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Noise and charge discreteness 
as ultimate limit for the THz 
operation of ultra‑small electronic 
devices
Enrique Colomés1, Javier Mateos2, Tomás González2 & Xavier Oriols1*

To manufacture faster electron devices, the industry has entered into the nanoscale dimensions and 
Terahertz (THz) working frequencies. The discrete nature of the few electrons present simultaneously 
in the active region of ultra-small devices generate unavoidable fluctuations of the current at THz 
frequencies. The consequences of this noise remain unnoticed in the scientific community because its 
accurate understanding requires dealing with consecutive multi-time quantum measurements. Here, 
a modeling of the quantum measurement of the current at THz frequencies is introduced in terms 
of quantum (Bohmian) trajectories. With this new understanding, we develop an analytic model for 
THz noise as a function of the electron transit time and the sampling integration time, which finally 
determine the maximum device working frequency for digital applications. The model is confirmed 
by either semi-classical or full- quantum time-dependent Monte Carlo simulations. All these results 
show that intrinsic THz noise increases unlimitedly when the volume of the active region decreases. 
All attempts to minimize the low signal-to-noise ratio of these ultra-small devices to get effective THz 
working frequencies are incompatible with the basic elements of the scaling strategy. One can develop 
THz electron devices, but they cannot have ultra-small dimensions. Or, one can fabricate ultra-small 
electron devices, but they cannot be used for THz working frequencies.

The main reasons for decreasing electron devices towards nanoscale dimensions are providing large scale transis-
tor integration, lower power dissipation and high speed commutation1. Therefore, 3D structures like Fin-FETs or 
Gate-All-Around FETs based on Si nanowires (also on graphene or other 2D materials) are the typical ultra-small 
devices expected to play an important role in next-future electronics2. These ultra-small devices open new tech-
nological challenges that, step by step, are being properly solved (high-K dielectrics avoid spurious gate tunneling, 
multi-gate structures avoid short-channel effects, etc.). However, a new unexpected problem is presented in this 
paper for the operation of these ultra-small devices when approaching Terahertz (THz) working frequencies. 
The problem affects small-volume devices customarily developed by the electronics industry to continue with 
the ongoing scaling strategy, where the information is manipulated by means of electrical signals based on the 
motion of charge carriers and associated currents. All previous mentioned structures have an active region with 
a very small volume, with channel lengths and lateral dimensions of few nanometers. Thus, very few electrons are 
responsible for carrying the electrical current. We argue that the fluctuations of the current at THz frequencies 
make the predicted fast logic operation of these ultra-small devices inaccessible. The signal is defined as the part 
of the acquired current where the information is encoded, while the noise is the difference between the current 
and the signal. We show that the THz noise grows when the volume of the active region decreases. Thus, if we 
keep a reasonable signal to avoid large power consumption, then the signal-to-noise ratio (SNR) at THz frequen-
cies becomes intolerable for practical applications. Even avoiding all sources of noise that can be minimized by 
technological means, the noise that we are discussing in this paper will not diminish because it is just related to 
the discreteness of the electron charge. We emphasize that the relevance of our work resides on evidencing this 
noise limitation for nowadays technologies available in the electronic industry and providing the physical bases 
for the appropriate design of forthcoming generations of THz devices to elude this limit.
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In spite of its obvious interest for the industry, very few papers analyze the behavior of the noise of the elec-
trical current in such ultra-small devices at THz frequencies. The reasons are the theoretical and computational 
difficulties that a proper study of THz noise in quantum devices has. Classically, the route to analyze THz fluc-
tuations is unambiguously well-established, for example, through the successful Monte Carlo simulation of the 
Boltzmann equation for electrons. However, in principle, it is not obvious how semi-classical predictions can 
be extrapolated to the ultra-small devices mentioned above, where the wave nature of electrons becomes funda-
mental. Most quantum electron device simulators are uniquely developed to study steady-state properties (the 
signal encoded in the DC), which require much simpler theoretical and computational efforts than the study of 
the quantum fluctuations of the current (the noise). These conceptual and computational difficulties explain why 
the THz noise limitation mentioned in this work has remained essentially ignored by the scientific community, 
in spite of its dramatic implications.

The THz noise restriction due to the discreteness of charge presented here has some similarities (and some 
differences) with the problem of the discrete doping. As it is well-recognized by the scientific community, when 
the number of dopants is very small, the intrinsic uncertainties in the fabrication process of the device implies 
important variations from one device to another. Therefore, the assumption of a continuous doping provides 
unrealistic predictions about the behavior of electron devices, because it ignores the large dispersion on the 
characteristics of the supposedly “identical” electron devices. Here, we show that when the number of electrons 
in the active device region is very small, then, the intrinsic uncertainties in the dynamics of electrons imply 
important variations in the electrical current at THz frequencies. Again, assuming a continuous flux of charge 
provides unrealistic predictions about the performance of these devices. Certainly, this noise disappears if the 
information about the signal is obtained after averaging the instantaneous current over times much larger than 
the typical electron transit time (as the problem of discrete dopants would easily disappear if an ensemble over 
different devices were allowed) at the price of renouncing to the expected speed of these ultra-small devices. 
Thus, the dramatic conclusions explained here are not relevant to the DC behavior of ultra-small devices. Our 
conclusions are only applicable to their high-frequency behavior. In other words, one can develop THz electron 
devices, but they cannot have ultra-small dimensions. Or, one can fabricate ultra-small electron devices, but 
they cannot work at THz frequencies.

During decades, the cutoff frequency of the transistors has been linked to their gate length by using the transit 
time limit3. Thus, neglecting parasitic effects, the theoretical cutoff frequency fτ is inversely proportional to the 
electron transit time τ and given by4:

with τ = L/v defined as the length L of the active region in the transport direction divided by the average velocity 
v of the electrons in this direction. In Fig. 1, we plot the experimental cutoff frequency ft as a function of the gate 
length for several transistors based on different materials5,6. The cutoff frequencies of all transistors follow the 
trend associated with the transit time limit. We plot as an example, the transit time limit for Si MOSFETs from 
Eq. (1) with a solid blue curve (with v obtained from Ref.7), which is inversely proportional to the length of the 
active region. For small devices, Eq. (1) provides unrealistic high cutoff frequencies. In this work, we discuss 
that apart from this transit time limit, there is another intrinsic limit, due to the discrete nature of electrons, 
that determines which is really the maximum working frequency of transistors. This discrete nature of electrons 

(1)fτ ≤ 1

τ
= v

L

Figure 1.   Experimental cutoff frequency ft from a set of transistors based on different materials from Refs.5,6 
as a function of their gate length. With blue solid line we plot the theoretical transit time limit [Eq. (1)] for Si 
MOSFETs (velocity obtained from Ref.7). We observe that ft is below the transit time limit fτ , specially for small 
gate lengths.
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creates fluctuations in the current at times comparable to the transit time. We argue that these THz fluctuations 
will limit the device miniaturization for high frequency electronic applications. Smaller devices are certainly 
faster, but they are also nosier. Therefore, a trade-off between the desired speed and the acceptable noise is needed 
in ultra-small devices when increasing their working frequency.

