonsson,
22 Munck, Volberg, & Carlbring, 2017). It has also been observed that emotional negative states in
23 patients include multiple components such as disgust, contempt, guilt, fear, sadness or low
24 sensitivity to punishment (Goudriaan, Oosterlaan, de Beurs, & Van den Brink, 2004; Matthews,
25 Farnsworth, & Griffiths, 2009; Navas et al., 2015). Relatedly, it has been concluded that some
26 patients with high emotional vulnerability use gambling to alleviate negative affective states linked
27 to stressful live events (Poole et al., 2017). Finally, negative mood has been found to have an
28 inhibitory effect on gambling persistence only for non-regular gamblers, while regular gamblers
29 seem to gamble regardless of their mood (Hills, Hill, Mamone, & Dickerson, 2001). And since
30 mood after gambling episodes has been related with winnings only for regular gamblers, it has been
31 suggested that GD patients may be condition to use gambling as an escape from distress (Hills &
32 Dickerson, 2002).

33 It is also known that explicit emotion regulation process in GD are closely related to the
34 appearance and maintenance of cognitive biases associated with gambling behavior (Raylu & Oei,

1 2004). Models of emotion regulation postulate that when gamblers use adaptive cognitive strategies
2 to reduce the impact of negative emotions, they have a rebound effect increasing emotions such as
3 fear, guilt or anger (Garnefski & Kraaij, 2007; Navas, Verdejo-García, LÓPEZ-GÓMEZ, Maldonado,
4 & Perales, 2016). It has also been observed that pathological gamblers, in comparison with control
5 groups without gambling related problems, have limited access to emotion regulation strategies
6 (Williams, Grisham, Erskine, & Cassedy, 2012), and also express less use of cognitive reassessment
7 during emotion regulation processes (Poole et al., 2017; Williams et al., 2012).

8

9 **1.2. Implicit emotion expression in GD**

10 Regarding implicit emotion regulation, little research has clarified the role of these processes
11 on an individuals' psychopathological state (partly as a consequence of the absence of reliable and
12 valid measures for the assessment of this component). There is evidence of a relationship between
13 failure to engage implicit emotion regulatory processes and symptom severity in anxiety disorders
14 (Etkin, Prater, Hoeft, Menon, & Schatzberg, 2010), which suggests that implicit emotional
15 processes are related to adaptive functional behaviors.

16 It has also been postulated that the origin of the emotion regulation difficulties found in the
17 anxiety and mood disorders could be related with more spontaneous/implicit forms of emotion
18 regulation (Egloff, Schmukle, Burns, & Schwerdtfeger, 2006; Ehring, Tuschen-Caffier, Schnüller,
19 Fischer, & Gross, 2010; Phillips, Ladouceur, & Drevets, 2008).

20 Finally, previous researches have provided evidence that emotion regulation modulates
21 physiological correlates in decision-making tasks under risk (Grecucci, Giorgetta, Van't Wout,
22 Bonini, & Sanfey, 2013; Martin & Delgado, 2011; Sokol-Hessner, Camerer, & Phelps, 2013), as
23 well as subjective emotional experience to both gains and losses (Yang, Tang, Gu, Luo, & Luo,
24 2015). Studies have also postulated that implicit emotion regulation could be more efficient than
25 deliberate emotion regulation in modulating emotional reactions to gains and losses (Fenton-
26 O'Creevy et al., 2012), as well as reducing emotional responses to emotional pictures (Christou-
27 Champi, Farrow, & Webb, 2015). A current analysis of studies in the GD area has led to the link
28 between executive processes related to attention, learning, planning and cognition to punishments or
29 rewards that may generate positive or negative emotional states (Mestre-Bach, Fernández-Aranda,
30 Jiménez-Múrcia, & Potenza, 2020).

31 But studies focused in the implicit emotion expression in the GD area are scarce. The lack of
32 evidence and the partly contradictory results obtained highlight the need for new empirical research
33 about implicit emotion regulation for this disorder.

34

1 **1.3. Objectives**

2 Although it is known that the expression of the emotions plays a relevant role in the onset of
3 GD, few studies have evaluated the explicit and implicit components of emotion regulation in
4 treatment-seeking GD patients. The aim of this study was to examine implicit and explicit emotion
5 expression in currently ill GD patients, GD patients in remission and healthy controls (HC). We
6 hypothesized that: a) patients with GD would show lower emotion regulation functioning than HC,
7 that is reduced implicit emotional expression, measured by facial expression measurement
8 technology in response to a therapeutic videogame, and incongruent and dysfunctional explicit
9 emotional expression, measured by self-report measures of anxiety and anger; and b) GD patients in
10 remission would display an improved emotion expression in comparison with currently ill patients.

11

12 **2. MATERIAL AND METHODS**

13 **2.1. Participants**

14 The sample included N=35 men, distributed in three independent groups: a) n=11 GD
15 patients (currently meeting diagnostic criteria for GD, before treatment); b) n=12 GD patients after
16 finishing a standardized cognitive behavioral therapy (CBT) program (Jiménez-Murcia et al., 2006;
17 Jiménez-Murcia et al., 2007), in remission state (Remission-GD, defined as the absence of
18 gambling episodes during the last 12 weeks); and c) n=12 HC. Patients into the GD groups were
19 consecutive referrals for outpatient treatment at a Hospital Unit specialized in pathological
20 gambling, and the HC group included volunteers from the same geographical area.

21 Exclusion criteria were primary psychiatric or neurological disorders that could interfere
22 with game performance (psychotic disorders, bipolar disorders, major depressive disorders and
23 substance abuse-disorders) and active pharmacological therapy that might influence autonomic
24 functioning or interfere with game performance. All participants were also assessed to guarantee the
25 absence of current of lifetime Internet Gaming Disorder, following the criteria proposed in Section
26 III of the DSM-5 (American Psychiatric Association, 2013).

27

28 **2.2. Measures**

29 *South Oaks Gambling Screen (SOGS)* (Lesieur & Blume, 1987). This diagnostic
30 questionnaire uses 20 items to ascertain gambling disorder severity. This screening tool
31 discriminates between probable pathological, problem and non-problem gamblers. The Spanish
32 validation of this questionnaire shows high reliability and validity (Echeburúa, Báez, Fernández, &
33 Páez, 1994). Cronbach's alpha in the sample was very good ($\alpha=0.89$).

