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Abstract: Gut microbiota can contribute to the development and progression of non-alcoholic fatty
liver disease (NAFLD). In fact, some specific changes of gut microbiota are observed in patients in what
is called dysbiota. There has been a lot of investigation by using a variety of interventions, including
diet, showing the possibility to modify components of gastrointestinal dysbiota towards healthy and
multivariate microbiota to restore physiologic status. One of the main focuses has been dietary fiber
(DF), in which most of its variants are prebiotics. The highest effective treatment for NAFLD is, so
far, weight loss achieved by caloric restriction. DF supplementation with oligofructose facilitates
weight loss, enhances the production of beneficial metabolites, decreases some pathogenic bacteria
population by increasing Bifidobacteria, and has effects on intestinal barrier permeability. DF use has
been associated with improvement in diverse metabolic diseases, including NAFLD, by modifying
gut microbiota. Additionally, it has been shown that a higher insoluble fiber consumption (≥7.5 g/day)
revealed improvements in 3 different scores of liver fibrosis. Further research is needed, but given the
evidence available, it is reasonable to prescribe its consumption in early stages of NAFLD in order to
prevent disease progression.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is rapidly becoming one of the most important causes
of liver disease and its global prevalence is currently estimated at 24% [1]. The incidence of NAFLD
has grown worldwide, in parallel to the obesity pandemic. NAFLD is strongly associated with obesity
and other metabolic disorders such as type 2 diabetes (T2D) and dyslipidemia [2]. Along with these
comorbidities, the most common cause of death for these patients is cardiovascular disease (CVD) [3].
They also have a high risk of liver-related morbidity and mortality [1]. Around 20–30% of patients
with NAFLD will develop non-alcoholic steatohepatitis (NASH) that can lead to progressive liver
damage, cirrhosis, and hepatocellular carcinoma [4]. The pathogenesis of NAFLD has not been fully
elucidated. The most widely supported theory implicates insulin resistance as the key mechanism
with an alteration in hepatic lipid homeostasis, mitochondrial dysfunction, and lipotoxicity [5]. It is
well known that not only the liver plays a role, but also the pancreas, the stomach, the adipose tissue,
the muscle, and more interesting the intestines and their microbiota [4].

NAFLD diagnosis requires demonstration of hepatic steatosis by imaging or biopsy, exclusion
of significant alcohol consumption and other secondary causes, but liver biopsy remains as the gold
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standard for histological evaluation [6]. Currently, effective treatment for NASH is limited and drugs
potentially useful are not yet completely established. Lifestyle interventions are recommended and
mandatory by the American and European guidelines [3,6], while studies have shown that diet is one
of the most important and promising treatments leading to the prevention and reversal of fibrosis,
even in advanced stages [7,8]. What diet and whether the quantity is better than quality remains to be
the focus of study. Evidence suggests that lowering caloric intake by at least 30% or by approximately
750–1000 Kcal/day results in an improvement in insulin resistance and hepatic steatosis [9]; and 7–10%
of weight loss can lead to steatosis resolution and more importantly regression of fibrosis [6–8]. Even
though studies mention that a hypocaloric diet is the most important component beyond quality or
composition, a moderate restriction of carbohydrates and emphasis on high fiber and monounsaturated
fatty acids seem to be a reasonable option [5]. Fiber consumption may play an important role in
NAFLD, not only as a nutritional plan component that can help to lose weight but also as part of its
pathogenesis involving intestine microbiota.

2. Intestinal Microbiota

The gastrointestinal tract (GIT) microbiota is one of the most densely populated microbial
communities on earth [10,11]. It includes bacteria, fungi, viruses, and archaea, though the first
ones are the overwhelming majority [12]. Its distribution is heterogeneous, being the large intestine
the predominant location and the main site where the fermentation process occurs. The intestinal
microbiota has been described as a “virtual organ” due to the different functions it performs. These
include pathogenic defense, energy homeostasis, immune development, and an essential role in
physiologic digestive function [12,13].

