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Abstract

This paper tackles the problem of finding the optimal non-coherent detector for the reacquisition of

weak Global Navigation Satellite System (GNSS) signals in the presence of bits and phase uncertainty.

Two solutions are derived based on using two detection frameworks: the Bayesian approach and the

generalized likelihood ratio test (GLRT). We also derive approximate detectors of reduced computation

complexity and without noticeable performance degradation. Simulation results reveal a clear improve-

ment of the detection probability for the proposed techniques with respect to the conventional detectors

implemented in high sensitivity GNSS (HS-GNSS) receivers to acquire weak GNSS signals. Finally, we

draw conclusions on which is the best technique to reacquire weak GNSS signals in practice considering

a trade-off between performance and complexity.

Index Terms

Bayesian approach, GLRT, HS-GNSS receivers, post-detection integration techniques, ROC curves.

I. INTRODUCTION

Nowadays, Global Navigation Satellite System (GNSS) receivers are used in a continuously increasing

variety of applications, involving for instance car and pedestrian navigation. These receivers allow the

user to know the position in open-sky conditions, where the signals coming from the satellites can be

easily detected. Due to the success achieved by GNSS receivers in these conditions, a great interest to

extend their applications to more challenging environments, which include indoor building, urban canyon

and forested areas, has emerged [1].

However, the existence of obstacles in these environments causes a high attenuation of the received sig-

nal making the acquisition and tracking of weak GNSS signals a challenge. In this situation, conventional

GNSS receivers are not usually able to detect the signals. This fact has led to the development of high
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sensitivity GNSS (HS-GNSS) receivers. These receivers usually acquire weak signals by extending the

coherent integration time duration, which provides an additional gain in signal detection. Nevertheless,

this duration cannot be increased without boundaries mainly due to the presence of a residual frequency

offset and data bits. In these circumstances, if reliable signal detection requires a longer integration time

than what is possible in a coherent manner, the receiver has to apply non-linear combinations of the

coherent integration outputs, which are referred to as post-detection integration (PDI) techniques or non-

coherent detectors. PDI techniques overcome the limitations of the coherent integration time duration by

using a non-linear function. Although these techniques are less effective in accumulating signal energy

than the coherent integration, they can use a longer integration time allowing the receiver to acquire

satellites with lower carrier-to-noise ratio [2], [3].

Several PDI techniques have been proposed in the literature to acquire weak GNSS signals. The best

known technique is the non-coherent PDI (NPDI) [4], which is robust against the presence of frequency

offset and data bits. Another well-known option corresponds to the differential PDI (DPDI) [5], which is

only robust against the presence of frequency offset, but provides better detection performance than the

NPDI technique. An additional technique is the generalized PDI truncated (GPDIT) [6], which combines

the two previous techniques. The GPDIT technique exhibits a gain in signal detection with respect to

the performances of both the NPDI and DPDI techniques individually, even though it requires a larger

computational load and is also only robust against frequency offset. Another alternative is the non-

quadratic NPDI (NQ-NPDI) technique, which is robust against data bits and residual frequency offset

[7]. This technique offers better signal detection improvement than the NPDI when the received signal

can be acquired using a small number of non-coherent combinations. Recently, a detection technique has

been presented in [8], which is robust against the presence of data bits but not against frequency offset.

This technique consists in the combination between two detector the NPDI and a new one referred to as

squaring detector.

As a matter of fact, although PDI techniques are usually implemented for detecting weak signals at

the acquisition stage, they have received less attention for the reacquisition. A reacquisition must be

carried out when the receiver has just lost the signal from one satellite owing to, for instance, strong

attenuation caused by an obstacle in the path between the transmitter and the receiver. If the receiver

loses the signal, it has to re-detect the signal in order to obtain the position of the user. However, the

problem of detecting weak GNSS signals in the reacquisition is less complex than in the first acquisition

since in case of reacquisition an accurate estimation of the Doppler frequency is available [9] and hence

the most problematic impairment to extend the coherent integration duration are the data bits.