1 *Stinchfield's Diagnostic questionnaire for pathological gambling according to DSM-IV*
2 *criteria* (Stinchfield, 2003); *Spanish validation* (Jiménez-Murcia et al., 2009b). This 19-item
3 questionnaire measures the DSM-IV-R diagnostic criteria for pathological gambling (American
4 Psychiatric Association, 2000). Convergent validity in comparison to the SOGS questionnaire was
5 estimated as $r = 0.77$ ($p < 0.01$) for the general population and $r = 0.75$ ($p < 0.01$) for a gambling
6 treatment group. Cronbach's alpha in the sample was good ($\alpha = 0.74$).

7 *State-Trait Anger Expression Inventory 2 (STAXI-2)* (Spielberger, 1999). It is a 44-item self-
8 report instrument that examines the experience and expression of anger. Items are rated on four-
9 point Likert scales assessing either the intensity of the angry feelings or the frequency with which
10 anger is experienced, expressed, suppressed, or controlled. The Spanish version of the tool was used
11 in this study, which has reported adequate reliability indices ranging between 0.64 and 0.89
12 (Miguel-Tobal, Casado-Morales, Cano-Vindel, & Spielberger, 2001). Internal Consistency for the
13 three scales analyzed in this work was excellent: $\alpha = 0.98$ for anger-state, $\alpha = 0.94$ for anger-trait and
14 $\alpha = 0.90$ for the general index of anger.

15 *State-Trait Anxiety Inventory (STAI)* (Spielberger, Gorsuch, & Lushene, 1970) *Spanish*
16 *adaptation* (Spielberger et al., 1982). This 40-item self-report questionnaire is answered on a 1-4
17 response scale which evaluates the temporary condition of "state anxiety" and the more long-
18 standing condition of "trait anxiety". The questions assess feelings of anxiety and depression in the
19 areas of worry, tension and apprehension. The psychometrical studies in the Spanish population
20 achieved good reliability indices, ranging between 0.90 and 0.94 (Guillén-Riquelme & Buela-Casal,
21 2011). Cronbach's alpha reliability in sample was excellent (0.92 for Trait and 0.90 for State
22 Anxiety).

23 *Implicit emotional expression.* It was measured with Playmancer. This platform includes
24 three mini-games: Treasures of the Sea, The Face of Cronos and Sign of the Magupta. In these
25 mini-games the player has to dive and collect different artifacts and fish, climb up a cliff avoiding
26 obstacles, and connect a constellation of stars through breathing. The difficulty of the videogame
27 depends on the arousal levels of the player. The overall goal of this SVG is to improve self-control
28 skills and to also train arousal regulation skills in negative situations such as frustration, anxiety and
29 time pressure. This SVG has been used as an add-on therapeutic tool for eating disorders with
30 promising results (Fagundo et al., 2013, 2014) as well as in GD (Tárrega et al., 2015). Biofeedback
31 and a focus on breathing to produce relaxation have been used to train emotion regulation in several
32 impulse-related disorders (Claes et al., 2012; Tárrega et al., 2014). Playmancer also includes a facial
33 recognition software with an external camera which detects the individuals' facial expression during
34 the videogame performance (processed by a facial tracking component) [previous experiments

1 addressed to calibrate the facial emotion recognition software have obtained evidence guaranteeing
2 its reliability (L. Claes et al., 2012; F. Fernández-Aranda et al., 2012)]. The physiological reactivity
3 and emotional state of the patient are continuously being monitored, which allows having a measure
4 of the total time that emotions are identified during each session with the videogame. The times in
5 seconds expressing anger and joy has been used as main outcomes in previous studies using
6 Playmancer and have been considered as measures of the implicit emotional expression in this
7 work.

8 *Sociodemographic variables and other clinical measures.* Additional clinical and
9 demographic and social/family variables were measured using a semi-structured face-to-face
10 clinical interview (Jiménez-Murcia et al., 2006).

11

12 **2.3. Procedure**

13 The study was carried out according to the latest version of the Declaration of Helsinki and
14 it was approved by the Ethics Committee of the University Hospital. Written informed consent was
15 obtained from all participants. For both clinical groups and HC, experienced
16 psychologists/psychiatrists conducted face-to-face structured interviews. Participants completed the
17 self-report questionnaires (STAI and STAXI-2). For GD patients, the videogame session took place
18 before starting CBT. For the Remission-GD group, the session was recorded in a follow-up session
19 after finishing the standard CBT program.

20

21 **2.4. Statistical analysis**

22 Analyses were carried out with Stata16 for Windows (Stata-Corp, 2019). The comparison of
23 mean scores in emotional expression measures (facial expression, STAI and STAXI-2 scales)
24 between the groups was carried out with Poisson regression, a log-linear model useful for count
25 data that uses the logarithm as the link function and the Poisson distribution function. Finner's
26 correction (a procedure included into the Familywise error rate stepwise procedures which offers
27 more powerful test than the classical Bonferroni's correction) was used to control Type-I error due
28 to multiple statistical comparisons (Finner, 1993). The effect size for the pairwise comparisons was
29 estimated through the Cohen's- d coefficient (low effect size was considered for $|d|>0.20$, moderate
30 effect size for $|d|>0.50$ and good effect size for $|d|>0.80$) (Kelley & Preacher, 2012).

31

32

1 **3. RESULTS**

2 **3.1. Characteristic of the sample**

3 Table 1 shows the sociodemographic characteristics of the sample, and it shows no statistical
4 differences between the groups for chronological age, civil status and education levels. All of the
5 patients in the GD patient group were slot machine gamblers and did not report any other gambling
6 preference. Eight patients (66.7%) in the Remission-GD group were also slot machines gamblers,
7 and one patient in this cohort reported more than one preferred type of gambling. GD and
8 remission-GD groups reported statistically equal clinical profiles at intake (before the CBT) in the
9 GD related measures (second panel of Table 1).

10 --- Insert Table 1 ---

11

12 **3.2. Comparison of the videogame performance between groups**

13 In order to control effects of playing success on the expression of emotions, the outcome of
14 the diving performance on the mini-game “treasures of the sea” was calculated as a number of
15 errors (Number of times out of breath) divided by the minutes playing the diving mini-game. No
16 statistical differences were found between groups when videogame performance was compared
17 ($p=0.843$) [GD: mean=0.25 (SD=0.18); Remission-GD: mean=0.25 (SD=0.11); and HC:
18 mean=0.22 (SD=0.16)].

19

20 --- Insert Table 2 ---

21

22

23 **3.3. Comparison of the of implicit emotional expression measures**

24 The ANOVA for the outcomes joy and anger measures (Table 2) showed that GD group
25 expressed both joy and anger during the shortest mean time, followed by Remission-GD and HC.
26 All pairwise comparisons achieved significant results, but effect sizes were low ($|d|<0.50$).