The gut microbiota that deviates from the ‘healthy’ status in terms of diversity and functionality
is called dysbiotic. It has been associated with a lot of pathologies including inflammatory bowel
diseases, obesity and T2D [14,15]. Alterations in gastrointestinal microbiota lead to intestinal barrier
dysfunction through several mechanisms including a “leaky gut”. This happens when proteins
that are responsible for tight junctions such as claudins, zonulin, and occludin, are compromised by
changing its distribution and allowing a higher intestinal permeability to bacterial components [16–18].
These phenomena promote metabolic endotoxemia and contribute to the development of a chronic
low-grade inflammatory state in both the adipose tissue and the liver [19,20]. Moreover, the integrity of
the intestinal barrier could be disrupted by microbial metabolites such as ethanol, that has an increased
production in a dysbiotic gut ecosystem, and other volatile organic compounds, leading to further
greater liver injury in the setting of amplified hepatic fat accumulation [16]. Therefore, gut–liver axis
derangement such as gastrointestinal dysbiosis and production of inflammatory molecules, among
others lipopolysaccharide, might modulate the progression of NAFLD by promoting bacteria/bacterial
product translocation into portal circulation and activation of inflammation via toll-like receptors
signaling in hepatocytes [4,21].

The intestinal microbiota is different from host to host. Recent studies have identified gut microbes
associated with potential beneficial outcomes (e.g., Bifidobacterium, Lactobacillus, Faecalibacterium,
Roseburia, Ruminococcus, Bacteroides sp.) and potential harmful outcomes (e.g., Clostridium, Enterobacter,
Enterococcus sp.). The beneficial outcomes include anti-inflammatory effects in the gut and favorable
action in metabolic parameters [13]. Two studies [22,23] comparing NAFLD patients with healthy
controls found an increased abundance of the Lactobacillus genus, and a decrease in the family
Ruminococcaceae in NAFLD patients. Another study comparing NAFLD, NASH and healthy subjects
described a decreased percentage of Bacteroides in NASH patients [24]. Moreover, a study comparing
the microbiota composition in children with NASH vs. healthy and obese children found a gradual
rise in Proteobacteria [25]. Furthermore, a cross-sectional study comparing the gut microbiome of obese
and lean patients with or without NASH found that, in comparison with healthy subjects, lean NASH
patients showed abundance of Faecalibacterium, and Ruminococcus sp., while obese NASH patients were
enriched with Lactobacillus sp. More important, liver fibrosis ≥ F2 was associated with an increase of
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Lactobacillus sp. [26]. Interestingly, a study by Zhu based on the characterization of gut microbiomes in
NASH patients found a higher abundance of alcohol-producing bacteria when compared to obese or
healthy individuals with normal liver function. Specifically, Escherichia from the Proteobacteria phylum
was significantly elevated in NASH patients. This study also described an increased blood alcohol
concentration with the same pattern. This result suggests that microbes rich in ethanol-producing
(Bacteroides, Bifidobacterium, and Clostridium sp.) may be a risk factor in driving the disease progression
from obesity/NAFLD to NASH [27]. This theory is supported by other experimental and human
studies where bacteria such as Klebsiella pneumoniae and bacteria from the Lactobacillus genus, both
ethanol-producing bacteria, were involved in the pathogenesis of NAFLD [28,29].

To sum up, some diseases can modify gut microbiota, but its shaping is also influenced by many
other factors and characteristics such as age, genetics, medications and, more relevant, diet. There has
been a lot of investigation about how a variety of interventions, including nutritional plan, can affect
and modify components of gut microbiota and have subsequent consequences for health status. One
of the main focuses has been dietary fiber (DF) [10,11,13].

3. Dietary Fiber and Prebiotics

A variety of definitions of DF have been promulgated by scientific and regulatory agencies
worldwide. The EU regulation on the provision of food information to consumers [30] defines fiber as
“carbohydrate polymers with three or more monomeric units, which are neither digested nor absorbed
in the human small intestine. DF has been categorized as follow: (i) edible carbohydrate polymers
naturally occurring in the food as consumed, (ii) edible carbohydrate polymers obtained from food
raw material by physical, enzymatic or chemical means and which have a beneficial physiological
effect demonstrated by generally accepted scientific evidence, and (iii) edible synthetic carbohydrate
polymers which have a beneficial physiological effect demonstrated by generally accepted scientific
evidence”. DF represents the major non-digestible component in most diets and it exerts a physiological
influence throughout the digestive tract from the modulation of digestion processes to acting as a
prime substrate for microbial fermentation [12]. Particle size and shape, viscosity, as well as extent/rate
of fermentation can significantly affect these different functions in the GIT [11].