Despite the fact that some strategies have been proposed to detect weak GNSS signals, which are
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mentioned above, the optimal PDI technique for the reacquisition remains still unknown. This occurs

because PDI techniques are designed for the first acquisition of the receiver, which has to mitigate the

uncertainty of the Doppler frequency. For this reason, the purpose of this paper is to derive the optimal

PDI technique by applying the detection theory tools for the reacquisition of weak GNSS signals. More

precisely, the Bayesian approach and the generalized likelihood ratio test (GLRT) are used to formulate

the detection problem and two PDI techniques are obtained, which require a significant amount of

computational resources. We also present lower-complexity approximations of these two PDI techniques.

Finally, the performance of the techniques proposed herein is compared to the PDI techniques used in

previous work in terms of receiver operating characteristics (ROC) curves, revealing a clear gain in favour

of our techniques.

The paper is organized as follows. Section II defines the signal model, while Section III makes a

review of the most relevant PDI techniques implemented in HS-GNSS receivers. In Section IV, new PDI

techniques are derived using the Bayesian approach and the GLRT. Section V illustrates the simulation

results based on ROC curves. Finally, Section VI draws the conclusions.

II. SIGNAL MODEL

The first task of any GNSS receivers is to detect the satellites in view. To do so, a local replica of the

transmitted signal from a satellite with tentative values of code delay and Doppler frequency is correlated

with the signal received from the different satellites [10]. The result of this process is known as a cross-

ambiguity function (CAF), which is computed for a given value of coherent integration time (Tcoh).

Assuming that there is absence of navigation data bits transition, the CAF of one particular satellite can

be expressed as [11]

y(τ̃ , f̃d) = Adejφsinc(∆fTcoh)r(∆τ) + ω, (1)

where τ̃ and f̃d are the tentative values of code-delay and Doppler frequency, respectively, A is the

received amplitude with phase φ, d is the data bit value that can be 1 or -1, ∆τ = τ − τ̃ is the residual

delay offset between the local replica and the received GNSS signal, ∆f = fd − f̃d is the residual

frequency offset, r(∆τ) is the normalized correlation function of the GNSS signal, and ω is additive

white Gaussian noise (AWGN) with zero-mean and variance σ2. The sinc(∆fTcoh) term captures the

degradation owing to the frequency offset between the local replica and the received signal.

The acquisition of a satellite provides a coarse estimation of code delay and Doppler frequency, which

are obtained from the value of τ̃ and f̃d that maximize the CAF. The accuracy of theses estimations

can be improved performing a finer search of Doppler frequency and code delay in the CAF. Then, the
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incoming signal is tracked by correlating it with a local replica, which contains accurate estimations of

Doppler frequency and code delay. This process is usually carried out for a long period of time. However,

the tracking of the signal can be lost due to, for example, the attenuation caused by an obstacle between

the satellite and the receiver. In this situation, the HS-GNSS receiver tries to reacquire the received signal

from the satellite. To do so, a local replica, which includes the estimations of code delay and Doppler

frequency obtained in the tracking stage before losing the signal, is correlated again with the received

signal for different time instants, which becomes [12]

yk = Ik + jQk = Adke
jφ + wk, (2)

where Ik = <(yk), Q = =(yk), wk is the noise component, the index k = 1, ..., Nnc represents the time

instant when the correlator output yk is computed, dk are the data bits assumed to be a random variable

taking values of 1 and -1 with the same probability. The amplitude A and the phase φ are constant with

k, and wk is assumed independent for each k, but identically distributed. It is worth mentioning that the

correlation output yk is usually computed for several close values of the code delay estimation since this

estimation may have changed slightly due to the movement of the satellite and the receiver. Nonetheless,

we omit this dependence since we can consider we are performing the analysis only for one of these

values.

Combinations of several correlator outputs are needed to detect the weak GNSS signal. The best way

to obtain a gain in terms of signal detection is increasing the Tcoh (i.e. coherently combining different

correlator outputs), though its duration is limited by data bits. If the coherent integration is not enough

to detect the signal in harsh conditions, we must resort to apply PDI techniques, which provide signal

detection improvements since they can increase the integration time by using a non-linear function. In

order to known whether the satellite is present or not, the output of a PDI technique denoted as Lx is

compared to a signal detection threshold. If the magnitude of Lx surpasses the detection threshold the

satellite is considered to be present, but if this magnitude does not surpass the detection threshold, the

satellite is assumed to be absent. A block diagram representing the reacquisition process is shown in

Fig. 1. The problem of obtaining the optimal PDI technique consists in finding a function f(y1, ..., yNnc)

that allows the receiver to discriminate between the two hypotheses H0 (the satellite is absent) and H1

(the satellite is present) with the lower probability of false alarm and greater probability of detection:

• Under H0: yk = wk is a complex Gaussian noise with mean zero and variance σ2.