Total (displacement plus particle) current and noise in quantum electron devices
The Monte Carlo technique applied to the solution of the Boltzmann equation has been the preferred tool to 
simulate electron devices during decades8. Through the explicit simulation of electron trajectories, it provides 
an intuitive and accurate simulation tool for predicting either static or dynamic properties of electron devices. In 
addition, because of its versatility, it has also been invoked as a “simulated experiment” to save costs and efforts 
in the development of industrial prototypes of semi-classical electron devices. Because of miniaturization, the 
study of the dynamics of electrons inside ultra-small devices needs new concepts (like energy quantization and 
tunneling) linked to the wave nature of the electrons. For this reason, in the last fifteen years, a first revolution 
have taken place in the electron device modeling community moving from classical simulation tools to quantum 
ones (with more computational cost). Many different simulators has been successfully built during this time to 
compute the properties of ultra-small devices (NEMO9, NEXTNANO10, TiberCad11, the NanoTCAD ViDES 
simulator12 or the Transiesta13). These quantum simulators are basically devoted to static (DC) properties of 
nanodevices and therefore they are unable to properly predict the dynamics related to THz noise discussed in 
this work. As a byproduct of the present work, we also argue that a second revolution in the development of 
electron device simulators is needed to properly tackle the dynamic properties of this state-of-the-art ultra-small 
devices. There are two basic elements that justify the need for this second revolution and show its difficulties.

First, the dynamic properties of electron devices are linked to time-correlations of the electrical current, which 
implies a proper modeling of the measurement process of the quantum device at different times. In a tunneling 
barrier, with equal transmission and reflection probabilities, we cannot say that half of the charge of a single 
electron is transmitted and half reflected. Each individual electron carries a charge equal to q = −1.6× 10−19 C 
and it is either transmitted or reflected, but not both. The wave function solution of the Schrödinger equation 
provides a natural statistical view that explains that, for an ensemble average, half of the number of injected 
electrons are transmitted and half reflected, but such statistical view alone provided by the linear wave function 
is not enough to understand the partition noise created by the barrier on a single electron. A proper modeling 
of the collapse of the wave function, breaking the superposition of the wave function in left and right sides of the 
barrier, is needed to recover the discrete nature of charge of individual electrons at a quantum level. In technical 
words, apart from the Schrödinger equation, some type of modeling of the stochastic collapse law (reduction 
of state) in the quantum equation of motion of the electron is needed to go beyond DC predictions of quantum 
electron devices.

Second, in fact, the discrete nature of electrons alone is not enough to understand the electrical current at 
THz frequencies. The relevant total current is the sum of the conduction (flux of particles) plus the displacement 
(time-derivative of the electric field) components14–17. The displacement current on a surface is different from 
zero whenever electrons are able to modify the electric field on it (independently on how far the electrons are 
from the surface). Therefore, while in steady state (DC) conditions the displacement current is zero because of 
the time averaging, at high frequencies a proper self-consistent solution of Maxwell and transport equations is 
needed to know the interplay between scalar potentials and electron dynamics. In fact, under reasonable approxi-
mations, the electric field generated by electrons has to satisfy only the time-dependent Gauss law (with proper 
boundary conditions) plus the usual electron transport equation18. In technical words, some type of modeling of 
the operator involved with the quantum measurement of the displacement current (not only with the quantum 
measurement of the particle current) is mandatory for THz predictions.

The two above new ingredients required for the simulation of the electrical current at very high frequency 
seem to be not fully appreciated by the scientific community dealing with the simulation of ultra-small quan-
tum devices. As we have commented, most quantum computational tools are devoted only to steady-state (DC) 
predictions, ignoring the displacement current and the multi-time measurement. In the literature, for general 
open quantum systems, there are basically two types of strategies to develop non-unitary equations of motion 
under multi-time (or continuous) measurement19. The first strategy is developing equations of motion for the 
(reduced) density matrix. An example of this first type, valid for Markovian open systems only, is the Lindblad 
master equation20. The second strategy is to decompose (unravel) the density matrix in terms of individual 
(pure) states, and look for an equation of motion of such individual states. An example of this second type, 
valid for either Markovian or non-Markovian systems, is the stochastic Schrödinger equations19,21,22. The main 
idea is finding the state solution of a Schrödinger equation which includes the degree of freedom of the open 
system plus an external parameter representing the rest of degrees of freedom. Because of their dependence on 
such external parameter, these states are called conditional states (or conditional wave functions). As explained 
recently23,24, Gambetta and Wiseman25,26 showed that the physical connection of a property of one conditional 
states between different times requires a quantum theory (like Bohmian mechanics) where the definition of a 
conditional state has a clear physical (not only mathematical) meaning. In this work, we will use the BITLLES 
simulator27–33, developed following this second strategy, to provide numerical support to the conclusions of THz 
noise in ultra-small electron devices. The displacement current34 and the back action induced by the continu-
ous measurement of the electrical current35 are directly incorporated into the BITLLES simulator. In this work, 
we adapted the previous BITLLES simulator to 2D linear band materials where the wave nature of electrons is 
described by a bispinor solution of the Dirac equation36. Next, before providing accurate numerical results of 
THz noise for graphene devices, we explain the main results of this work for very simplified electron device sce-
narios using trajectories. For those readers familiar with Monte Carlo simulations of the Boltzmann equation, the 
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expressions developed here will seem quite trivial, but such expressions are also rigorously valid for the quantum 
regime, where such trajectories have to be understood as quantum Bohmian trajectories which, when properly 
including the measuring apparatus, exactly reproduce the quantum results.

The computation of the total current on a particular surface Si of the simulation box represented by Fig. 2, due 
to the time-dependent electric field generated by charge inside and outside of the active region and the (particle) 
classical or quantum current density due to electrons crossing the surface is:

where ǫ(r̄, t) is the (inhomogeneous) electric permittivity. The subindex i indicates the surface Si where the 
current Ii(t) is measured. Whenever not relevant in the discussion, the subindex i and the time t will not be 
indicated. The electrical field Ē(�r, t) is solution of the Gauss equation to account for the Coulomb interaction 
among electrons, which is a huge computational problem in quantum systems (the many body problem37) requir-
ing educated guesses. The current (particle) density J̄c(�r, t) is just a vector equal to the product of the electron 
charge density multiplied by the (classical or Bohmian) vector velocity of the electron. In the quantum case, this 
electron velocity includes all pure quantum (contextual, non-local) phenomena and the ensemble of �Jc(�r, t) over 
many trajectories corresponds to the standard mean value of the quantum current operator37.