There are a lot of classifications of DF. The most common one for human nutrition divides it
into two subgroups based on its solubility in water: soluble vs. insoluble [12]. Although the World
Health Organization (WHO) in 1998 proposed to no longer use this classification [30], it is useful as a
predictor of its water-holding capacity, viscosity and degree of fermentation by GIT bacteria from a
physicochemical point of view. Insoluble fibers such as cellulose usually found in bran, legumes, and
nuts are generally poorly fermented by intestinal microbiota, but they boost gut transit rate and reduce
the amount of time available for colonic bacterial fermentation of undigested foodstuff. On the other
side, soluble fibers such as pectin and xyloglucans are highly fermentable and can be located in whole
grains (e.g., oats and barley [β-glucan]) and fruits (e.g., apples [pectin]). Inulin, resistant maltodextrins,
resistant starch, polydextrose and soluble corn fiber are others soluble DF that are readily fermented
by gastrointestinal microbiota [11,12,16]. This fermentation process is one of the main benefits of
DF, modulating intestinal microbiota, affecting its diversity and function and the by-products of the
process itself [12]. In addition, the degradation of prebiotics provides short-chain fatty acids that fulfill
a protective role for colonocytes helping to maintain the proper structure and function of the intestinal
barrier [16].

Interestingly, some DFs are prebiotics. Prebiotics are a group of nutrients that are degraded by
gut microbiota. The exact definition has changed over the time and in 2010 it included a focus on its
functionality: “a selectively fermented ingredient that results in specific changes in the composition
and/or activity of the gastrointestinal microbiota, thus conferring benefits upon host health” [31].
There are many types of prebiotics, the most important ones are fructooligosaccharides (FOS) and
galactooligosaccharides (GOS). The majority of them can be classified as DF but not all fibers can be
listed as prebiotic. They naturally exist in different dietary food products, including asparagus, garlic,
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onion, Jerusalem artichoke, wheat, honey, banana, tomato, soybean, human and cow’s milk, peas,
beans, among others [11,17,31]. Moreover, nowadays they have been added as ingredients to many
common food products such as bread and breakfast cereal [32].

Prebiotics have different well-known favorable outcomes. Production of beneficial metabolites
(inulin, oligofructose), augmentation of calcium absorption (inulin, oligofructose, GOS), improvement
in allergy risk (FOS/GOS), enhancement of the immune system (oligofructose), effects on gut barrier
permeability (oligofructose), and decline in pathogenic bacteria population by expanding Bifidobacteria
(inulin, oligofructose, GOS) are some of the most known benefits [17].

Several studies have found a relation between DF and prebiotic intake and a growing variety of
health-beneficial bacteria. A high-fiber diet enlarges the abundance of Bifidobacterium and reduces the
ratio of Firmicutes/Bacteroidetes in humans and experimental animals [13]. A randomized control
trial (RCT) comparing the effects of a high fiber diet vs. calorie restricted diet in the modulation of gut
microbiome dysbioses in T2D patients found a higher fecal abundance of several beneficial microbiota
such as Roseburia sp., Fecalibacterium sp., and Bacteroides sp. in both groups. On the other hand,
the fiber-rich diet group had a decreased of pro-inflammatory bacteria, specifically of Collinsella and
Streptococcus sp. [33]. Furthermore, a dietary intervention comparing the effects of a diet enriched with
two different types of fiber-arabinoxylan and resistant starch type 2- and a low fiber diet found a greater
abundance of Bifidobacterium sp. and lowered microbial diversity in the fiber supplemented group [34].
Moreover, RCTs have proved that in healthy adults the consumption of GOS—1.5 to 10 g/day- for up to
12 weeks rose the fecal level of Bifidobacterium [11,13]. Other studies have shown that supplementation
with GOS, inulin, and oligofructose has resulted in an abundance of Bifidobacterium, Lactobacillus, and
Faecalibacterium sp. [13] (Table 1).

Table 1. Potential beneficial gut microbiota changes according to modulations of dietary fiber and/or
prebiotics [11,13].

Type of Diet, Fiber, and/or
Prebiotic Potential Beneficial Microbiota Changes Type of Studies

High fiber diet

Increase in Bifidobacterium, Prevotella,
Lactobacillus, Faecalibacterium, Roseburia,

Bacteroides sp. Decrease in Collinsella and
Streptococcus sp.