• Under H1: yk = Adke
jφ + wk is the signal plus complex Gaussian noise.

It is worth mentioning that if the phase of the signal was time-varying, the signal detection problem

would be completely different, which leads to other types of solutions. Examples of signal detection
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Fig. 1. Block diagram of the GNSS signal reacquisition.

problems with time-varying phase can be found in [7], [13].

III. STATE-OF-THE-ART OF PDI TECHNIQUES FOR HS-GNSS RECEIVERS

In this section we present a review of the most relevant PDI techniques implemented in HS-GNSS

receivers, which will be used as a benchmark to compare the performance of the PDI techniques presented

in Section IV. The optimal detector assuming a received signal that only contains an unknown phase

during all the integration time is the coherent integration [14]

Lcoh(y) =

∣∣∣∣∣
Nnc∑
k=1

yk

∣∣∣∣∣ , (3)

where y
.
= [y1, ..., yNnc ]

T . However, the coherent integration is degraded, impaired in presence of

frequency offset and data bits. In presence of these impairments, the most widely applied PDI technique

is the NPDI, which is given by [4]

LNPDI(y) =

Nnc∑
k=1

|yk|2 . (4)

The NPDI technique is robust against the phase variations caused by data bits and frequency offset since

it removes these variations by using the squared absolute value.

Alternatively, another technique to detect weak signals is the DPDI defined as follows [5]:

LDPDI(y) =

∣∣∣∣∣
Nnc∑
k=2

yky
∗
k−1

∣∣∣∣∣ . (5)

This technique usually offers better performance than the NPDI technique, but it experiences a perfor-

mance degradation in presence of data bits. Another alternative is the NQ-NPDI technique [7]:

LNQ-NPDI(y) =

Nnc∑
k=1

|yk| . (6)

The NQ-NPDI technique provides an improvement in signal detection performance over the NPDI

technique, especially if the signal can be detected using a small number of Nnc, that is, Nnc ≤ 10.
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Moreover, it is robust against frequency offset and data bits. An additional technique, denoted as GPDIT,

combines the NPDI and DPDI techniques as [6]

LGPDIT(y) = LNPDI(y) + 2LDPDI(y) =

Nnc∑
k=1

|yk|2 + 2

∣∣∣∣∣
Nnc∑
k=2

yky
∗
k−1

∣∣∣∣∣ . (7)

The GPDIT technique outperforms the NPDI and DPDI techniques as long as the signal does not contain

data bits. This occurs because the GPDIT technique consists of the DPDI term, which suffers a significant

degradation in presence of data bits.

IV. DETECTION STRATEGIES

This section uses two different detection strategies to find the optimal PDI technique for the signal

model described in Section II. These strategies are the Bayesian approach and the GLRT, which are

usually applied in detection problems with unknown parameters.

A. Bayesian approach

The Bayesian approach is often used when likelihood ratio test (LRT) contains unknown parameters,

to which a prior probability distribution can be assigned. Indeed, under these conditions, the Bayesian

approach leads to the optimal detector [15]. This approach consists in calculating the expectation of the

LRT with respect to the a priori distribution of the unknown parameter. More precisely, the difficulty

caused by the unknown parameter is circumvented by averaging the conditional probability density

function (PDF) to obtain the unconditional PDF, which does not depend on the unknown parameter.