Dealing with the instantaneous current Ii(t) is just an idealization, and, in order to correctly reproduce the 
experimental conditions (in which an acquisition time is intrinsically involved), we compute a time-averaged 
value of the instantaneous current in the surface Si during the time interval [t − T , t] , defined as:

where T is the averaging time (equivalent to the acquisition or sampling integration time in a measurement) 
which limits the maximum working (or operating) frequency of the device. The standard deviation σT ,i of the 
averaged current IT ,i(t) quantifies the noise of such a device:

Let us notice that the noise discussed in this work is completely suppressed when T → ∞ in Eq. (3) because the 
current IT→∞,i = IDC has no uncertainty. However, as we will demonstrate in this paper, increasing T drastically 
reduces the frequency of operation below the THz range. The SNR is the key parameter when characterizing the 
noise-related limit of operation of a given device, since it tells us how strong is the signal compared to the noise, 
and how much noise we can accept in our application. We can write the SNR, for each particular value of T, as:

where IDC,i is the DC value of the current IT→∞,i = IDC,i understood here as the signal (the part of IT ,i that 
encodes the information, not the noise).

The Ramo–Shockley–Pellegrini theorem.  In order to explain the importance of the discreteness of 
charge on the THz noise, in this section we study a very simple scenario: a two terminal device of length L 
between two metallic contacts, represented by the source (S) and drain (D) contacts in Fig. 2. The volume of 
the active device region is � = L ·W · H . To simplify the discussion, electron transport is assumed to be fully 
ballistic in all simulations done in this work (which is a reasonable assumption for short-gate-length devices 
considered).

(2)Ii(t) =
∫

Si

�Jc(�r, t) · d�s +
∫

Si

ǫ(�r)d
�E(�r, t)
dt

· d�s

(3)IT ,i(t) =
∫ t
t−T Ii(t

′)dt′

T

(4)σT ,i =
√

�△I2T ,i� =
√

var(IT ,i)

(5)SNRT ,i =
IDC,i

σT ,i

Figure 2.   Schematic representation of the simple idealized system used in this section to study the THz noise. 
The active region of the 2D FET is � = L×H ×W , being L the length, H the height of the channel and W the 
width of the transistor.
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The Ramo–Shockley–Pellegrini theorem38 provides an alternative and useful expression for the total current 
appearing in Eq. (2):

The surface S � in Eq. (6) is now a closed surface enclosing an arbitrary volume � and �Fi(�r) is a mathematical 
vector field defined in Ref.16. It can be proven that in a two terminal device, the instantaneous time current 
assigned to a k-th electron while crossing the device with velocity vkx(t) in the x direction can be written as 
Ii(t) = q vkx(t)/L (see Refs.37 and38). Then, the time averaged current due to all electrons inside the device in 
Eq. (3) can be rewritten as:

where N�(t) is the number of electrons inside the volume � at time t. We have defined �xkT (t) =
∫ t
t−T dt vkx(t) 

as the distance completed by this k-th electron during the time interval t − T ≤ t ′ ≤ t inside the active region. 
Therefore, 0 ≤ �xkT (t) ≤ L.

It is important to remark that the contribution of an electron to the current in Eq. (7) is zero when the elec-
tron position is outside of the limits of the active region. This is because we assume that the density of electrons 
in the metallic contacts is so high that the electric field generated by one moving electron in the metal (outside 
the active region) is rapidly screened by the other (free) electrons in the metal without providing any displace-
ment current. This is a fundamental element in our discussion, because it explains that the transfer of charge q 
from left to right (or viceversa) can be understood as a current pulse during the transit time of the electron. The 
transmitted charge during this time is given by time-integrating Eq. (7) as q =

∫ τ

0
dt IT (t).

At this point two different scenarios can be distinguished, when T is much shorter than the typical electron 
transit time τ (scenario “a”) and when it is much larger (scenario “b”). In the next two subsections we develop 
Eq. (7) and its noise for these two different limits.

Scenario a: T much shorter than the transit time τ ( T ≪ τ).  The first scenario corresponds to the 
case when the averaging time T is much shorter than the transit time τ of most of the electrons crossing the 
device, T ≪ τ . In that case, electrons are not able to cross the volume � during the time T. For simplicity, in 
this preliminary analytic discussion, we assume a uniform velocity vxk (t) ≈ ve and �xkT (t) ≈ �x (in fact, this 
approximation is very accurate for linear band-structure materials such as graphene). Then, we have �x = ve · T 
and Eq. (7) can be rewritten as:

If we define Ncross,T as the number of electrons crossing the whole device during the time interval T, in this 
scenario, we have Ncross,T ≪ N� . To simplify the notation, whenever not relevant, we will omit the dependence 
on time of the parameters of the current. From Eq. (4), the noise then is:

In order to understand better Eq. (9), let us take two different devices, the one we are interested in (with length 
L) and an arbitrary one (with length L′ ). Since electrons have no time to cross the device in both cases, differ-
ent length devices imply a difference in the number of particles inside them. Because we consider a simplified 
scenario, where there is no correlation among electrons, var(N�) = L

L′ var(N�′) . Then, we can rewrite Eq. (9) as:

with A being a constant (independent on T) which depends on ve and the topology of the devices. Eq. (10) indi-
cates that when T ≪ τ , the noise is inversely proportional to the square root of the length of the device in the 
transport direction. A device with smaller L provides more noise. The reason why an electron inside the active 
region (without reaching the contacts), provides current and charge fluctuations on the contact is because the 
original Eq. (7) includes the displacement current. Without the explicit consideration of such displacement 
current, this limit cannot be established.

Scenario b: T much larger than the transit time τ ( T ≫ τ).  When the averaging time is much larger 
than the transit time, electrons complete the distance L during the time interval T, so �xT = L in Eq. (7) and 
then the current is:

(6)Ii(t) = −
∫

�

�Fi(�r) · �Jc(�r, t)dν +
∫

S�

ǫ(�r)dV(�r, t)
dt

�Fi(�r) · d�s

(7)IT (t) =
1

T

� t

t−T
dt





q

L

N�(t)
�

k=1

vkx(t)


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q

L
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T

(8)ITa =
q

L
ve�N��

(9)σTa =
qve

L

√

var(N�)
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√
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L
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�Ncross,T �L = q
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where we remind that Ncross,T is the number of electrons crossing the device during the time interval T (when 
T ≫ τ the number of electrons crossing the device during the time interval T is much larger than the instantane-
ous number of electrons inside, N� ≪ Ncross,T ). From Eq. (11), the noise is:

Now, we will proceed similarly as before. But, let us remark that the situation now is different to the previous one. 
Then, we can establish a different time interval T ′ (still T ′ >> τ ) so that var(Ncross,T ) = T

T ′ var(Ncross,T ′ ) , where 
Ncross,T ′ is the number of electrons crossing the device during T ′ . Then, the noise of our device is:

with B being a constant independent on L, which again depends on the topology of the devices. From Eq. (13), 
we see that effectively, in this limit, the noise is independent of the device length, but is inversely proportional 
to the square root of the averaging time T.

Analytic maximum working frequency: the transit time limit or the noise limit?  In this sub-
section, we show analytically that the maximum working frequency of state-of-the-art ultra-small devices is 
not always determined by the transit time limit, but by the new noise limit discussed here. Clearly, for digital 
electronics, the limit imposed by the transit time T ≪ τ (scenario a) cannot be overcome, i.e. a device cannot 
work at frequencies higher than the ones imposed by the transit time in Eq. (1). However, we argue in this paper 
that the maximum working frequency of many nanoscale devices is, in fact, determined by the noise limit, not 
by the transit time limit.