Cross-sectional, RCT

Resistant starch (type 4) Increase in Bifidobacterium sp. Decrease in
Firmicutes phylum

Cross-sectional

Resistant starch (type 3)
Increase in Bifidobacterium sp.,

Ruminococcus (R. bromii) and Eubacterium
(E. rectal)

Resistant starch (type 2) Increase in Bifidobacterium, Ruminococcus
(R. bromii) and Eubacterium (E. rectal)

Arabinogalactan and
Arabinoxylan

Increase in Bifidobacterium, Bacteroides (B.
ovatus), Lactobacillus, Coprococcus and

Lachnoclostridium sp.
RCT, cross-sectional and in vitro

Galactooligosaccharides
Increase in Bifidobacterium, Bacteroides and

Lactobacillus sp. Decrease in
Clostridium sp.

RCTs and in vitro

Inulin
Increase in Bifidobacterium and
Faecalibacterium sp. Decrease in

Enterococcus sp.
RCTs and in vitro

Oligofructose Increase in Bifidobacterium sp. RCT

RCT: randomized control trial.
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4. Dietary Fiber and NAFLD

The health impact of DF, and more recently prebiotics, has been extensively reviewed and accepted
worldwide. As mentioned before, they have been linked to different beneficial outcomes [17]. More
recently, their use has been associated with the enhancement in diverse metabolic diseases, including
NAFLD [35].

As previously described, the most effective treatment for NAFLD is weight loss achieved by
caloric restriction [8]. It is known that fiber supplementation reduces the frequency of eating by
intensifying satiety through the stimulation of the anorexigenic hormones and suppression of the
orexigenic hormone ghrelin. This beneficial effect, in addition to its low energy density, has linked
them to weight reduction [36,37]. A randomized control trial (RCT) showed that, independent of other
lifestyle changes, fiber supplementation with oligofructose has the potential to promote weight loss
and improve glucose regulation in overweight adults compared to placebo [37].

In addition, some prebiotics such as inulin have been associated with reduced body weight
or attenuated weight gain [36,38]. Beyond weight loss, animal studies suggest that dietary
supplementation with prebiotic can have a positive effect on NAFLD by modifying gut microbiota,
reducing body fat, and bettering glucose regulation [35]. In humans, an RCT found that increased fiber
intake (soluble and insoluble), from 19 g/day to the 29 g/day, reduced serum zonulin concentration,
decreased liver enzymatic activity, and enhanced hepatic steatosis in patients with NAFLD, possibly by
modifying intestinal permeability [16]. In addition, a recent study established a relationship between
the degree of liver fibrosis measured by non-invasive assessments and fiber intake. This study found
that a higher insoluble fiber consumption (≥7.5 g/day) showed improvements in three different scores
of liver fibrosis (fatty liver index, hepatic steatosis index, and NAFLD liver fat score), while significant
amelioration in hepatic enzymes were observed as a result of fruit fiber consumption (≥8.8 g/day) [39].
Furthermore, a 12-week comparison between a commercially available formula diet supplemented with
oats fibers versus a comparably restricted nutritional program found that both dietetic interventions
were similarly effective regarding weight loss, but the diet supplemented with oats fibers was more
efficient regarding the reduction of intrahepatic lipid content detected by hepatorenal index [40]. Other
smaller studies and reviews, both in animals and humans, have found a positive association between a
specific DF and NAFLD [41–43] (Table 2). High food fibers that are recommended and discouraged in
NAFLD are shown in Table 3.

A “high-quality healthy diet” has been proposed to improve hepatic steatosis and metabolic
dysfunction in patients with NAFLD, independent of caloric restriction and weight loss [44].
This nutritional program is supported by the idea that lower fiber intake is common in NAFLD [44,45]
and is based on moderate to high carbohydrates intake (45–65% of total daily calories), low to moderate
fat intake (below 30–35% of total calories with a high preference for healthy fat intake—monounsaturated
fatty acids and omega-3 polyunsaturated fatty acids), protein intake (15–20% of total daily calories)
and fiber intake increasing the consumption of fruits and vegetables, with more focus on prebiotic
fiber. However, a high, fructose-rich diet in the form of added sugar is associated with more intestinal
permeability, endotoxemia, higher hepatic TNF-α production, and lipid peroxidation, promoting
hepatic steatosis and NAFLD [46].