The conditional PDF of the correlators outputs assuming that these outputs include data bits uniformly

distributed with equal probability is written under H1 as [7]

p(y;H1, φ) =
1

(πσ2)Nnc
exp

(
−
Nnc∑
k=1

1

σ2
(I2k +Q2

k +A2)

)
Nnc∏
k=1

cosh
(

2A

σ2
(Ik cos(φ) +Qk sin(φ))

)
. (8)

Under H0, the PDF of y can be expressed as follows,

p(y;H0) =
1

(πσ2)Nnc
exp

(
−
Nnc∑
k=1

1

σ2
(I2k +Q2

k)

)
. (9)

The Bayesian approach is based on a ratio of the two PDFs above given by

LB(y) =

∫
p(y;H1, φ)p(φ)dφ

p(y;H0)
=
p(y;H1)

p(y;H0)
≶ γ̃B, (10)

where p(φ) is the prior PDF of φ and γ̃B is the detection threshold. First, to apply the Bayesian approach

we obtain an expression of the ratio between the two PDFs: p(y;H1, φ) and p(y;H0). After removing

some irrelevant constants, the ratio can be written as

L′B(y, φ) =

Nnc∏
k=1

cosh
(

2A

σ2
(Ik cos(φ) +Qk sin(φ))

)
. (11)
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Second, we eliminate the phase information in (11) using the prior information. The prior PDF of φ is

assumed to be a uniform random variable from −π to π. The resulting Bayesian approach is given by

the following expression:

L′′B(y) =
1

2π

∫ π

−π

Nnc∏
k=1

cosh
(

2A

σ2
ck(φ)

)
dφ (12)

with

ck(φ) = Ik cos(φ) +Qk sin(φ). (13)

Note that the larger the value of Nnc, the larger the number of multiplicative terms in the integral. To

solve this integral, we apply the properties of the product of cosh functions, that is, cosh(x)cosh(y) =

(cosh(x+y)+cosh(x−y))/2. Proceeding in this way the integral can be rewritten as a series of integrals,

where each one contains the cosh of a certain combination of sums and subtractions of the terms ck(φ)

as

L′′B(y) =
1

2π2Nnc−1

(∫ π

−π
cosh

(
2A

σ2
(c1(φ) + c2(φ) + . . .+ cNnc(φ))

)
dφ + . . .+∫ π

−π
cosh

(
2A

σ2
(c1(φ)− c2(φ)− . . .− cNnc(φ))

)
dφ

)
, (14)

for which a more compact expression is

L′′B(y) =
1

2π2Nnc−1

2Nnc−1∑
m=1

∫ π

−π
cosh

(
2A

σ2
(am cos(φ) + bm sin(φ))

)
dφ, (15)

where 2Nnc−1 is the number of cosh functions that appear after applying the property of the mul-

tiplication of several cosh functions. The am and bm coefficients aim at encompassing all possible

combinations of additions and subtractions of Ik and Qk, respectively, excluding those that refer to

others already considered but with opposite sign. By stacking the above-mentioned coefficients into

vectors a
.
= [a1, · · · , a2Nnc−1]T and b

.
= [b1, · · · , b2Nnc−1]T , we can compute their value as follows,

a = MI (16)

b = MQ, (17)

where I
.
= [I1, . . . , INnc ]

T , Q
.
= [Q1, . . . , QNnc ]

T , and M is a
(
2Nnc−1 ×Nnc

)
matrix whose rows

contain all the possible combinations of +1 and -1, excluding those that differ from another row in a

global change of sign as

M
.
=


1 −1 −1 . . . −1

1 1 −1 . . . −1
...

...
...

. . .
...

1 1 1 . . . 1

 . (18)
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Now, the integral can be solved by the following procedure as

L′′B(y) =
1

π2Nnc

2Nnc−1∑
m=1

∫ π

−π
cosh

(
2A

σ2

√
a2m + b2m cos

(
φ− atan

(
bm
am

)))
dφ

=
1

π2Nnc+1

2Nnc−1∑
m=1

(∫ π

−π
e

2A

σ2

√
a2
m+b2m cos(φ)dφ+

∫ π

−π
e−

2A

σ2

√
a2
m+b2m cos(φ)dφ

)

=
1

2Nnc−1

2Nnc−1∑
m=1

I0

(
2A

σ2

√
a2m + b2m

)
, (19)

where I0 denotes the zero-order modified Bessel function. Finally, removing some irrelevant constants

the resulting detector can be expressed as

LBAPDI(y) =

2Nnc−1∑
m=1

I0

(
2A

σ2

√
a2m + b2m

)
≶ γB, (20)

where γB is the detection threshold. The result expressed in (20) is referred to as Bayesian approach PDI