Let us derive analytically what is the noise limit imposed for T ≫ τ (scenario b) given by Eq. (12) for a 2D 
and a 3D device. For that purpose, using Eqs. (11) and (12), the SNR in Eq. (5) can be rewritten as:

There is a strong link between experimental averaging time T and the amount of noise in Eq. (14). If we fix the 
amount of acceptable noise for a given circuit application, then T must be increased up to reach the desired 
value of SNR. We define TSNR0 as the averaging time that satisfies the required signal-to-noise ratio value SNR0 . 
Therefore, we can define the noise-related working frequency limit as:

We argue that, in many scenarios involving ultra-small devices, the noise limit in Eq. (15) gives a lower maximum 
working frequency than the transit time limit in Eq. (1).

To provide a compact expression relating fn and fτ , let us define Ncross,τ as the number of electrons crossing 
the device in the time interval τ , then, using Eqs. (11) and (13) for the fixed value SNR0 , we get39:

We can now obtain the ratio between the noise frequency limit fn and the transit time frequency limit fτ to verify 
which one is more relevant in determining the maximum working frequency of ultra-small devices. We assume 
a Poisson probability distribution for carrier injection with a probability of success p. We consider that Ninj,τ 
electrons attempt to be injected during the time τ , then �Ncross,τ � = var(Ncross,τ ) = pNinj,τ . From Eqs. (16) and 
(1), with fn = 1/TSNR0 , we can straightforwardly obtain the ratio between fn and fτ as:

In the case of a 3D device, the number of electrons attempting to be injected (with electrons going just in one 

direction) from the phase-space density is Ninj,τ = LWH
k3f
6π2 with k3f  the Fermi wave vector (we have already 

taken into account the spin degeneracy). Then, from Eq. (17):

In the case of a device whose channel is a 2D material (such as graphene), the number of electrons is 
Ninj,τ = LW

k2f
4π

 . Then, again, from Eq. (17) we obtain:
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q

T

√
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We remark that whether the condition fn/fτ < 1 is fullfilled (meaning that the fn limit is reached at a lower 
frequency than the limit due to fτ ), or the opposite one fn/fτ > 1 , depends strongly on the transistor charac-
teristics. In any case, as a general trend, we see from Eq. (17) that the lower amount of electrons present in the 
active region, the lower the value of the ratio fn/fτ . Therefore, the noise limit discussed here is more and more 
relevant as the dimensions of electron devices become smaller and smaller. When using the planar 2D MOSFET 
architectures, the value of the current could be increased (and therefore the fn/fτ factor) by increasing the device 
width W, but with present-day technologies this solution is much more complex (i. e. parallel fins or nanowires 
have to be added in FIN-FETs or GAA-FETs, respectively).

We wanted to test if existing transistors have already entered into the regime where the maximum working 
frequency is limited by the noise, and not by the transit time. For that purpose, in Fig. 3, the ratio of fn/fτ is shown 

Figure 3.   The ratio fn/fτ is plotted as a function of the number of transport electrons inside a transistor. 
With a red solid line we plot Eq. (17) and with a brown dashed line when the ratio fn/fτ is equal to one. Points 
corresponding to commercial transistors, laboratory transistor prototypes and the devices that will be simulated 
in next section (whose details are given in Table 1) are plotted with symbols. We see how the fn/fτ ratio is lower 
than one for many of these transistors, indicating that the noise limit is relevant nowadays.

Table 1.   Table with the data of W, L, H and Fermi wave vector kf  indicating the use of Eq. (18) (3D) or 
Eq. (19) (2D) to evaluate the value of the ratio fn/fτ plotted in Fig. 3 for commercial transistors (data obtained 
from http://cpudb​.stanf​ord.edu), laboratory transistor prototypes (data obtained form the references) and the 
devices that will be simulated in next section. We estimated p = 0.3 and SNR equal to 11. (see Ref. 40).

Type W (nm) L (nm) H (nm) kf (nm
−1

) Dimensionality fn/fτ

Ref.52 FeFET (Si) 80 20 7 1.41 Eq. (18) (3D) 1.30

Ref.53 CNT 9.42 32 – 4.88 Eq. (19) (2D) 1.41

Ref.54 CNT 4.08 10 – 2.29 Eq. (19) (2D) 0.04

Ref.55 CNT 62.83 20 – 2.29 Eq. (19) (2D) 1.29

Ref.56 Nanotube(Si) 10 20 – 1.41 Eq. (19) (2D) 0.07

Ref.57 Nanotube (Si) 25.13 150 – 1.66 Eq. (19) (2D) 2.04

Ref.58 Nanowire (Ge/Si) 44 40 – 1.41 Eq. (19) (2D) 0.68

Ref.59 GAA FET 44 12 5 1.41 Eq. (18) (3D) 0.30

Ref.60 MOS2 50 7.5 – 1.41 Eq. (19) (2D) 0.14

Ref.61 GFET 1000 40 – 0.22 Eq. (19) (2D) 0.41

GFET 40 nm Simulated 250 40 – 0.22 Eq. (19) (2D) 0.10

GFET 100 nm Simulated 250 100 – 0.22 Eq. (19) (2D) 0.25

IBM z13 2015 Commercial 22 25 22 1.41 Eq. (18) (3D) 1.41

AMD 2007 Phenom II Commercial 45 25 45 1.41 Eq. (18) (3D) 5.90

Fujitsu SPARC64 VII Commercial 65 30 65 1.41 Eq. (18) (3D) 14.79

Intel Celeron Commercial 32 18 32 1.41 Eq. (18) (3D) 2.15

Intel Core 2 Quad Ext Commercial 65 35 65 1.41 Eq. (18) (3D) 17.26

http://cpudb.stanford.edu
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for different scenarios and transistors. We represent with a red solid line Eq. (17), and with a brown dashed line 
when the ratio is equal to one. For values lower than one (shaded region) the working frequency is limited by the 
noise, otherwise it is limited by the transit time limit. Different transistors are plotted: some laboratory prototypes 
(black star symbols), some commercial transistors, which already appeared in Fig. 1 (orange square symbols), 
and two GFET transistors, that will be simulated in next section (blue rounded symbols). All transistor ratios 
where obtained through Eqs. (18) and (19). In these expressions, we estimated p = 0.3 from the comparison of 
analytic and computed results of the GFET transistors simulated in next section. We accept as tolerable noise 
a SNR equal to 11. (see Ref.40). This is the minimum SNR (and associated maximum noise level) that can be 
accepted in a logical device for tolerable errors.

