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Variable Rate Deep Image Compression with
Modulated Autoencoder

Fei Yang, Luis Herranz, Joost van de Weijer, Jos A. Iglesias Guitin, Antonio M. Lpez, Mikhail G. Mozerov

Abstract—Variable rate is a requirement for flexible and
adaptable image and video compression. However, deep image
compression methods (DIC) are optimized for a single fixed
rate-distortion (R-D) tradeoff. While this can be addressed by
training multiple models for different tradeoffs, the memory
requirements increase proportionally to the number of models.
Scaling the bottleneck representation of a shared autoencoder
can provide variable rate compression with a single shared
autoencoder. However, the R-D performance using this simple
mechanism degrades in low bitrates, and also shrinks the effective
range of bitrates. To address these limitations, we formulate
the problem of variable R-D optimization for DIC, and propose
modulated autoencoders (MAEs), where the representations of a
shared autoencoder are adapted to the specific R-D tradeoff via a
modulation network. Jointly training this modulated autoencoder
and the modulation network provides an effective way to navigate
the R-D operational curve. Our experiments show that the
proposed method can achieve almost the same R-D performance
of independent models with significantly fewer parameters.

Index Terms—Deep image compression, variable bitrate, au-
toencoder, modulated autoencoder

I. INTRODUCTION

IMAGE compression is a fundamental and well-studied
problem in image processing and computer vision [2],

[3], [4]. The goal is to design binary representations (i.e.
bitstreams) with minimal entropy [5] that minimize the number
of bits required to represent an image (i.e. bitrate) at a given
level of fidelity (i.e. distortion) [6]. In many applications,
communication networks or storage devices may impose a
constraint on the maximum bitrate, which requires the image
encoder to adapt to a given bitrate budget. In some applica-
tions this constraint may even change dynamically over time
(e.g. video transmission). In all these cases, a bitrate control
mechanism is required, and it is available in most traditional
image and video compression codecs. In general, reducing the
bitrate causes an increase in the distortion, i.e. there is a rate-
distortion (R-D) tradeoff. This mechanism is typically based
on scaling the latent representation prior to quantization to
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Q inverse
scaling IDCT

encoder Q bit-stream decoder

I Îencoder Q bit-stream decoderscaling inverse
scaling

k mk
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I Îencoder Q bit-stream decoder

 modulating
network

demodulating
network

Q : quantization

: trainable

(b)

 scaling factor

DCTI

quantization
 table
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Fig. 1: Image compression and R-D control: (a) JPEG trans-
form, (b) pre-trained autoencoder with bottleneck scaling [1],
and (c) our proposed modulated autoencoder with joint train-
ing. Entropy coding/decoding is omitted for simplicity.

obtain finer or coarser quantizations, and then inverting the
scaling at the decoder side (Fig. 1a).

Recent studies show that deep image compression (DIC)
achieves comparable or even better results than classical image
compression techniques [7], [8], [9], [10], [1], [11], [12], [13],
[14], [15]. In this paradigm, the parameters of the encoder
and decoder are learned from certain image data by jointly
minimizing rate and distortion at a particular R-D tradeoff.
However, variable bitrate requires an independent model for
every R-D tradeoff. This is an obvious limitation, since it
requires storing each model separately, resulting in large
memory requirement.

To address this limitation, Theis et al. [1] use a single
autoencoder whose bottleneck representation is scaled before
quantization depending on the target bitrate (Fig. 1b). How-
ever, this approach only considers the importance of differ-
ent channels from the bottleneck representation of learned
autoencoders under R-D tradeoff constraint. In addition, the
autoencoder is optimized for a single specific R-D tradeoff
(typically high bitrate). These aspects lead to a drop in
performance for low bitrates and a narrow effective range of



2

bitrates.
In order to tackle the limitations of multiple independent 

models and bottleneck scaling, we formulate the problem of 
variable R-D optimization for DIC, and propose the modulated 
autoencoder (MAE) framework, where the representations of 
a shared autoencoder at different layers are adapted to a 
specific R -D t radeoff v ia a  m odulating n etwork. T he mod-
ulating network is conditioned on the target R-D tradeoff, and 
synchronized with the actual tradeoff optimized to learn the 
parameters of the autoencoder and the modulating network. 
MAEs can achieve almost the same operational R-D points of 
independent models with much fewer overall parameters (i.e. 
just the shared autoencoder plus the small overhead of the 
modulating network). Multi-layer modulation does not suffer 
from the main limitations of bottleneck scaling, namely, drop 
in performance for low rates, and shrinkage of the effective 
range of bitrates.