27

28

29

30

31

32

33

34 **3.4. Comparison of the explicit emotional expression measures**

35 The explicit emotional expression measures analyzed in the study (STAI and STAXI-2
36 scores) reached significance when comparing between groups, except for STAXI-2 anger trait scale
37 (Table 2). As a rule, GD patient obtain the highest mean scores, followed by Remission-GD and
38 HC. Excluding STAXI-2 anger-trait, Acute-GD statistically differed from Remission-GD and HC
39 groups, and mean differences obtained effect sizes into the moderate to good range. Comparing
40 Remission-GD versus HC, only STAI anxiety-state obtained significant differences (effect size for
41 the pairwise comparison was moderate).

1 As a summary of the results of this study, Figure 1 contains the radar-chart with the z-
2 standardized mean scores obtained in the three groups compared in the study.

3 --- Insert Figure 1 ---
4

5 **4. DISCUSSION**

6 This pilot study is aimed to examine emotion (dys)regulation in a sample of treatment-
7 seeking patients with GD, and compare the implicit and explicit measures of emotion regulation
8 between GD patients in different clinical states (acute versus remission) and a healthy control
9 group.

10 In this work, GD patients presented lower level of implicit expression of anger but higher
11 level of explicit expression of anger. This result is consistent with studies concluding that GD often
12 co-occurs with emotions of anger (Maniaci et al., 2017; Schreiber, Grant, & Odlaug, 2012;
13 Williams et al., 2012). However, important gender differences have been described in samples of
14 GD patients (Fernández & Scott, 2009). Thus, while women with gambling problems have intense
15 internal feelings of anger, in men expressions of anger tend to manifest externally (verbally or
16 behaviorally, towards objects or people) (Aymamí et al., 2014). Given that the sample analyzed in
17 this study consisted only of males, it is not possible to establish gender differences. Still, our
18 findings confirm the results of previous research in which males with GD presented high levels of
19 explicit anger (Delfabbro, Thomas, & Armstrong, 2018).

20 It is also known that deficits in inhibitory control contribute to increased anger, when facing
21 negative events/stimuli, and that this difficulty in controlling anger is maintained over time
22 (Jauregui, Estévez, & Urbiola, 2016; Maniaci et al., 2017). Some studies focusing on the
23 recognition of emotions through the presence of different stimuli (such as music, voices or faces)
24 have observed that there exist a clear deficit in emotional processing that causes pathological
25 gamblers to exhibit higher levels of anxiety and fear that hinder the identification of emotions
26 (Kornreich et al., 2016). In fact, this egodystonic effect in the control of negative emotions is not
27 only present in GD, but also in other disorders characterized by impulsive behaviors such as bulimia
28 nervosa (Tárrega et al., 2014). This inconsistency in the control of emotions has been related to
29 other emotion alterations which are also highly comorbid with GD, such as depression, anxiety or
30 stress (Aïte et al., 2014; Nigro, Cosenza, & Ciccarelli, 2017). Therefore, in our study the
31 incongruence between the implicit and explicit emotional expression of anger could be due to the
32 fact that patients may be suppressing part of this emotion during the videogame session, and they do
33 not have the adequate tools to regulate controlling their explicit expression. On the other hand, it
34 has been observed that GD patients use gambling episodes as a means to alleviate negative

1 emotional states (which would explain the lower score in implicit expression of anger), but since
2 they feel worse after these episodes, the difficulty in regulating the mechanisms of negative
3 emotional expression is increased in a long-term (Aymamí et al., 2014).

4 In our study, expression of positive emotions (joy) was the lowest for GD patients, followed
5 by GD patients in remission and controls. This result is also consistent with the typical emotional
6 dysregulation processes that accompany to the disorder. Several studies have even concluded that
7 the patients' emotional profile have high discriminative capacity in identifying subjects with
8 gambling problems and in classifying different states of this disorder, since this pattern seems to be
9 a powerful marker for the problem (Jonsson et al., 2017).

10 Compared to the GD group, GD patients in remission presented better emotion regulation
11 (their levels of implicit and explicit emotional expression are more similar to those of the control
12 group). Some studies have confirmed a relevant change in the emotional regulation of patients who
13 finish psychological treatments or who are in a remission state. In fact, a close association between
14 levels of anxiety (negative emotions) and GD severity has been described (Medeiros, Sampaio,
15 Leppink, Chamberlain, & Grant, 2016; Navas et al., 2016), as well as a strong relationship between
16 levels of anger and the severity of GD (Ciccarelli et al., 2017; Maniaci et al., 2017). This result has
17 also been obtained in studies using the Playmancer platform (Tárrega et al., 2015).

18

19 **4.1. Limitations, strengths and implications**

20 The most noteworthy limitation of this study is the sample size, which decreases statistical
21 power and external validity. However, it should be argued that in spite of the low size of the groups,
22 significant relationships have emerged, and that coefficients used to estimate the effect size
23 (Cohen's-*d* coefficient) are not dependent on sample size. The inclusion of only male patients also
24 affects the external validity of the investigation. In any case, this work is presented as a pilot study,
25 whose results should be reviewed based on what is obtained in future research.

26 The strengths of this research include the analysis of GD patients in different clinical states
27 and the simultaneous inclusion of explicit and implicit measures of emotions.

28

29 **4.2. Conclusion**

30 The results of this study shows that patients with GD have more dysfunctional emotion
31 regulation levels than HC, and that implicit and explicit emotional regulation do not appear in the
32 same direction depending on the patients' clinical state: while the GD patients had lower scores in
33 implicit emotional expression and higher in explicit emotional expression, this relationship is

1 reversed in GD patients in remission. Explicit and implicit emotion expression scores in the HC
2 were more similar to the GD patients in remission than to GD patients.

3 These results have clinical implications in the areas of diagnostic evaluation and in the
4 development of new therapeutic intervention tools. Cognitive behavioral therapy currently
5 constitutes the most widely intervention procedure for GD, but it has been shown to have non-
6 compliance issues and high dropout and relapses rates which have been related to changing core
7 characteristics such as emotion regulation abnormalities (Challet-Bouju, Bruneau, IGNACE Group,
8 Victorri-Vigneau, & Grall-Bronnec, 2017). Assessing the therapeutic effectiveness of new
9 approaches such as SVG is a key challenge that must be taken into account when considering the
10 implicit and explicit emotions profile of GD.

11

12 **Acknowledgements**

13 We want to thank CERCA Programme/Generalitat de Catalunya for institutional support
14 and Fondo Europeo de Desarrollo Regional (FEDER) “Una manera de hacer Europa”/“a way to built
15 Europe”. We also thank the all members of the Playmancer Project Consortium for their support.