We observe in Fig. 3 that many transistors are located in the shaded region fn/fτ < 1 where the working 
frequency is limited by the noise limit, and not by the transit time limit. It is important to notice that, until now, 
the noise limit was not a problem. Nowadays, there is also a frequency limit imposed by dissipation that is well 
below the transit time and the noise limits discussed here. The power dissipation is directly proportional to the 
working frequency, i.e., the higher frequency we want to work, the more dissipation will occur. Thus, the overall 
amount of power that can be dissipated from the chip imposes a limit in the operating frequency on each tran-
sistor. Its is expected that this dissipation limit will be overcome with new strategies and technologies41,42. Then, 
the transit time and noise limit will determine the intrinsic working frequency limit of ultra-small devices. Most 
commercial transistors have ratios fn/fτ > 1 and they are still not limited by the noise, but by the transit time. 
However, since transistor sizes are decreasing, less and less electrons are present in the device, and the noise 
limit becomes more and more relevant.

Numerical simulations for a simple two‑terminal device
In this section we present different numerical results corroborating the previous analytic predictions. Let also 
remark that all the expression presented previously are independent if we are in a classical or quantum regime. 
For semi-classical modeling, the electron trajectories appearing in Eq. (7) are computed from the semiclassical 
Monte Carlo solution of the Boltzmann equation, while for quantum modeling, the quantum trajectories are 
computed from a quantum time-dependent Monte Carlo BITLLES simulator where the electron velocity is com-
puted from the (conditional) bispinor solution of the Dirac equation, which includes all quantum (non-classical) 
phenomena. One of the big merits of this work is to tackle the classical and quantum problem of the THz noise 
in ultra-small devices with the same language: electron trajectories. This fact greatly contributes to an easy and 
rigorous understanding of the problem and of its practical consequences for the future of ultra-small electron 
devices at THz frequencies. In the next two subsections we present semiclassical and quantum numerical results.

Semiclassical numerical simulations.  Firstly, we present semiclassical Monte Carlo simulations for a 
two terminal device43–45. Inside the device, transport is assumed to be ballistic without electron-phonon col-
lisions. A parabolic energy-band with an effective mass m∗ = 0.25m0 , being m0 the free electron mass, is con-
sidered. For all simulations, a lattice temperature Tlat = 300 K is considered. The variations in the number of 
particles inside the device come from the randomness of energies and times of entrance of electrons injected 
from the contact into the active region, following Fermi-Dirac statistics. In the literature, the fluctuations due to 
this randomness are known as thermal noise43. The average charge density of carriers in the contacts is given by 
n = 1015 m−3 . The simulation time step is dt = 5× 10−15 s and the spatial grid is dx = 20 nm . A self-consistent 

Figure 4.   Noise as a function of the averaging time T for a two-terminal device with three different lengths L 
when no drain-source bias is applied, VDS = 0 Volts. Simulations were performed with the semiclassical Monte 
Carlo approach described in the text. In all three simulated devices, we consider W ×H = 0.25× 10

−5
m

2 . We 
accept as tolerable noise a SNR equal to 11. See Ref.40.
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solution of the electric field and electron charge is established through the numerical solution of the Gauss (first 
Maxwell) law.

In Fig. 4, the value of σT computed from Monte Carlo simulations using Eq. (4) is plotted. Three different 
device lengths L are studied. For simplicity, injection from one of the contacts is just considered without bias 
applied (these simplifications will be avoided in next figure). The limits σTa and σTb are clearly reproduced in 
Fig. 4. Notice the dependence on 1/

√
L for T << τ and the dependence on 1/

√
T  for T ≫ τ , as indicated in 

Eqs. (10) and (13), respectively.
Let us now imagine that we design a device with L = 100 nm for very high-frequency applications with an 

expected average-time interval of T = τ = 1 ps (i.e., an operating frequency of 1 THz). Imagine that the design 
has a signal current value of �I�DC = 1 µ A (horizontal dashed line in Fig. 4) and that our particular application 
requires a typical factor 11 for the SNR (see tolerable noise in the horizontal dashed line in Fig. 4). Thus, we 
conclude, that the expected length L = 100 nm and operating time T = 1 ps are incompatible with the required 
level of noise σT = 0.09µ A. Such noise level can only be obtained working at T = 500 ps (see vertical line in 
Fig. 4) where the three different lengths provide the same noise level. In conclusion, at the end of the day, there 
is no reason to prefer the shorter device. The larger one is equally valid. Let us remind that increasing the value 
of the current signal is not a generally acceptable solution because low power consumption is also a mandatory 
requirement to avoid dissipation in ultra-small devices.

The ratio of two noise values corresponding to different lengths can be done with Eq. (10) and is equal to 
σ1(t)/σ2(t) =

√
L2/L1 , which can be compared with the numerical data presented in Fig. 4. So, for L1 = 0.1µ m 

and L2 = 1µ m the ratio should be 
√
L2/L1 = 3.16 . According to the numerical results, the ratio is 3.09. There-

fore, analytic and numerical results fit quite good, showing the accuracy of the analytic results presented. The 
same calculus can be done with the other device ( L3 = 10µm), showing the same accuracy.

In Fig. 5, we plot the same information as in Fig. 4 for several applied drain-source bias VDS . The consideration 
of far from equilibrium conditions does not change the previous overall conclusion (the bias conditions only 
modifies the quantitative values). We notice in Fig. 5 that, for small averaging times T << τ , the value of σTa 
grows when larger bias is considered because the (mean) velocity of electrons, ve , present in Eq. (10), increases 
with bias. For the same reason, the regime T >> τ is reached for shorter T as the bias is increased.

Quantum numerical simulations.  Now, we will present similar numerical results as the ones showed 
previously, but we will simulate a graphene electron devices (instead of a Silicon ones) with the use of the quan-
tum simulator BITLLES27–33,46,47, which uses the quantum (Bohmian) trajectories applied to time-dependent 
electron quantum transport48.

As it is well known graphene is a 2D material that because of its fascinating large electron velocity, many 
efforts have been done to study its real application in practical circuits. Since the beginning, many relevant voices 
in the literature5 have questioned the real potential utility of graphene as a useful semiconductor for logic gates 
since it is a gapless semiconductor (with many difficulties to provide low enough OFF currents). The literature 
is also studying other graphene structures like bilayer graphene (two coupled single graphene layers stacked as 
in graphite)49 or strained graphene (mechanical deformation of the atomic structure)50 to provide an energy gap 
between the conduction and valence bands. The ability of getting a gap in graphene by different means comes at 
the price of reducing its original extraordinarily high mobility. Other 2D materials are also intensively studied 
as potential candidates for future electronic technologies. In any case, our aim in the paper is not to construct 

Figure 5.   Noise as a function of the averaging time T for the device of L = 1000 nm and parameters used in 
the simulation of Fig. 4, when different applied drain-source voltages VDS are considered (whose values are 
written in terms of the Boltzmann constant kB and the lattice temperature Tlat ). Simulations were performed 
with the semiclassical Monte Carlo approach described in the text. In all three simulated devices, we consider 
W ×H = 0.25× 10

−5
m

2.
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a commercial transistor with a single graphene sheet, but to prove that for state-of-research devices fully based 
on quantum phenomena (like the single layer graphene devices simulated here based on Klein tunneling or 
any other prototype built from 2D structure) this noise limit will exist also, as well as it exists in more standard 
semiconductors.