II. BACKGROUND

Almost all lossy image and video compression approaches 
follow the transform coding paradigm [16]. The basic structure
is a transform z = f (x) that takes an input image x ∈ RN 

and obtains a transformed representation z, followed by a
quantizer q = Q (z) where q ∈ ZD is a discrete-valued 
vector. The decoder reverses the quantization (i.e. dequantizer 
ẑ = Q−1 (q)) and the transform (i.e. inverse transform)
as x̂ = g (ẑ) reconstructing the output image x̂ ∈ RN . 
Before the transmission (or storage), the discrete-valued vector 
q is binarized and serialized into a bitstream b. Entropy 
coding [17] is used to exploit the statistical redundancy in 
that bitstream and reduce its length.

In DIC, the handcrafted analysis and synthesis transforms 
are replaced by the encoder z = f (x; θ) and decoder x̂ = 
g (ẑ; φ) of a convolutional autoencoder, parametrized by θ and 
φ. The fundamental difference is that the transforms are not 
designed but learned from training data. The model is typically 
trained by minimizing the optimization problem

arg minθ,φR (b) + λD (x, x̂) , (1)

where R (b) measures the rate of the bitstream b and D (x̂,x)
represents a distortion metric between x and x̂, and the
Lagrange multiplier λ controls the R-D tradeoff. Note that
λ is fixed in this case. The problem is solved using gradient
descent and backpropagation [18].

To make the model differentiable, which is required to apply
backpropagation, during training the quantizer is replaced by
a differentiable proxy function [1], [7], [8]. Similarly, entropy
coding is invertible, but it is necessary to compute the length
of the bitstream b. This is usually approximated by the entropy
of the distribution of the quantized vector, R (b) ≈ H [Pq],
which is a lower bound of the actual bitstream length.

In this paper, we will use scalar quantization by (element-
wise) rounding to the nearest neighboor, i.e. q = bzc, which
will be replaced by additive uniform noise as proxy during
training, i.e. z̃ = z + ∆z, with ∆z ∼ U

(
− 1

2 ,
1
2

)
. There

is no de-quantization in the decoder, and the reconstructed
representation is simply ẑ = q. To estimate the entropy we

will use the entropy model described in [8] to approximate Pq

by pz̃ (z̃). Finally, we will use mean squared error (MSE) as a
distortion metric. With these particular choices, (1) becomes

argmin
θ,φ

R (z̃; θ) + λD (x, x̂; θ, φ) , (2)

with

R (z̃; θ) = Ex∼px,∆z∼U [− log2 pz̃ (z̃)] , (3)

D (x, x̂; θ, φ) = Ex∼px,∆z∼U

[
‖x− x̂‖2

]
. (4)

III. MULTI-RATE DEEP IMAGE COMPRESSION WITH
MODULATED AUTOENCODERS

A. Problem definition

We are interested in DIC models that can operate satisfac-
torily on different R-D tradeoffs, and adapt to a specific one
when required. Note that Eq.(2) optimizes rate and distortion
for a fixed tradeoff λ. We extend that formulation to multiple
R-D tradeoffs (i.e. λ ∈ Λ = {λ1, . . . , λM}) as the multi-rate-
distortion problem

argmin
θ,φ

∑
λ∈Λ

[R (z̃; θ, λ) + λD (x, x̂; θ, φ, λ)] , (5)

with

R (z̃; θ, λ) = Ex∼px,∆z∼U [− log2 pz̃ (z̃)] , (6)

D (x, x̂; θ, φ, λ) = Ex∼px,∆z∼U

[
‖x− x̂‖2

]
, (7)

where we are simplifying the notation by omitting features
dependency on λ, i.e. z̃ = z̃ (λ) = f (x; θ, λ) and x̂ =
x̂ (λ) = g (z̃ (λ);φ, λ). This formulation can be easily ex-
tended to a continuous range of tradeoffs. Note also that these
optimization problems assume that all R-D operational points
are equally important. It could be possible to integrate an
importance function I (λ) to further give more importance to
certain R-D operational points if required. We assume uniform
importance (continuous or discrete) for simplicity.