16

17 **Funding**

18 Financial support was received through the Support was given by the Playmancer Project (FP7-
19 ICT-215839-2007), which was funded by the FP7 of the European Commission. The project also received
20 support from the Ministerio de Economia y Competitividad (Grant PSI2015-68701-R). FIS PI14/00290, FIS
21 PI17/01167, and 18MSP001 - 2017I067 received aid from the Ministerio de Sanidad, Servicios Sociales e
22 Igualdad. CIBER Fisiologia Obesidad y Nutricion (CIBERObn) and CIBER Salud Mental (CIBERSAM),
23 both of which are initiatives of ISCIII. GMB is supported by a predoctoral AGAUR Grant (2018 FI_B2
24 00174), grant co-funded by the European Social Fund (ESF) “ESF”, investing in your future. With the support
25 of the Secretariat for Universities and Research of the Ministry of Business and Knowledge of the
26 Government of Catalonia. TMM and MLM are supported by a predoctoral Grant of the Ministerio de Educacion,
27 Cultura y Deporte (FPU16/02087 and FPU15/02911).

28

29 **Ethical statement**

30 The study was carried out according to the latest version of the Declaration of Helsinki and it was approved by the
31 Ethics Committee of the University Hospital. Written informed consent was obtained from all participants.

32

33

34

35

1 **5. REFERENCES**

2 Aïte, A., Barrault, S., Cassotti, M., Borst, G., Bonnaire, C., Houdé, O., ... Moutier, S. (2014). The
 3 Impact of Alexithymia on Pathological Gamblers' Decision Making. *Cognitive And Behavioral*
 4 *Neurology*, 27(2), 59–67. <https://doi.org/10.1097/WNN.0000000000000027>

5 American Psychiatric Association. (2000). *Diagnostic and Statistical Manual of Mental Disorders*
 6 (Fourth Edition) (4th-rev ed.). Washington D.C.: Author.

7 American Psychiatric Association. (2013). *Diagnostic and Statistical Manual of Mental Disorders*
 8 (Fifth Edition) (5th ed.). Washington D.C.: Author.

9 Aymamí, N., Granero, R., Penelo, E., Fernández-Aranda, F., Krug, I., Gunnard, K., ... Jiménez-
 10 Murcia, S. (2014). Anger in pathological gambling: clinical, psychopathological, and
 11 personality correlates. *The Spanish Journal of Psychology*, 17, E39.
 12 <https://doi.org/10.1017/sjp.2014.40>

13 Barrault, S., & Varescon, I. (2013). Cognitive distortions, anxiety, and depression among regular
 14 and pathological gambling online poker players. *Cyberpsychology, Behavior and Social*
 15 *Networking*, 16(3), 183–188. <https://doi.org/10.1089/cyber.2012.0150>

16 Challet-Bouju, G., Bruneau, M., IGNACE Group, C., Victorri-Vigneau, C., & Grall-Bronnec, M.
 17 (2017). Cognitive Remediation Interventions for Gambling Disorder: A Systematic Review.
 18 *Frontiers in Psychology*, 8, 1961. <https://doi.org/10.3389/fpsyg.2017.01961>

19 Christou-Champi, S., Farrow, T. F. D., & Webb, T. L. (2015). Automatic control of negative
 20 emotions: evidence that structured practice increases the efficiency of emotion regulation.
 21 *Cognition & Emotion*, 29(2), 319–331. <https://doi.org/10.1080/02699931.2014.901213>

22 Ciccarelli, M., Griffiths, M. D., Nigro, G., & Cosenza, M. (2017). Decision making, cognitive
 23 distortions and emotional distress: A comparison between pathological gamblers and healthy
 24 controls. *Journal of Behavior Therapy and Experimental Psychiatry*, 54, 204–210.
 25 <https://doi.org/10.1016/j.jbtep.2016.08.012>

26 Claes, L., Jiménez-Murcia, S., Santamaría, J. J., Moussa, M. B., Sánchez, I., Forcano, L., ...
 27 Fernández-Aranda, F. (2012). The facial and subjective emotional reaction in response to a
 28 video game designed to train emotional regulation (Playmancer). *European Eating Disorders*
 29 *Review*, 20(6), 484–489. <https://doi.org/10.1002/erv.2212>

30 Claes, Laurence, Jiménez-Murcia, S., Santamaría, J. J., Moussa, M. B., Sánchez, I., Forcano, L., ...
 31 Fernández-Aranda, F. (2012). The facial and subjective emotional reaction in response to a
 32 video game designed to train emotional regulation (Playmancer). *European Eating Disorders*
 33 *Review*, 20(6), 484–489. <https://doi.org/10.1002/erv.2212>

34 Claes, Laurence, Soenens, B., Vansteenkiste, M., & Vandereycken, W. (2012). The scars of the inner
 35 critic: perfectionism and nonsuicidal self-injury in eating disorders. *European Eating*
 36 *Disorders Review*, 20(3), 196–202. <https://doi.org/10.1002/erv.1158>

37 Conconi, A., Ganchev, T., Kocsis, O., Papadopoulos, G., Fernández-Aranda, F., & Jiménez-Murcia,
 38 S. (2008). PlayMancer: A Serious Gaming 3D Environment. *2008 International Conference on*
 39 *Automated Solutions for Cross Media Content and Multi-Channel Distribution*, 111–117.
 40 <https://doi.org/10.1109/AXMEDIS.2008.29>

41 Delfabbro, P., Thomas, A., & Armstrong, A. (2018). Gender Differences in the Presentation of
 42 Observable Risk Indicators of Problem Gambling. *Journal of Gambling Studies*, 34(1), 119–
 43 132. <https://doi.org/10.1007/s10899-017-9691-5>

1 Echeburúa, E., Báez, C., Fernández, J., & Páez, D. (1994). Cuestionario de juego patológico de
2 South Oaks (SOGS): Validación española (South Oaks Gambling Screen (SOGS): Spanish
3 validation). *Análisis de Modificación de Conducta*, 20, 769–791.