As explained in the “Appendix”, the quantum dynamics of an electron in graphene is given by the Dirac 
equation. The (conditional) wave function associated to each electron is no longer a scalar, but a bispinor. Each 
electron is associated to a Bohmian trajectory computed from the wave function solution of the time-dependent 
Dirac equation. The initial state of each electron is a bispinor Gaussian wave packet defined deep inside the 
contacts with well-defined mean momentum (see the “Appendix” for more details). This quantum-trajectory 
formalism can be considered as the natural quantum extension of the semiclassical Monte Carlo method men-
tioned before for classical systems. Electrons are injected following a binomial distribution according to the Fermi 
statistics. It includes the Coulomb interaction through the time-dependent solution of the Poisson equation with 
Dirichlet boundary conditions in the metals (contacts, gates) and Neumann ones in the rest of the surfaces. In 
the simulations, the spatial grid was set to dx = dz = 1 nm and the time step dt = 10−16 s. As argumented for 
the semi-classical simulations, ballistic transport is assumed as it is the expected transport regime in ultra-small 
graphene devices and a lattice temperature Tlat = 300 K is considered. Linear band structure, with constant 
velocity independently of the electron energy given by the Fermi velocity vf = 106 m/s is considered. First, we 
performed quantum simulations similar to the semi-classical ones presented in Fig. 4, injecting just from one 
side without applying any bias.

In Fig. 6, differences appear regarding the values of the current and noise with respect to the results in Fig. 4. 
This is because graphene is a linear band structure material, and therefore it has a constant velocity (indepen-
dently of the electrons energy) whose value vf = 106 m/s is high compared to the typical ones in Silicon. Since 
the current is proportional to the carrier velocity, as it can be seen from Eq. (7), current values in graphene are 
higher than the usual ones in the typical semiconductor devices. In addition, we see that the averaging times T 
are much shorter, since the transit times τ are also much shorter (the devices are smaller and the carriers veloc-
ity is higher). This fact makes that the operating time for this graphene two-terminal idealized device is much 
smaller, T ≈ 0.5 ps, with a theoretical cutoff frequency around f ≈ 2 THz for this simplified scenario.

Apart from this difference, the shapes of Figs. 4 and 6 are very similar. We see that in both of them, for 
averaging times smaller than the transit time, noise scales as σTa = A/

√
L , whereas for averaging times larger 

than the transit time, σTb = B/
√
T  . Therefore, even when accounting for quantum effects, it can be seen that 

Eqs. (10) and (13) are completely valid too. We compute the ratio between the noise for different device lengths 
when the T is much shorter than the transit time. Similarly as done before, the ratio of the noise of the devices 
is 
√
L2/L1 =

√
100/40 = 1.58 and regarding the simulations, this ratio is 1.74, showing again a reasonable 

agreement.

Numerical simulation for a three terminal quantum GFET transistor
In this section, we test the previous predictions about the THz noise for a realistic ultra-small device, without 
most of the simplifying assumptions that we have used in the analytical and previous simulations sections. We 
consider a graphene double gate transistor (source, drain, bottom and top gates) as the one depicted in Fig. 7. 
As explained in the “Appendix” and in the previous subsection, again, the quantum dynamics of electron in 
graphene is given by a Bohmian trajectory associated to the bispinor solution of the time-dependent Dirac 

Figure 6.   Noise as a function of the averaging time T for two-terminal graphene devices of different length 
when no drain-source bias is applied, VDS = 0 Volts. Simulations were performed with the fully quantum 
BITLLES simulator. We accept as tolerable noise a SNR equal to 11 (see Ref.40). The width of both transistors is 
W = 250 nm and the Fermi level is set at Ef = 0.15 eV.
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equation. The injection of electrons is performed from both sides, source and drain, according to the (quasi) 
Fermi–Dirac statistics. There are two gates that affect the electric field inside the active device region, which have 
a strong influence on the transport along the channel and on the total current conservation. Now, the expression 
in Eq. (7) is no longer valid because it was developed for two-terminal devices. New volume � and function 
�Fi(�r) are needed in Eq. (6). In any case, a peak of displacement current appears in the drain every time that an 
electron (Bohmian trajectory) traverses the channel. A similar peak appears in the displacement current of the 
source with some delay. Finally, the displacement current in the gates will be of such shape that the sum of the 
total currents in the three terminals is zero at every time17. The relevant physics for the THz noise computation 
does not change significantly, and we expect the same qualitative results here.

In particular, we study how the THz noise affects our ability to distinguish between two current levels. For 
that purpose, we will establish a constant bias between the drain and source and we will change the gate voltage 
bias at some particular time. Then, we will obtain the total (particle plus displacement) current (obtained with 
the most general expression of the Ramo–Shockley–Pellegrini theorem, Eq. (6)) through Eq. (3) and estimate 
the minimum averaging/acquisition time that allows us to establish a difference between both states.

In order to establish the best value of the drain-source bias ( VDS ) and the top and bottom gate values 
( Vt = Vb ≡ VGS ) to perform the transient, we made different current-voltage characteristic curves for different 
gate values. Among all curves, we chose the values that maximizes the differences between the drain-source cur-
rents that we will consider as the logical information ′1′ that we refer here as level 1 (L1) state and the one that we 
consider the logical information of ′0′ that we refer here as level 2 (L2) state. The transistor in Fig. 7 has a volume 
� = 20× (5+ 1+ 5)× 250 nm3 and a device length in the transport direction L = L′x + Lx + L′x = 40 nm . 
Results are plotted in Fig. 8. There we see that the maximum difference between currents is achieved for a 

Figure 7.   Schematic representation of a double-gate graphene transistor in the BITLLES simulator. The channel 
(in this case graphene) is sandwiched between two dielectrics. The active region of the dual-gate 2D Fet is 
� = L× (H ′ +H +H ′)×W , being L the gate length, H ′ the height of the dielectrics, H the height of the 
channel and W and the width of the transistor.

Figure 8.   Current–voltage characteristics for the double-gate graphene transistor whose active region volume 
is � = 20× (5+ 1+ 5)× 250 nm

3 . The optimum values for maximizing the different current levels are 
VDS = 0.12V and VGS = ±0.15V . The Fermi energy is Ef = 0.15 eV.
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value of VDS = 0.12V and VGS = ±0.15V . Therefore, L1 corresponds to VGS = 0.15V , while L2 corresponds to 
VGS = −0.15V . As it is well known, because of the presence of Klein tunneling, the graphene transistor cannot 
be switched off by any gate bias.

Next, we made a simulation and analyze the switching times obtained. Initially, the gates value is 
VGS = −0.15V . After 4 ps, the gate value is changed to VGS = 0.15 , as shown in Fig. 9. The instantaneous current 
and gate voltage is plotted as a function of time in Fig. 9a). Current increases when switching the gate voltage. 
Clearly, without time averaging the current [with the use of Eq. (3)], noise does not allow us to differentiate L1 
and L2. The question now is from which T we can affirm that we are able to distinguish both states. In Fig. 9d), 
we present the averaged current for the same device with an averaging time T = 0.5 ps. Now, noise allows us to 
distinguish between both states. We remark that the results presented here will not be obtained from an ensemble 
average over different experiments, since when an electron device is working in a real application, there is no 
interest in mean values of the current in different experiments, we are just interested on the time interval that the 
measurement equipment needs to clearly discern if our single electron device is in L1 or in L2. In more technical 
words, no ergodic argument can be invoked in the type of THz scenarios described here.