B. Bottleneck scaling

A possible way to make the encoder and decoder aware of
λ is simply scaling the latent representation in the bottleneck
before quantization (implicitly scaling the quantization bin),
and then inverting the scaling in the decoder. In this case,
q = Q (z� s (λ)) and x̂ (λ) = g (ẑ (λ)� (1/s (λ));φ),
where s (λ) is the specific scaling factor for the tradeoff
λ. Conventional codecs use predefined tables for s (λ) (the
descaling is often implicitly subsumed in the dequantization,
e.g. JPEG), while other approaches [1] keep encoder and de-
coder fixed, optimized for a particular R-D tradeoff (Fig. 1(b)).

We observe several limitations in this approach: (1) scaling
only the bottleneck features is not flexible enough to adapt
to a large range of R-D tradeoffs, (2) using the inverse of
the scaling factor in the decoder may also limit the flexibility
of the adaptation mechanism, (3) optimizing the parameters
of the autoencoder only for a single R-D tradeoff leads to
suboptimal parameters for other distant tradeoffs, (4) training
the autoencoder and the scaling factors separately may also be
limiting. In order to overcome these limitations we propose the
modulated autoencoder (MAE) framework.
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Fig. 2: Modulated autoencoder (MAE) architecture, combining modulating networks and shared autoencoder. The channel-wise
product is performed before GDN in the encoder and after IGDN in the decoder.

C. Modulated autoencoders

Variable rate is achieved in MAEs by modulating the
internal representations in the encoder and the decoder (Fig. 2).
Given a set of internal representations in the encoder Z =
{z1, . . . , zK} and in the decoder U = {u1, . . . ,uL}, they
are replaced by the corresponding modulated and demodu-
lated versions Z′ = {z1 �m1 (λ) , . . . , zK �mK (λ)} and
U′ = {u1 � d1 (λ) , . . . ,uL � dL (λ)}, where m (λ) =
(m1 (λ) , . . . ,mK (λ)) and d (λ) = (d1 (λ) , . . . ,dL (λ)) are
the modulating and demodulating functions.

Our MAE architecture extends the DIC architecture pro-
posed in [8] which combines convolutional layers and
GDN/IGDN layers [19]. In our experiments, we choose to
modulate the outputs of the convolutional layers in the encoder
and decoder, i.e. Z and U, respectively.

The modulating function m (λ) for the encoder is learned
by a modulating network as m (λ) = m (λ;ϑ) and the
demodulating function d (λ) by the demodulating network
as d (λ) = d (λ;ϕ). As a result, the encoder has learnable
parameters {θ, ϑ} and the decoder {φ, ϕ}.

Finally, the optimization problem for the MAE is

argmin
θ,φ,ϑ,ϕ

∑
λ∈Λ

[R (z̃; θ, ϑ, λ) + λD (x, x̂; θ, φ, ϑ, ϕ, λ)] , (8)

which extends Eq.(5) with the modulating/demodulating net-
works and their corresponding parameters. All parameters are
learned jointly using gradient descent and backpropagation.

This mechanism is more flexible than bottleneck scaling
since it allows multi-level modulation, decouples encoder and
decoder scaling and allows effective joint training of both
autoencoder and modulating network, therefore optimizing
jointly to all R-D tradeoffs of interest.

D. Modulating and demodulating networks

The modulating network is a perceptron with two FC layers
and ReLU [20] and exponential nonlinearities (Fig. 2). The
exponential nonlinearity guarantees positive outputs which we
found beneficial in training. The input is a scalar value λ and
the output is m (λ) = (m1 (λ) , . . . ,mK (λ)). A small first

hidden layer allows learning a meaningful nonlinear function
between tradeoffs and modulation vectors, which is more
flexible than simple scaling factors and allows more expressive
interpolation between tradeoffs. In practice, we use normalized
tradeoffs as λ̂k = λk/maxλ∈Λ (λ). The demodulating network
follows a similar architecture.

IV. EXPERIMENTS

A. Experimental setup

We evaluated MAE on the CLIC 2019 Professional dataset
with 585 training images and 226 test images. In addition, we
also test our models on Kodak dataset. Our implementation 1

is based on the autoencoder architecture of [8], which is
augmented with modulation mechanisms and modulating net-
works (two FC layers, with 150 and 3×192 units respectively)
for all the convolutional layers. We use MSE as distortion
metric. The model is trained with crops of size 240 × 240
using Adam with a minibatch size of 8 and initial learning
rates of 0.0004 and 0.002 for MAE and the entropy model,
respectively. After 400k iterations, the learning rates are halved
for another 150k iterations. We also tested MAEs with scale
hyperpriors, as described in [21]. In our experiments, we
consider seven (λ ∈ [64, 128, 256, 512, 1024, 2048, 4096]) and
four (λ ∈ [64, 256, 1024, 4096]) R-D tradeoffs for the models
without and with hyperprior, respectively. We consider two
baselines:

Independent models. Each R-D operational point is ob-
tained by training a new model with a different R-D tradeoff
λ in (2), requiring each model to be stored separately. This
provides the optimal R-D performance, but also requires more
memory to store all the models for different R-D tradeoffs.