4 Egloff, B., Schmukle, S. C., Burns, L. R., & Schwerdtfeger, A. (2006). Spontaneous emotion
5 regulation during evaluated speaking tasks: associations with negative affect, anxiety
6 expression, memory, and physiological responding. *Emotion*, 6(3), 356–366.
7 <https://doi.org/10.1037/1528-3542.6.3.356>

8 Ehring, T., Tuschen-Caffier, B., Schnüller, J., Fischer, S., & Gross, J. J. (2010). Emotion regulation
9 and vulnerability to depression: spontaneous versus instructed use of emotion suppression and
10 reappraisal. *Emotion*, 10(4), 563–572. <https://doi.org/10.1037/a0019010>

11 Etkin, A., Prater, K. E., Hoeft, F., Menon, V., & Schatzberg, A. F. (2010). Failure of anterior
12 cingulate activation and connectivity with the amygdala during implicit regulation of
13 emotional processing in generalized anxiety disorder. *The American Journal of Psychiatry*,
14 167(5), 545–554. <https://doi.org/10.1176/appi.ajp.2009.09070931>

15 Fagundo, A. B., Santamaría, J. J., Forcano, L., Giner-Bartolomé, C., Jiménez-Murcia, S., Sánchez,
16 I., ... Fernández-Aranda, F. (2013). Video game therapy for emotional regulation and
17 impulsivity control in a series of treated cases with bulimia nervosa. *European Eating
18 Disorders Review*, 21(6), 493–499. <https://doi.org/10.1002/erv.2259>

19 Fagundo, A. B., Via, E., Sánchez, I., Jiménez-Murcia, S., Forcano, L., Soriano-Mas, C., ...
20 Fernandez-Aranda, F. (2014). Physiological and brain activity after a combined cognitive
21 behavioral treatment plus video game therapy for emotional regulation in bulimia nervosa: a
22 case report. *Journal of Medical Internet Research*, 16(8), e183.
23 <https://doi.org/10.2196/jmir.3243>

24 Fenton-O'Creavy, M., Lins, J. T., Vohra, S., Richards, D. W., Davies, G., & Schaaff, K. (2012).
25 Emotion regulation and trader expertise: Heart rate variability on the trading floor. *Journal of
26 Neuroscience, Psychology, and Economics*, 5(4), 227–237. <https://doi.org/10.1037/a0030364>

27 Fernández-Aranda, F., Jiménez-Murcia, S., Santamaría, J. J., Gunnard, K., Soto, A., Kalapanidas,
28 E., ... Penelo, E. (2012). Video games as a complementary therapy tool in mental disorders:
29 PlayMancer, a European multicentre study. *Journal of Mental Health*, 21(4), 364–374.
30 <https://doi.org/10.3109/09638237.2012.664302>

31 Fernández-Aranda, Fernando, Jiménez-Murcia, S., Santamaría, J. J., Gunnard, K., Soto, A.,
32 Kalapanidas, E., ... Penelo, E. (2012). Video games as a complementary therapy tool in mental
33 disorders: PlayMancer, a European multicentre study. *Journal of Mental Health*, 21(4), 364–
34 374. <https://doi.org/10.3109/09638237.2012.664302>

35 Fernández, E., & Scott, S. (2009). Anger treatment in chemically-dependent inpatients: evaluation
36 of phase effects and gender. *Behavioural and Cognitive Psychotherapy*, 37(4), 431–447.
37 <https://doi.org/10.1017/S1352465809990075>

38 Finner, H. (1993). On a monotonicity problem in step-down multiple test procedures. *Journal of the
39 American Statistical Association*, 88, 920–923.
40 <https://doi.org/10.1080/01621459.1993.10476358>

41 Garnefski, N., & Kraaij, V. (2007). The cognitive emotion regulation questionnaire: Psychometric
42 features and prospective relationships with depression and anxiety in adults. *European Journal
43 of Psychological Assessment*, 23, 141–149. <https://doi.org/10.1027/1015-5759.23.3.141>

44 Giner-Bartolomé, C., Fagundo, A. B., Sánchez, I., Jiménez-Murcia, S., Santamaría, J. J., Ladouceur,

1 R., ... Fernández-Aranda, F. (2015). Can an intervention based on a serious videogame prior to
2 cognitive behavioral therapy be helpful in bulimia nervosa? A clinical case study. *Frontiers in*
3 *Psychology*, 6, 982. <https://doi.org/10.3389/fpsyg.2015.00982>

4 Goudriaan, A. E., Oosterlaan, J., de Beurs, E., & Van den Brink, W. (2004). Pathological gambling:
5 a comprehensive review of biobehavioral findings. *Neuroscience and Biobehavioral Reviews*,
6 28(2), 123–141. <https://doi.org/10.1016/j.neubiorev.2004.03.001>

7 Grecucci, A., Giorgetta, C., Van't Wout, M., Bonini, N., & Sanfey, A. G. (2013). Reappraising the
8 ultimatum: an fMRI study of emotion regulation and decision making. *Cerebral Cortex (New*
9 *York, N.Y. : 1991)*, 23(2), 399–410. <https://doi.org/10.1093/cercor/bhs028>

10 Gross, J. J., & Thompson, R. A. (2007). Emotion Regulation: Conceptual Foundations. In J. J.
11 Gross (Ed.), *Handbook of Emotion Regulation*. New York: Guilford Press.

12 Guillén-Riquelme, A., & Buela-Casal, G. (2011). [Psychometric revision and differential item
13 functioning in the State Trait Anxiety Inventory (STAI)]. *Psicothema*, 23(3), 510–515.
14 Retrieved from <http://www.ncbi.nlm.nih.gov/pubmed/21774907>

15 Gyurak, A., Gross, J. J., & Etkin, A. (2011). Explicit and implicit emotion regulation: a dual-process
16 framework. *Cognition & Emotion*, 25(3), 400–412.
17 <https://doi.org/10.1080/02699931.2010.544160>

18 Hills, A. M., & Dickerson, M. (2002). Emotion, implicit decision making and persistence at
19 gaming. *Addiction*, 97(5), 598–599. <https://doi.org/10.1046/j.1360-0443.2002.t01-4-00134.x>

20 Hills, A. M., Hill, S., Mamone, N., & Dickerson, M. (2001). Induced mood and persistence at
21 gaming. *Addiction*, 96(11), 1629–1638. <https://doi.org/10.1080/09652140120080750>

22 Jauregui, P., Estévez, A., & Urbiola, I. (2016). Pathological Gambling and Associated Drug and
23 Alcohol Abuse, Emotion Regulation, and Anxious-Depressive Symptomatology. *Journal of*
24 *Behavioral Addictions*, 5(2), 251–260. <https://doi.org/10.1556/2006.5.2016.038>

25 Jiménez-Murcia, S., Stinchfield, R., Álvarez-Moya, E., Jaurrieta, N., Bueno, B., Granero, R., ...
26 Vallejo, J. (2009). Reliability, validity, and classification accuracy of a spanish translation of a
27 measure of DSM-IV diagnostic criteria for pathological gambling. *Journal of Gambling*
28 *Studies*, 25(1), 93–104. <https://doi.org/10.1007/s10899-008-9104-x>

29 Jiménez-Murcia, S, Aymamí-Sanromà, M., Gómez-Peña, M., Álvarez-Moya, E., & Vallejo, J.
30 (2006). *Protocols de tractament cognitivoconductual pel joc patològic i d'altres addiccions no*
31 *tòxiques. [Guidelines of cognitive-behavioral treatment of pathological gambling and other*
32 *non-toxic addictions]* (Hospital U). Barcelona, Spain.