(BAPDI) technique. This technique is optimum in presence of unknowns bits and an unknown constant

phase. Nonetheless, the BAPDI technique depends on the ratio of A and σ2. Despite the fact that some

receivers can know this ratio in tracking stage since they use a carrier-to-noise estimator, the goal of

this paper is to derive a detector which does not depends on the parameters A and σ2 so that it can be

implemented in any receiver. To do so, we propose to apply the approximation of I0(x) ≈ exp(|x|), valid

for relative large values of x. This approximation can be applied for our problem since the argument of

(20) is not a small magnitude when the received signal has the same or similar combination of bits as

one of the rows of the matrix M. Then, by considering I0(x) ≈ exp(|x|), we get

2Nnc−1∑
m=1

exp
(∣∣∣∣2Aσ2√a2m + b2m

∣∣∣∣) ≶ γB. (21)

Introducing the logarithm of the LRT becomes

ln

2Nnc−1∑
m=1

exp
(∣∣∣∣2Aσ2√a2m + b2m

∣∣∣∣)
 ≶ ln(γB). (22)

To simplify the expression above, we make use of the log-sum-exp approximation, which consists in

taking the maximum of the different exponentials. This approximation is reasonable for a high signal-

to-noise ratio (SNR) at the output of the PDI technique. Such values of SNR are usually obtained at this

output because otherwise the signal could not be detected. In this situation, the largest term dominates

in the sum of (22) as

max
m

(∣∣∣∣2Aσ2√a2m + b2m

∣∣∣∣) ≶ γ′B. (23)
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The larger the deviation of the argument of (22), the better the approximation becomes. Finally, in-

corporating the now irrelevant constant 2|A|
σ2 into the threshold, the resulting detector can be expressed

as

LMBAPDI(y) = max
m

(√
a2m + b2m

)
≶ γ′′B. (24)

The solution provided by (24) is referred to as maximum BAPDI (MBAPDI) technique. The MBAPDI

technique can be implemented in any HS-GNSS receiver because it does not depend on the parameters

A and σ2. It is worth mentioning that if chosen index m corresponds to the correct sequence of bits, then

the result would be the same as for the coherent detector in the hypothesis H1, but this will not always

happen due to the presence of noise. Moreover, although this happened, we would have a performance

degradation with respect to the coherent detector. This is because the MBAPDI requires the use of the

maximum function also in the hypothesis H0, making the receiver choose the largest value among the

different 2Nnc−1 samples of noise, which increases the number of false alarms.

B. Generalized likelihood ratio test

A common approach to design detectors with unknown parameters deals with the combination of

estimation and detection. The best known joint estimation and detection approach is the GLRT, which

consists of two steps. First, the maximum likelihood (ML) estimate of the unknown parameters are found.

Second, the unknown parameters are replaced by their ML estimates under each hypothesis and the LRT

is calculated as if the estimated parameters were correct [16], [17].

Although no claims about the optimality of the GLRT can be made, it provides good results in general.

Moreover, the GLRT formulation usually provides simpler expressions than the Bayesian approach, which

requires the integral of products of several PDFs. This occurs because ML estimation equations sometimes

result in a closed-form solution. However, this is not the case of our problem where the ML estimate of

the received phase affected by bits does not admit a closed-form solution. In this situation, two options

are feasible: making an approximation of the ML equation in order to get a closed-form solution, which

was done in [12] or using a one-dimensional search method to evaluate the ML estimate.

A PDI technique has been already obtained in [8] using an approximation of the ML phase estimate

provided in [12] and replacing it in an expression of the LRT approximated for low SNR regime. Before

proceeding, we make a brief description of the work done previously by others authors and after that

we present new PDI techniques based on using different approaches of the GLRT. In [12], the authors
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computed the ML solution of the signal phase, which contains unknown bits, from the PDF of y as

p(y;H1, φ) =
1

(πσ2)Nnc
exp

(
−
Nnc∑
k=1

1

σ2
(I2k +Q2

k +A2)

)
Nnc∏
k=1

cosh
(

2A

σ2
(Ik cos(φ) +Qk sin(φ))

)
.