This diet overlaps with the Mediterranean Diet (MD), which is the most recommended
dietary pattern in NAFLD. Currently, clinical guidelines also recommend MD as the nutritional
program of choice for NAFLD treatment [6]. In crossover comparisons between MD and a
low-fat, high-carbohydrate diet, even without weight loss, MD reduces liver steatosis (assessed
by magnetic resonance imaging) and improves insulin sensitivity in an insulin-resistant population
with biopsy-proven NAFLD [47]. In different subgroups of the PREDIMED trial [48], an RCT aimed at
evaluating the effect of MD on the primary prevention of CVD, supplemented with extra-virgin olive
oils or nuts, it was found a reduced prevalence of hepatic steatosis and a delay in the progression of
NAFLD [49].
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Table 2. Published studies evaluating fiber consumption and NAFLD.

Author/Year Type of Study Dose, Treatment, and
Follow Up. Results

Daubioul et al., 2005 [35] Randomized
cross-sectional study

Daily ingestion of 16 g of
oligofructose or
maltodextrin (placebo) in
biopsy-proven NASH
patients for 8 weeks

Improvement in hepatic
enzymes and insulin
levels in NASH patients
receiving a dietary
supplementation with
dietary fructans

Rocha et al., 2007 [50] Cross-sectional study

Daily ingestion of 10 g of
soluble fibers in patients
with NAFLD during
3 months

After fiber
supplementation, 75% of
the patients presented
normal liver enzymes

Bozzetto et al., 2012 [51] RCT

Effects of qualitative dietary
changes and exercise
(CHO/fiber vs. MUFA diet)
in obese/overweight patients
with T2D during 8 weeks

Liver fat content
decreased more in MUFA
diets groups. High-fiber,
low-glycemic index diet
did not influence liver
fat content

Cantero et al., 2017 [39] RCT

Influence of two energy
restricted diets (AHA diet vs.
RESMENA diet) on
non-invasive markers and
scores of liver damage in
obese patients for 6 months

In both dietary strategies,
increased insoluble fiber
consumption (≥7.5
g/day) showed
improvements in 3
different scores of liver
fibrosis (fatty liver index,
hepatic steatosis index,
and NAFLD liver
fat score)

Krawczyk et al., 2018 [16] RCT

Increased fiber intake from
19 g/day to the 29 g/day
(soluble and insoluble) in
patients with NAFLD for
6 months

Significant
improvements in hepatic
enzymes and of fatty
liver status according to
the Hamaguchi score.
Decreased Zonulin
concentration by nearly
90% and correlated with
the amount of dietary
fiber intake as well as the
degree of fatty liver

Schweinlin et al., 2018
[40] RCT

Comparison of a
formula-based nutritional
therapy enriched with oats
fiber with a non-formula
isocaloric therapy in obese
patients for 12 weeks

Diet supplemented with
oats fibers was more
effective regarding the
reduction of intrahepatic
lipid content detected by
hepatorenal index
(1.1 ± 0.2 vs. 1.9 ± 0.3,
p < 0.05)

RCT: randomized control trial, NASH: non-alcoholic steatohepatitis, NAFLD: non-alcoholic fatty liver disease, AHA:
American Heart Association, RESMENA: Reduction of Metabolic Syndrome in Navarra, T2D: type 2 diabetes, CHO:
carbohydrates, MUFA: monounsaturated fatty acids.

Table 3. High food fibers that are recommended and discouraged in NAFLD.

Less
Recommended Most Recommended

Corn Onion Tomato
Rice Cereals Soybean

Soft drinks Garlic Oat and barley
Fruit juices Leeks Seed plants

Honey Asparagus Wheat
Syrup Mushrooms Jerusalem artichoke
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5. Conclusions

Fiber intake positively influences NAFLD not only by promoting reduced calorie intake, but also
by stimulating a healthy gut microbiota, therefore reducing the development of inflammation and
liver injury. However, to date, no study has found regression of a more advanced stage of NAFLD,
such as fibrosis, in patients with high intake of fiber or prebiotic supplementation. Further research is
needed, but given the evidence it is reasonable to indicate its consumption in early stages of NAFLD in
order to prevent disease progression.
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