33 Jiménez-Murcia, Susana, Álvarez-Moya, E. M., Granero, R., Aymami, M. N., Gómez-Peña, M.,
34 Jaurrieta, N., ... Vallejo, J. (2007). Cognitive-behavioral group treatment for pathological
35 gambling: Analysis of effectiveness and predictors of therapy outcome. *Psychotherapy*
36 *Research*, 17, 544–552. <https://doi.org/10.1080/10503300601158822>

37 Jiménez-Murcia, Susana, Aymamí, M. N., Gómez-Peña, M., Álvarez-Moya, E. M., & Vallejo, J.
38 (2006). *Protocols de tractament cognitiuconductual pel joc patològic i d'altres addiccions no*
39 *tòxiques [Guidelines of cognitive-behavioral treatment of pathological gambling and other*
40 *non-toxic addictions]*. Barcelona, Spain: Hospital Universitari de Bellvitge, Departament de
41 Salut, Generalitat de Catalunya.

42 Jiménez-Murcia, Susana, Fernández-Aranda, F., Kalapanidas, E., Konstantas, D., Ganchev, T.,
43 Kocsis, O., ... Davarakis, C. (2009). Playmancer project: a serious videogame as an additional
44 therapy tool for eating and impulse control disorders. *Studies in Health Technology and*

1 *Informatics*, 144, 163–166. <https://doi.org/10.3233/978-1-60750-017-9-163>

2 Jonsson, J., Munck, I., Volberg, R., & Carlbring, P. (2017). GamTest: Psychometric Evaluation and
3 the Role of Emotions in an Online Self-Test for Gambling Behavior. *Journal of Gambling
4 Studies*, 33(2), 505–523. <https://doi.org/10.1007/s10899-017-9676-4>

5 Kelley, K., & Preacher, K. J. (2012). On effect size. *Psychological Methods*, 17(2), 137–152.
6 <https://doi.org/10.1037/a0028086>

7 Kornreich, C., Saeremans, M., Delwarte, J., Noël, X., Campanella, S., Verbanck, P., ... Brevers, D.
8 (2016). Impaired non-verbal emotion processing in Pathological Gamblers. *Psychiatry
9 Research*, 236, 125–129. <https://doi.org/10.1016/j.psychres.2015.12.020>

10 Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): a new
11 instrument for the identification of pathological gamblers. *American Journal of Psychiatry*,
12 144(9), 1184–1188. <https://doi.org/10.1176/ajp.144.9.1184>

13 Maniaci, G., Picone, F., van Holst, R. J., Bolloni, C., Scardina, S., & Cannizzaro, C. (2017).
14 Alterations in the Emotional Regulation Process in Gambling Addiction: The Role of Anger
15 and Alexithymia. *Journal of Gambling Studies*, 33(2), 633–647.
16 <https://doi.org/10.1007/s10899-016-9636-4>

17 Martin, L. N., & Delgado, M. R. (2011). The influence of emotion regulation on decision-making
18 under risk. *Journal of Cognitive Neuroscience*, 23(9), 2569–2581.
19 <https://doi.org/10.1162/jocn.2011.21618>

20 Matthews, N., Farnsworth, B., & Griffiths, M. D. (2009). A pilot study of problem gambling among
21 student online gamblers: mood states as predictors of problematic behavior. *CyberPsychology
22 & Behavior*, 12(6), 741–745. <https://doi.org/10.1089/cpb.2009.0050>

23 Medeiros, G. C., Sampaio, D. G., Leppink, E. W., Chamberlain, S. R., & Grant, J. E. (2016).
24 Anxiety, Gambling Activity, and Neurocognition: A Dimensional Approach to a Non-
25 Treatment-Seeking Sample. *Journal of Behavioral Addictions*, 5(2), 261–270.
26 <https://doi.org/10.1556/2006.5.2016.044>

27 Mestre-Bach, G., Fernández-Aranda, F., Jiménez-Múrcia, S., & Potenza, M. N. (2020). Emotional
28 regulation in gambling disorder. *Current Opinion in Behavioral Sciences*, 31, 12–18.
29 <https://doi.org/10.1016/j.cobeha.2019.10.014>

30 Miguel-Tobal, J. J., Casado-Morales, M. I., Cano-Vindel, A., & Spielberger, C. D. (2001).
31 *Inventario de Expresión de la Ira Estado-Rasgo (STAXI-2)*. Madrid: TEA Ediciones.

32 Navas, J. F., Torres, A., Vilar, R., Verdejo-García, A., Catena, A., & Perales, J. C. (2015).
33 Nonmonetary Decision-Making Indices Discriminate Between Different Behavioral
34 Components of Gambling. *Journal of Gambling Studies*, 31(4), 1545–1560.
35 <https://doi.org/10.1007/s10899-014-9482-1>

36 Navas, J. F., Verdejo-García, A., LÓPEZ-GÓMEZ, M., Maldonado, A., & Perales, J. C. (2016).
37 Gambling with Rose-Tinted Glasses on: Use of Emotion-Regulation Strategies Correlates with
38 Dysfunctional Cognitions in Gambling Disorder Patients. *Journal of Behavioral Addictions*,
39 5(2), 271–281. <https://doi.org/10.1556/2006.5.2016.040>

40 Nigro, G., Cosenza, M., & Ciccarelli, M. (2017). The Blurred Future of Adolescent Gamblers:
41 Impulsivity, Time Horizon, and Emotional Distress. *Frontiers in Psychology*, 8, 486.
42 <https://doi.org/10.3389/fpsyg.2017.00486>

43 Nikolaidou, M., Fraser, D. S., & Hinvest, N. (2016). Physiological markers of biased decision-

1 making in problematic Internet users. *Journal of Behavioral Addictions*, 5(3), 510–517.
2 <https://doi.org/10.1556/2006.5.2016.052>

3 Phillips, M. L., Ladouceur, C. D., & Drevets, W. C. (2008). A neural model of voluntary and
4 automatic emotion regulation: implications for understanding the pathophysiology and
5 neurodevelopment of bipolar disorder. *Molecular Psychiatry*, 13(9), 829, 833–857.
6 <https://doi.org/10.1038/mp.2008.65>