(25)

The log-likelihood function for φ, removing the terms that are not affected by φ, can be expressed as

L(y, φ) =

Nnc∑
k=1

ln
(

cosh
(

2A

σ2
(Ik cos(φ) +Qk sin(φ))

))
. (26)

In order to find a closed-form solution of φ the ln(cosh(x)) function is approximated by x2/2. Thus, the

closed-form expression of φ that approximately maximizes (26) is

φ̂ =
1

2
atan2

(
2

Nnc∑
k=1

IkQk,

Nnc∑
k=1

I2k −Q2
k

)
, (27)

where atan2(x, y) is the four quadrant atan function.

Another way to find the value of φ that maximizes (26) is by using an iterative algorithm. It can be

easily carried out implementing a one-dimensional search. The comparison between the estimators and

the Cramer-Rao bound (CRB) is shown in Fig.2. The result illustrates that the ML estimate obtained

by a one-dimensional search method exhibits practically the same performance as the approximation in

(27). The CRB of the phase estimate is 1/(2SNRNnc) [18], where the SNR is defined as A2/σ2.

In [8], a PDI technique was presented based on the GLRT approach. The authors used the log-LRT,

which can be expressed as (26). They propose to approximate L(y, φ) defined in (26) for a low SNR

regime applying a Taylor series of the ln(cosh(x)) function as x2/2, which leads to

Nnc∑
k=1

(
2A

σ2
(Ik cos(φ) +Qk sin(φ))

)2

≶ γ′G. (28)

Replacing the approximation of the phase estimate in (27) into (28), and making some simplifications,

the NPDISD detector can be obtained as

LNPDISD(y) =

Nnc∑
k=1

|yk|2 +

∣∣∣∣∣
Nnc∑
k=1

y2k

∣∣∣∣∣ . (29)

The NPDISD detector consists of two non-coherent detectors or PDI techniques. The first detector is the

conventional NPDI detector. The second detector is the squaring detector (SD), which consists in summing

the squared complex correlator outputs. Despite the fact that this solution provides a good performance,

an enhancement of this approach can be carried out since HS-GNSS receivers do not usually work in a

very low SNR regime at the output of the coherent correlation. This occurs because the correlator outputs

in HS-GNSS receivers are obtained using a long Tcoh in general and combining few correlation outputs
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Fig. 2. Performance comparison of the different estimators and the CRB for Nnc = 10. The approximation of the ML solution

expressed in (27) is referred to as ML closed-form and the one obtained from a one-dimensional search is indicate as ML

iterative.

the signal can be detected. Then, the approximation of Taylor series used in (28) for low SNR values

might not be the best option to obtain the best performance of the GLRT approach.

For this reason, the purpose of the following subsections is to propose several new alternatives to

the GLRT in order to enhance the performance of the NPDISD technique. More precisely, we present

three new approaches to obtain the best detectors using the GLRT approach in the context of HS-GNSS

receivers.

1) GLRT (strict): The first one boils down to the strict application of the GLRT approach. This

approach is based on using the log-LRT and replacing the unknown parameter φ value by its ML

estimation, which must be obtained from a one-dimensional search in (26), as

L(y, φ̂ML) =

Nnc∑
k=1

ln

(
cosh

(
2A

σ2
(Ik cos(φ̂ML) +Qk sin(φ̂ML))

))
, (30)

where φ̂ML is the ML estimate of φ. This approach allow us to know, which is the optimal performance

of the GLRT method and how far it is from the Bayesian approach. This is an important point because

the outcome of the Bayesian approach is the optimal detector under the assumed conditions. As we have

seen in Subsection IV-A, the result of the Bayesian approach implies the computation of a matrix, whose
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size increases exponentially with the Nnc value. In fact, the computation of this matrix can become a

handicap. For this reason, if the difference between the performance of the Bayesian approach and the

GLRT was quite similar, the application of the GLRT could be the best option. We will continue this

discussion later on in the Section V where the performance comparison of the PDI techniques is analysed.