With this information, we can obtain the time averaged current and its associated noise (in the same way as 
it was done in Fig. 6) for both time intervals (before and after switching the gate voltage). Results are plotted in 
Fig. 10. Differently from Fig. 6, results are noisier for large averaging times. This is because in Fig. 6 we averaged 
the results through different simulations in order to see very clearly the noise values. In this case, since we are 
interested just in what occurs in one experiment, we did not make the averaging between different simulations 
and results are noisier. Even if this case is very different from the one studied in Fig. 6 (there was no applied bias 
and there were no gates in the previous studies), we can still recognize the two different scenarios, T << τ and 
T >> τ , and only the particular scenario depicted in Fig. 9d is acceptable. Therefore, as expected, all our previ-
ous predictions are still present in this realistic device. In summary, once we fix the amount of tolerable THz 
noise that our device application can accept, the lowest acceptable acquisition time (or the highest acceptable 
working frequency) is determined. Making measurements with a lower acquisition/integration time (or with a 
higher working frequency) to get a faster application would imply an intolerable THz noise.

(a) (b)

(c) (d)

Figure 9.   Time-dependent currents of the double-gate graphene transistor. (a) Instantaneous current (time-
averaged at the simulation step dt = 10

−16 s) and its mean value as a function of time. Fluctuations do not 
allow to distinguish between L1 and L2. The gray line shows the gate voltage as a function of time. (b) Averaged 
current through an averaging time T = 0.03 ps. Still, we cannot distinguish between both levels. (c) Averaged 
current through an averaging time T = 0.1 ps. Noise decreases, but still too high to distinguish both levels. (d) 
Averaged current through an averaging time T = 0.5 ps. Now, we can distinguish between both levels. This 
averaging time corresponds to the operating time shown in Fig. 10.
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Conclusions
One of the main interests for minimizing the size of electron devices is to perform applications working at higher 
and higher frequencies, until reaching THz working frequencies. Smaller transistors, in principle, imply to be 
able of working at higher frequencies since electrons need less time to travel through the device. How small can 
the active device region become? How high can be the associated working frequency? In this work, we see that, 
due to discreteness of charge, there is a new fundamental (noise) limit (apart from the transit time limit) for 
the strategy of reducing device dimensions looking for higher frequencies. We have demonstrated that we are 
technologically quite close to this limit. Because of the discrete nature of electrons, noise appears in the electri-
cal total current making impossible to distinguish between different current levels. Only when this current is 
time averaged we can distinguish between levels, but then the lower operating frequency is not longer related to 
the transit time. We remark that disruptive technologies based on innovative working principles, for example, 
those involving photonic manipulation of information51, may not be affected by this noise limit and could be 
used to overcome it.

As a byproduct of the present work, we also argue that dealing with the linear wave function solution of the 
Schrödinger equation (or its equivalent Dirac equation) is a valid strategy for steady-state quantum electron 
devices. However, for the simulation of high frequency ultra-small devices, a multi-time measurement process 
of the particle and displacement current have to be included in the modeling when looking for noise (time-
correlations). It is in this sense that we invoke the need for a second revolution for the electron device simula-
tors to provide the industry with reliable predictions about noise, AC, and transient properties of these new 
ultra-small quantum electron devices. The BITLLES simulator presented here is an excellent tool to study such 
high-frequency quantum scenarios. It is a great merit of this work to tackle the classical and quantum problem of 
the THz noise in ultra-small devices with the same fundamental language: electron trajectories. This fact greatly 
contributes to an easy understanding of the fundamental problem and its important practical consequences.

An application of the BITLLES simulator for a double gate GFET, defining the particle nature of electrons from 
a Bohmian trajectory and their wave nature from the bispinor solution of the time-dependent Dirac equation, 
confirms the predictions mentioned above about noise. There are two intrinsic and different limits for determin-
ing the maximum working frequency of ultra-small devices in digital applications. On the one hand, for low 
frequencies, the transit time limit is the one that established a maximum value for the working frequency. At 
higher frequencies, due to the device miniaturization and because of the discreteness of the few electrons being 
in the system, the noise limit cannot longer be neglected and it competes with the transit time limit. At high 
enough frequencies it can even overcome the transit time limit (see Fig. 3, where we plotted the ratio between 
both, the transit time and noise, working frequencies, as well as many data for different state-of-the-art laboratory 
prototypes and commercial transistors), and then it will represent the true and unavoidable fundamental limita-
tion to reach THz frequencies with ultra-small devices. For instance, new technologies going beyond CMOS are 
nowadays completely into the nanoscale regime. For that reason, we predict that some of these new prototypes 
where channel lengths are around tens of nanometers (such as ferroelectric field effect transistors52, carbon 
nanotubes53–55, nanowires56–58 or other laboratory prototypes59–61) can be completely adequate for DC applica-
tions, but will fail when trying to operate at THz frequencies. Such THz noise cannot be avoided in ultra-small 
devices because it is directly linked to the discrete nature of the few electrons present in the active region. The 
only way of overcoming this noise is enlarging the dimensions of the active device region to accommodate more 
electrons inside. But, this solution is contrary to the common scaling strategies for nanoscale devices. Finally, 
we notice that the plasmons in the contacts (as an additional source of THz noise) have not been considered in 

Figure 10.   Noise of the double-gate graphene transistor as a function of the averaging time T for the two time 
intervals of Fig. 9. We accept as tolerable noise a SNR equal to 11. See Ref.40. The applied source-drain voltage is 
VDS = 0.12V.
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this work. Therefore, the dramatic effect of this unexpected THz noise in limiting the real speed of ultra-small 
devices can be even worse than what we have predicted35.

Appendix
The equation of motion for individual electrons in quantum systems that are being con‑
tinuously measured.  In high-frequency scenarios, electrons in ultra-samll devices can be considered 
as a many-body quantum system being continuously measured. Most approaches for open quantum systems 
revolve around the reduced density matrix constructed by tracing out the degrees of freedom of the environ-
ment (or measuring apparatus)19. For Markovian evolutions, the Lindblad master equation20 preserves complete 
positivity21, but its connection to realistic practical scenarios and its extension beyond Markovian dynamics are 
still challenging21,62. Alternatively, inspired by spontaneous collapse theories63, stochastic Schrödinger equations 
(SSEs) unravel the reduced density matrix in non-Markovian systems22 in terms of states asigned to a particiular 
experiment. Continuous measurement theory based on SSE allows the definition of a wave function of the open 
system conditioned on one monitored value associated with the environment (or measuring apparatus)25,26,64,65. 
In practical applications, the non-hermitian Hamiltonians that govern such conditioned wave function can pro-
voke states of the SSE to lose their norm and therefore their statistical relevance19. It has been shown that link-
ing those (conditioned) wave functions at different times assigning them physical reality in the time-evolution 
of some property (beyond mere mathematical elements to properly reproduce ensemble values at one time) 
requires dealing with theories that allow a well-defiend description of some properties (here the electrical cur-
rent) even in the absence of measurement25,26,65.