7 Poole, J. C., Kim, H. S., Dobson, K. S., & Hodgins, D. C. (2017). Adverse Childhood Experiences
8 and Disordered Gambling: Assessing the Mediating Role of Emotion Dysregulation. *Journal
9 of Gambling Studies*, 33(4), 1187–1200. <https://doi.org/10.1007/s10899-017-9680-8>

10 Raylu, N., & Oei, T. P. S. (2004). The Gambling Related Cognitions Scale (GRCS): development,
11 confirmatory factor validation and psychometric properties. *Addiction*, 99(6), 757–769.
12 <https://doi.org/10.1111/j.1360-0443.2004.00753.x>

13 Savazzi, F., Isernia, S., Jonsdottir, J., Di Tella, S., Pazzi, S., & Baglio, F. (2018). Engaged in
14 learning neurorehabilitation: Development and validation of a serious game with user-centered
15 design. *Computers and Education*, 125, 53–61. <https://doi.org/10.1016/j.compedu.2018.06.001>

16 Schreiber, L. R. N., Grant, J. E., & Odlaug, B. L. (2012). Emotion regulation and impulsivity in
17 young adults. *Journal of Psychiatric Research*, 46(5), 651–658.
18 <https://doi.org/10.1016/j.jpsychires.2012.02.005>

19 Schwebel, D. C., Severson, J., Ball, K. K., & Rizzo, M. (2006). Individual difference factors in
20 risky driving: the roles of anger/hostility, conscientiousness, and sensation-seeking. *Accident;
21 Analysis and Prevention*, 38(4), 801–810. <https://doi.org/10.1016/j.aap.2006.02.004>

22 Serret, S., Hun, S., Thümmler, S., Pierron, P., Santos, A., Bourgeois, J., & Askenazy, F. (2017).
23 Teaching Literacy Skills to French Minimally Verbal School-Aged Children with Autism
24 Spectrum Disorders with the Serious Game SEMA-TIC: An Exploratory Study. *Frontiers in
25 Psychology*, 8, 1523. <https://doi.org/10.3389/fpsyg.2017.01523>

26 Sokol-Hessner, P., Camerer, C. F., & Phelps, E. A. (2013). Emotion regulation reduces loss aversion
27 and decreases amygdala responses to losses. *Social Cognitive and Affective Neuroscience*, 8(3),
28 341–350. <https://doi.org/10.1093/scan/nss002>

29 Spielberger, C. D. (1999). *Professional manual for State-Trait Anger Expression Inventory-2
30 (STAXI-2)*. Odessa, FL: Psychological Assessment Resources.

31 Spielberger, C. D., Gorsuch, R. L., Cubero, N. S., & Lushene, R. E. (1982). *STAI: Cuestionario de
32 Ansiedad Estado/Rasgo. Manual*. Madrid: TEA Ediciones.

33 Spielberger, C. D., Gorsuch, R. L., & Lushene, R. E. (1970). *The State-Trait Anxiety Inventory
34 Manual*. <https://doi.org/10.1037/t06496-000>

35 Stata-Corp. (2019). *Stata Statistical Software: Release 16*. College Station, TX: StataCorp LLC.

36 Stewart, S. H., Zack, M., Collins, P., & Klein, R. M. (2008). Subtyping pathological gamblers on
37 the basis of affective motivations for gambling: relations to gambling problems, drinking
38 problems, and affective motivations for drinking. *Psychology of Addictive Behaviors : Journal
39 of the Society of Psychologists in Addictive Behaviors*, 22(2), 257–268.
40 <https://doi.org/10.1037/0893-164X.22.2.257>

41 Stieler-Hunt, C., Jones, C. M., Rolfe, B., & Pozzebon, K. (2014). Examining key design decisions
42 involved in developing a serious game for child sexual abuse prevention. *Frontiers in
43 Psychology*, 5, 73. <https://doi.org/10.3389/fpsyg.2014.00073>

1 Stinchfield, R. (2003). Reliability, Validity, and Classification Accuracy of a Measure of DSM-IV
2 Diagnostic Criteria for Pathological Gambling. *American Journal of Psychiatry*, 160(1), 180–
3 182. <https://doi.org/10.1176/appi.ajp.160.1.180>

4 Takeuchi, H., Kawada, R., Tsurumi, K., Yokoyama, N., Takemura, A., Murao, T., ... Takahashi, H.
5 (2016). Heterogeneity of Loss Aversion in Pathological Gambling. *Journal of Gambling
6 Studies*, 32(4), 1143–1154. <https://doi.org/10.1007/s10899-015-9587-1>

7 Tárrega, S., Castro-Carreras, L., Fernández-Aranda, F., Granero, R., Giner-Bartolomé, C., Aymamí,
8 N., ... Jiménez-Murcia, S. (2015). A Serious Videogame as an Additional Therapy Tool for
9 Training Emotional Regulation and Impulsivity Control in Severe Gambling Disorder.
10 *Frontiers in Psychology*, 6, 1721. <https://doi.org/10.3389/fpsyg.2015.01721>

11 Tárrega, S., Fagundo, A. B., Jiménez-Murcia, S., Granero, R., Giner-Bartolomé, C., Forcano, L., ...
12 Fernández-Aranda, F. (2014a). Explicit and implicit emotional expression in bulimia nervosa
13 in the acute state and after recovery. *PLoS One*, 9(7), e101639.
14 <https://doi.org/10.1371/journal.pone.0101639>

15 Tárrega, S., Fagundo, A. B., Jiménez-Murcia, S., Granero, R., Giner-Bartolomé, C., Forcano, L., ...
16 Fernández-Aranda, F. (2014b). Explicit and implicit emotional expression in bulimia nervosa
17 in the acute state and after recovery. *PLoS One*, 9(7), e101639.
18 <https://doi.org/10.1371/journal.pone.0101639>

19 van der Kuil, M. N. A., Visser-Meily, J. M. A., Evers, A. W. M., & Ham, I. J. M. van der. (2018). A
20 Usability Study of a Serious Game in Cognitive Rehabilitation: A Compensatory Navigation
21 Training in Acquired Brain Injury Patients. *Frontiers in Psychology*, 9, 846.
22 <https://doi.org/10.3389/fpsyg.2018.00846>

23 Williams, A. D., Grisham, J. R., Erskine, A., & Cassedy, E. (2012). Deficits in emotion regulation
24 associated with pathological gambling. *British Journal of Clinical Psychology*, 51(2), 223–
25 238. <https://doi.org/10.1111/j.2044-8260.2011.02022.x>