2) GLRT approximation in closed-form: The second approach is based on the log-LRT in (30), but

reducing the complexity of this method to estimate φ. Given the phase estimate in (27) exhibits almost

the same performance as at ML phase estimate, while avoiding the one dimensional search, we propose

to replace φ̂ML in (30) with (27), resulting in:

L(y, φ̂) =

Nnc∑
k=1

ln

(
cosh

(
2A

σ2
(Ik cos(φ̂) +Qk sin(φ̂))

))
. (31)

3) GLRT approximation for high SNR regime: The alternatives described in Subsection IV-B2 and

Subsection IV-B1 require the knowledge of the SNR, A/σ2. This is a drawback since this information

is sometimes unknown by the receiver. For this reason, the last method that we propose avoids the need

of knowing the SNR a priori. The way to obtain a detector that does not depend on the SNR is to adopt

an approximation of the ln(cosh(x)) function as |x| − ln(2). This approximation gives an excellent fit

for relative large values of x, which is a region appropriate to detect signals in the context of HS-GNSS

receivers. After using this approximation, the PDI technique is independent of the scale factors A and

σ2. Thus, the resulting technique can be expressed as

LGLRTa.l.(y, φ̂) =

Nnc∑
k=1

∣∣∣Ik cos(φ̂) +Qk sin(φ̂)
∣∣∣ . (32)

This PDI technique may offer similar performance as the two previous techniques presented in Subsection

IV-B1 and Subsection IV-B2 when the SNR at the correlator output is relatively high. Besides not requiring

the knowledge of the SNR, this technique avoids the use of two non-linear functions such as the ln and

cosh. It is worth mentioning that (32) has some resemblance to the NQ-NPDI technique described in (6),

which was derived for time-varying phase signals. The NQ-NPDI technique offers a great performance in

scenarios where the SNR is relatively high and the received signal can suffer phase changes [7]. However,

the technique proposed in this subsection is derived for signals with constant phase. This fact suggests

that in scenarios where the received signal includes a constant phase, the detector in (32) could provide

a promising performance.

V. SIMULATION RESULTS

This section presents the simulation results based on receiver operating characteristic (ROC) curves.

These curves compare the detection performance of the PDI techniques proposed herein to the more
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Fig. 3. Performance comparison of the different detectors in absence of bits for Nnc = 6, A = 1.6 and σ = 1. In the

legend, GLRT, GLRT closed-form and GLRT approx refer to the techniques explained in Subsections IV-B1, IV-B2 and IV-B3,

respectively.

relevant PDI techniques found in the literature. Results are obtained using Monte Carlo simulations and

the σ value is normalized to 1.

Fig. 3 shows the comparison among the different PDI techniques in an ideal channel containing only

Gaussian noise and an unknown constant phase, but in absence of data bits in the received signal for

Nnc = 6 and A = 1.6. As we expected, in this situation, the optimal detector is the coherent integration

since there are not effects that pose limits on its duration. The worst performing technique corresponds

to the NPDI technique. The proposed five techniques, namely, BAPDI, MBAPDI, and the three obtained

from the GLRT method explained in Subsections IV-B1, IV-B2 and IV-B3, exhibit similar performance,

which is also better than that of the DPDI, GPDIT, NPDISD and NQ-NPDI techniques. Theoretical ROC

curves of the coherent integration and the NPDI technique are included to the figures, which are given

by [14] and [19], respectively. However, for the rest of the detectors there are no known closed-form

expressions of their ROC curves.

Fig. 4 shows the comparison among the different detectors in a Gaussian channel when the received

signal is affected by phase changes owing to data bits using the same parameters as in Fig. 3. The result

illustrates that the DPDI, GPDIT and the coherent integration techniques suffer a strong degradation
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Fig. 4. Performance comparison of the different detectors in presence of data bits for Nnc = 6, A = 1.6 and σ = 1. In the

legend, GLRT, GLRT closed-form and GLRT approx refer to the techniques explained in Subsections IV-B1, IV-B2 and IV-B3,

respectively.

performance since they are not robust against the presence of bits. In this case, the proposed five

techniques, two based on the Bayesian approach and three established from the GLRT, provide a very

similar performance outperforming the rest of the PDI techniques. In particular, it is interesting to pay

attention to the comparison between the proposed five techniques and the NPDISD technique, which was

derived by the application of the GLRT approach, but the author used an approximation for a low SNR

regime. The outcome reveals a clear improvement in favour of the techniques proposed herein.