Bottleneck scaling. The autoencoder is optimized for the
highest R-D tradeoff in the range. Then it is frozen and the
scaling parameters are learned for the other tradeoffs.

1https://github.com/FireFYF/modulatedautoencoder
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Fig. 3: R-D curves for different methods on CLIC 2019
Professional test dataset.

Fig. 4: R-D curves for different methods on Kodak dataset.

B. Results

We use MS-SSIM (dB)2 and PSNR (dB) to evaluate image
distortion. Fig. 3 and Fig. 4 show the R-D operational curves
for the proposed MAE and the two baselines on the CLIC
2019 Professional dataset and the Kodak dataset, respectively.
In addition, it also includes JPEG [22], JPEG2000 [23] and
BPG [24] coding methods to demonstrate their performance.
For both of them, we can see that the best R-D performance
is obtained by using independent models. Hyperprior models
also have superior R-D performance. Bottleneck scaling is
satisfactory for high bitrates, closer to the optimal R-D opera-
tional point of the autoencoder, but degrades for lower bitrates.
Interestingly, bottleneck scaling cannot achieve as low bitrates
as independent models since the autoencoder is optimized
for a high bitrate. This can be observed in the R-D curve
as a narrower range of bitrates. Note that our independent
models results did not achieve the same performance as in
[8] and [21] due to the different training datasets. The
proposed MAEs can achieve an R-D performance very close
to the corresponding independent models, demonstrating that
multi-layer modulation with joint training is a more powerful
mechanism to achieve effective variable rate compression.

The main advantage of bottleneck scaling and MAEs is
that the autoencoder is shared, which results in much fewer
parameters than independent models, which depend on the
number of R-D tradeoffs (Table I). Both methods have a small
overhead due to the modulating networks or the scaling factors
(which is smaller in bottleneck scaling).

2MS-SSIM (dB) is computed as 910 log10(1 9 MS-SSIM) [11]
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Fig. 5: Modulated feature maps: (a) reconstructed images for
high (λ = 4096) and low (λ = 64) bitrates (first row), and the
corresponding feature maps for two channels of the bottleneck
before quantization (2nd and 3rd rows), (b) original image
for comparison, and (c) element-wise ratio (logarithmic scale)
between the feature maps at the two different tradeoffs.

TABLE I: Model size (millions of parameters)

Architecture w/o hyperprior [8] w/ hyperprior [21]
(seven R-D tradeoffs) (four R-D tradeoffs)

Independent models 28.02 M 40.53 M
Bottleneck scaling [1] 4.00 M -
Modulated AE (ours) 4.06 M 10.27 M

In order to illustrate the differences between the bottleneck
scaling and MAE bitrate adaptation mechanisms, we consider
the image in Fig. 5b and the reconstructions for high and
low bitrates in Fig. 5a. We show two of the 192 channels
in the bottleneck feature before quantization (Fig. 5a), and
observe that the maps for the two bitrates are similar but the
range is higher for λ = 4096, so the quantization will be
finer. This is also what we would expect in bottleneck scaling.
However, a closer look highlights the difference between both
methods. We also compute the element-wise ratio between
the bottleneck features at λ = 4096 and λ = 64, and
show the ratio image for the same channels of the example
(Fig. 5c). We can see that the MAE learns to perform a more
complex adaptation of the features beyond simple channel-
wise bottleneck scaling since different areas of the ratio map
show different values (the ratio map would be uniform in
bottleneck scaling), which allows MAE to allocate bits more
freely when optimizing for different R-D tradeoffs, especially
for low bitrates.

V. CONCLUSION

In this work, we introduce the modulated autoencoder,
a novel variable rate deep image compression framework,
based on multi-layer feature modulation and joint learning
of autoencoder parameters. MAEs can realize variable bitrate
image compression with a single model, while keeping the
performance close to the upper bound of independent models
that require significantly more memory. We show that MAE
outperforms bottleneck scaling [1], especially for low bitrates.
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