26 Yahyaoui, H., & Menelas, B. A. J. (2017). Towards the development of a serious game that targets
27 psychological stressors of the workplace. *2017 IEEE 5th International Conference on Serious
28 Games and Applications for Health, SeGAH 2017*.
29 <https://doi.org/10.1109/SeGAH.2017.7939278>

30 Yang, Q., Tang, P., Gu, R., Luo, W., & Luo, Y. (2015). Implicit emotion regulation affects outcome
31 evaluation. *Social Cognitive and Affective Neuroscience*, 10(6), 824–831.
32 <https://doi.org/10.1093/scan/nsu124>

33

34

1 *Table 1*

2 Characteristics of the sample

Sociodemographic	GD		Remission-GD		HC		<i>p</i>
	(<i>n</i> =11)		(<i>n</i> =12)		(<i>n</i> =12)		
Age (years); <i>mean and SD</i>	36.0	6.34	37.5	8.25	34.6	8.12	.651
Marital status; <i>n-%</i>							
<i>Single</i>	6	54.5%	3	25.0%	5	41.7%	.442
<i>Married-partner</i>	3	27.3%	8	66.7%	5	41.7%	
<i>Divorced-separated</i>	2	18.2%	1	8.33%	2	16.7%	
Education; <i>n-%</i>							
<i>Primary</i>	7	63.6%	6	50.0%	9	75.0%	.586
<i>Secondary</i>	4	36.4%	5	41.7%	2	16.7%	
<i>University</i>	0	0%	1	8.33%	1	8.33%	

3

Clinical profile (pre-treatment)	GD		Remission-GD		<i>p</i>
	(<i>n</i> =11)		(<i>n</i> =12)		
Onset of GD (years-old); <i>mean and SD</i>	31.13	9.27	30.92	7.70	.954
Duration of GD (years); <i>mean and SD</i>	14.09	5.26	13.56	9.67	.873
SOGS-total score; <i>mean and SD</i>	11.00	2.97	9.17	4.86	.293
DSM-V: total criteria; <i>mean and SD</i>	7.55	2.58	7.58	2.75	.973
¹ Maximum bets (euros); <i>median and SD</i>	500.0	803.9	650.0	791.2	.201
¹ Mean bets (euros); <i>median and SD</i>	100.0	159.9	100.0	70.8	.152
¹ Cumulate debts (euros); <i>median and SD</i>	1000.0	10737.4	1000.0	66151.8	.561

4 Note. GD: gambling disorder; HC: healthy controls; SD: standard deviation.

5 ¹Median is reported due to high asymmetry ¹Mann-Whitney test U due to high asymmetry.

6

1 *Table 2*2 Comparison between groups in implicit facial emotion expression and explicit emotion expression
3 (STAI and STAXI-2)

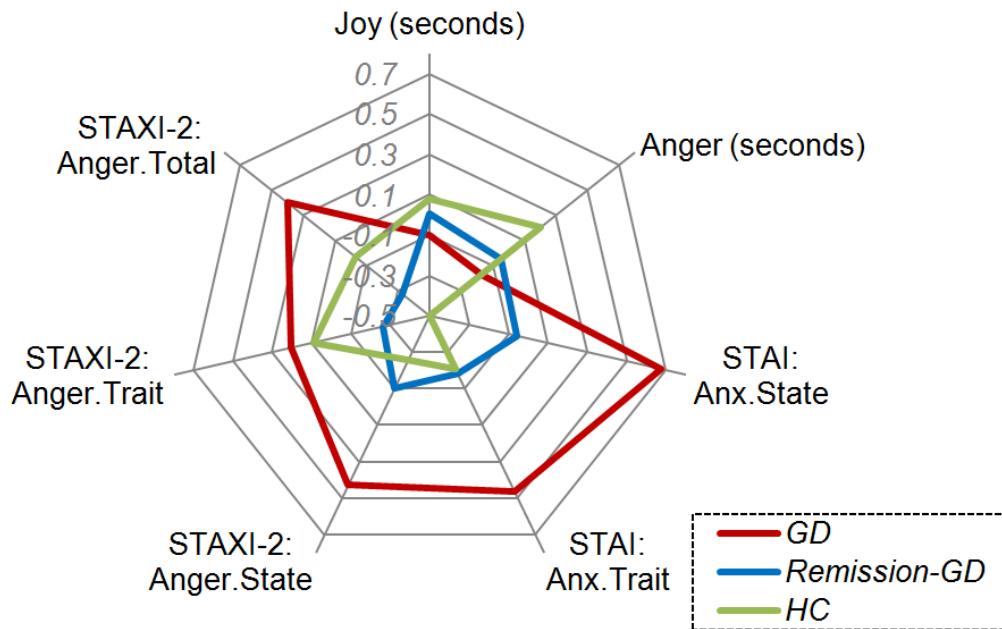
	Mean (standard deviation)						Factor Group	GD versus		GD versus		R-GD versus					
	GD (N=11)		R-GD (N=12)		HC (N=12)			p	R-GD		p	HC		p	HC		
									p	d		d			d		
<i>Implicit</i>																	
Joy (sec.)	974.5	494.3	1025.8	545.0	1060.8	413.9	<.001*	<.001*	0.10	<.001*	0.19	.008*	0.07				
Anger (sec.)	86.4	124.0	116.7	219.3	178.3	342.6	<.001*	<.001*	0.17	<.001*	0.36	<.001*	0.21				
<i>Explicit</i>																	
STAI: state	25.20	12.25	16.75	12.04	11.58	6.46	<.001*	<.001*	0.70†	<.001*	1.39†	.001*	0.53†				
STAI: trait	25.40	11.54	18.50	13.22	18.25	5.10	.001*	.001*	0.56†	<.001*	0.80†	.886	0.02				
STAXI-2: state	21.50	13.92	17.17	4.61	15.92	1.38	.014*	.022*	0.51†	.003*	0.56†	.452	0.37				
STAXI-2: trait	20.60	8.86	17.25	7.84	19.75	4.75	.156	.073	0.40	.659	0.12	.155	0.39				
STAXI-2: total	33.80	12.05	24.45	15.91	28.25	9.38	.001*	<.001*	0.66†	.020*	0.51†	.076	0.29				

4 Note. GD: gambling disorder; R-GD: remission gambling disorder HC: Healthy Controls. |d|: Cohen's d.

5 *Bold: significant comparison (including Bonferroni's-Finner correction).

6 †Bold: moderate to high effect size (|d|>0.5).

7


1 Figures legend

2

3 *Figure 1*

4 Radar-chart comparing emotional measures between groups (z-standardized means)

5