Under the Bohmian theory, we can tackle this problem through the use of the conditional wave function66. 
Such a conditional wave function provides an unproblematic way of defining the wave function of a subsystem 
(i.e. open system), either from a computational or an interpretative points of view. By construction, within 
Bohmian mechanics, the conditional wave function is always a well-defined physical state for Markovian and 
non-Markovian open systems, with continuous or non-continuous measurements. In this work, we have used 
this simulation technique when dealing with quantum electron device simulations. Since this approach deals 
directly with the wave function as a guiding field of the trajectory, it provides a completely positive map for either 
Markovian or non-Markovian dynamics with an unproblematic physical interpretation of the wave function of 
the open system at different times (for more details, see28).

Application to electron devices governed by the Schrödinger equation.  The general expression of the equations of 
motion of such a conditional wave function is explained in Ref.27. Here we provide a brief summary. Let us con-
sider an isolated (closed) quantum system described by a full many-body state |�� solution of the unitary, time-
reversible, and linear Schrödinger equation. We decompose the total Hilbert space of N particles in two sets, one 
with the particle under study (a subset) and the other particles (b subset, which includes the apparatus particles) 
as Ĥ = Ĥa ⊗ Ĥb , with �r = {�ra, �rb} being �ra the position of the a-particle and �rb = {�r1, . . . , �ra−1, �ra+1, . . . , �rN } 
the position of all other particles.

It has been shown in Ref.27 that, for each experiment labeled by j, the conditional wave function ψ j
a can be 

computed, in general, from the following single-particle Schrödinger-like equation in physical space:

where Ĥ is the many-body Hamiltonian and its relation to Ha will be explained next. We define �rja[t] as the 
Bohmian trajectory of the a-particle and �rjb[t] represents the actual positions of the b particles. Let us notice that 
the relation between i�d��r|��/dt|�rjb[t] and i�dψ j

a/dt on the right and left sides of Eq. (20) is the following:

with the conditional imaginary potential iBa defined as:

where �vjk[t] = d�rjk[t]/dt is the Bohmian velocity of the k particle given by

where �Ja = �Im(�∗∇a�)/ma is the (ensemble value of the) current density with ma the mass of the a-th particle. 
Once we have defined Ba , the term Ha on the right hand side of Eq. (20) can be defined as:

(20)i�
d��r|��
dt

∣

∣

∣

�rjb[t]
= ��r|Ĥ|��|�rjb[t] ⇐⇒ i�

dψ
j
a

dt
= Haψ

j
a

(21)
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∣
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N
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∣
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∣

∣

∣
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∣
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dt

=
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,
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In general, Eq. (20) is non-linear because Ha in Eq. (24) depends on the wave function itself. In addition, the 
imaginary conditional potential iBa indicates that the evolution of the CWF can be non-unitary. Equation (20) 
includes any type of evolution for the conditional wave function (not only linear and unitary ones) and, in 
particular, it allows the description of irreversible dynamics in open system when a continuous measurement 
is performed, as required in this work. Obviously, the full wave function �(�ra, �rb, t) satisfies unitary and linear 
dynamics, with conservation of the total energy37.

The key computation for the practical application of our approach is the evaluation of Ha in Eq. (24), which 
allows us to determine an equation of motion for each conditional wave function. The calculation of ��r|Ĥ|�(t)� 
before conditioning depends on the full many-body wave function and it requires educated guesses27,37. The 
potential Ba , which contains many-body terms but it does not depend directly on Ĥ , will be approximated 
following Ref.27. Stochasticity is introduced in Eq. (20) through the term Ha which accounts for the effect of 
non-simulated degrees of freedom of the environment in each experiment and from the initial values defining 
the conditional wave function ψ j

a and it trajectory �rja[t].
As said in the text, in the case of the displacement current one of the authors showed recently that the meas-

urement of the displacement current in a quantum system can be considered as a type of weak measurement35. 
For that reason, we consider Ba ≡ 0 as a good estimation for the present scenario. In this work, with the BITLLES 
simulator, we are just computing the autocorrelation (noise) given by the electrons in the quantum system with-
out considering the contribution from the metallic contacts. For this reason, we have argued in the text that our 
dramatic predictions about the impossibility of ultra-small devices to work at THz devices is developed, in fact, 
for the best scenario for these ultra-small devices (when the additional noise of the contacts is neglected). The 
experimental noise results can be worst than what we have predicted here.

Application to electron devices governed by the Dirac equation.  Under the above approximation (weak measure-
ment, i.e., Ba ≡ 0 ), graphene dynamics are just given by the Dirac equation, and not by the usual Schrödinger 
one. The presence of the Dirac equation on the description of the dynamics of electrons in graphene is not due 
to any relativistic correction, but to the presence of a linear energy-momentum dispersion (in fact, the graphene 
Fermi velocity vf = 106 m/s is faster than the electron velocity in typical parabolic band materials, but still 
some orders of magnitude slower than the speed of light). Thus, the conditional wave function associated to the 
electron is no longer a scalar, but a bispinor. In particular, the initial bispinor is defined (located outside of the 
active region) as:

where �g (x, z, t) is a gaussian function with central momentum �kc = (kx,c , kz,c) , s = 1 ( s = −1 ) if the electron 
is in the CB (VB) and θ �kc = atan(kz,c/kx,c) . The wave packet can be considered as a Bohmian conditional wave 
function for the electron, a unique tool of Bohmian mechanics that allows to tackle the many-body and meas-
urement problems in a computationally efficient way27,28. The two components are solution of the mentioned 
Dirac equation:

where vf = 106 m/s is the mentioned Fermi velocity and V(x, z, t) is the electrostatic potential. �σ are the Pauli 
matrices:

Usually, in the literature, one finds σz as σy , however, since we defined the graphene plane as the XZ one, the 
notation here is different. From Eq. (27) we can obtain a continuity equation for the Dirac equation and then we 
can easily identify the Bohmian velocities of electrons as37

By time integrating Eq. (28) we can obtain the quantum Bohmian trajectories. The initial positions of the trajec-
tories must be distributed according to the modulus square of the initial wave function, i.e., satisfying the quan-
tum equilibrium hypothesis and thus certifying the same empirical results for ensemble values as the orthodox 
theory37,67. All this formalism was introduced in the BITLLES simulator in order to correctly model graphene and 
other linear band structure materials. Once the quantum trajectory of the a-electron is defined, the computation 
of the electrical current (the correlations and its contribution to the fluctuations) is done exactly as one routinely 
does for semi-classical simulations. It is a great merit of this work to tackle the classical and quantum problem of 
the THz noise in ultra-small devices with the same fundamental language: electron trajectories. This fact greatly 
contributes to an easy understanding of the fundamental problem and its important practical consequences.
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