Fig. 5 illustrates the comparison among the different detectors in a Gaussian channel when the received

signal contains unknown data bits for A = 1 and Nnc = 15. This simulation reveals that although the

SNR of the correlator output is lower than in Fig. 3 and Fig. 4, the proposed five techniques remain

exhibiting the best performances. The performance difference among the five techniques and the NPDISD

is smaller than in the previous simulations due to this lower SNR value. This value also causes that the

technique described in Subsection IV-B3, which has been derived for a relative large values of SNR, has

a slight mismatch with respect to the techniques defined in Subsection IV-B1 and Subsection IV-B2. The

MBAPDI technique also offers a very slight degradation with respect to the BAPDI because the SNR

at the output of the PDI technique is slightly lower than in Fig. 4. This effect can be seen in the zoom
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view, which appears in Fig. 5.
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Fig. 5. Performance comparison of the different detectors in presence of data bits for Nnc = 15, A = 1 and σ = 1. In the

legend, GLRT, GLRT closed-form and GLRT approx refer to the techniques explained in Subsections IV-B1, IV-B2 and IV-B3,

respectively.

Fig. 6 shows the probability of detection with respect to the SNR for the different detectors in a

Gaussian channel and when the received signal contains data bits. We use Nnc = 5 and set the probability

of false alarm to 1e−3. The detection threshold for each PDI technique is fixed through the Monte Carlo

simulations. The result illustrates that the techniques proposed in the paper show the highest probabilities

of detection. The coherent integration, DPDI and GPDIT techniques suffer a severe degradation due to the

data bits. For this reason, these techniques are not useful in detection problems where the received signal

have sign changes produced by the bits. The NPDI, NQ-NPDI and NPDISD techniques, which are robust

against the presence of data bits, outperform the coherent integration, DPDI and GPDIT techniques, but

the former group does not provided as good performance as the techniques presented in this work.

Given that the five techniques presented in the paper offer very similar performance, exceeding that

of the other techniques, for the problem at hand, the selection of the most suitable one can be based

on the computational complexity. While the BAPDI is the theoretically optimal PDI technique since

it has been derived from the Bayesian approach, it may present difficulties in practice because it uses

a matrix, whose size grows exponentially as Nnc grows. Moreover, the BAPDI requires the a priori
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Fig. 6. Probability of detection vs. SNR with Nnc = 5 and probability of false alarm of 1e-3 for the different detectors in

presence of data bits in the received signal.

knowledge of the SNR and it needs to use the modified Bessel function, which in practice has to be

evaluated numerically. The MBAPDI also suffers the disadvantage of having to evaluate a potentially

large number of combinations, which introduces a large computational burden, especially for large Nnc

values. The exact GLRT presented in Subsection IV-B1 requires the usage of a one-dimensional search

method to estimate the phase of the received signal. This fact poses difficulties in the implementation

of this technique in a HS-GNSS receiver. The GLRT approach described in Subsection IV-B2 is a good

option since it does not depend on large matrices nor a one-dimensional search method, but it has the

drawback of requiring the knowledge of the SNR. Finally, the PDI technique presented in Subsection

IV-B3 becomes the best option to obtain a significant gain in terms of signal detection because its

computational load is the lowest one and it does not need a priori information about the SNR.

VI. CONCLUSIONS

In this paper we have derived two PDI techniques by using the Bayesian approach and the GLRT

for the reacquisition of weak GNSS signals. We have also proposed approximate techniques of reduced

computational complexity, which can be easily implemented in HS-GNSS receivers and do not require

the knowledge of the SNR. Simulation results have shown the superior performance of the techniques
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proposed in the paper with respect to other PDI techniques, while the former group provides very

similar performance. For a balanced trade-off between computational burden and performance, we can

conclude that the most suitable technique for the reacquisition of GNSS signals is the one based on the

approximation of the GLRT approach for high SNR regime and on the use of the approximate ML phase

estimate.
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