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Abstract

The development of increasingly sophisticated methods to acquire high-resolution images

has led to the generation of large collections of biomedical imaging data, including images of

tissues and organs. Many of the current machine learning methods that aim to extract bio-

logical knowledge from histopathological images require several data preprocessing stages,

creating an overhead before the proper analysis. Here we present PyHIST (https://github.

com/manuel-munoz-aguirre/PyHIST), an easy-to-use, open source whole slide histological

image tissue segmentation and preprocessing command-line tool aimed at tile generation

for machine learning applications. From a given input image, the PyHIST pipeline i) option-

ally rescales the image to a different resolution, ii) produces a mask for the input image

which separates the background from the tissue, and iii) generates individual image tiles

with tissue content.

Author summary

Histopathology images are an essential tool to assess and quantify tissue composition and

its relationship to disease. The digitization of slides and the decreasing costs of computa-

tion and data storage have fueled the development of new computational methods, espe-

cially in the field of machine learning. These methods seek to make use of the

histopathological patterns encoded in these slides with the aim of aiding clinicians in

healthcare decision-making, as well as researchers in tissue biology. However, in order to

prepare digital slides for usage in machine learning applications, researchers usually need

to develop custom scripts from scratch in order to reshape the image data in a way that is

suitable to train a model, slowing down the development process. With PyHIST, we pro-

vide a toolbox for researchers that work in the intersection of machine learning, biology

and histology to effortlessly preprocess whole slide images into image tiles in a standard-

ized manner for usage in external applications.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008349 October 19, 2020 1 / 9

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Muñoz-Aguirre M, Ntasis VF, Rojas S,
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Introduction

In histopathology, Whole Slide Images (WSI) are high-resolution images of tissue sections

obtained by scanning conventional glass slides [1]. Currently, these glass slides of fixed tissue

samples are the preferred method in pathology laboratories around the world to make clinical

diagnoses [2], notably in cancer [3]. However, the increasing automation of WSI acquisition

has led to the development of computational methods to process the images with the goal of

helping clinicians and pathologists in diagnosis and disease classification [4]. As an increasing

number of larger WSI datasets became available, methods have been developed for a wide

array of tasks, such as the classification of breast cancer metastases, Gleason scoring for pros-

tate cancer, tumor segmentation, nuclei detection and segmentation, bladder cancer diagnosis,

mutated gene prediction, among others [5–10]. Besides of being important diagnostic tools,

histopathological images capture endophenotypes (of organs and tissues) that, when correlated

with molecular and cellular data on the one hand, and higher-order phenotypic traits on the

other, can provide crucial information on the biological pathways that mediate between the

sequence of the genome and the biological traits of the organisms (including diseases) [11].

Because of the complexity of the information typically contained in WSIs, Machine Learn-

ing (ML) methods that can infer, without prior assumptions, the relevant features that they

encode are becoming the preferred analytical tools [12]. These features may be clinically rele-

vant but challenging to spot even for expert pathologists, and thus, ML methods can prove

valuable in healthcare decision-making [13].

In most ML tasks, data preprocessing remains a fundamental step. Indeed, in the domain of

histological images, there are several issues when preprocessing the data before an analysis:

due to the large dimensions of WSIs, many deep learning applications have to break them

down into smaller-sized square pieces called tiles [14]. Furthermore, a significant fraction of

the area in a WSI is often uninformative background that is not meaningful for the majority of

downstream analyses. To circumvent this, some applications apply a series of image transfor-

mations to identify the foreground from the background (see, for example, [15]), and perform

relevant operations only over regions with tissue content. However, this process is not stan-

dardized, and customized scripts have to be frequently developed to deal with data preparation

stages (see, for example [10,15]). This is cumbersome and may introduce dataset specific-

biases, which can prevent integration across multiple datasets.

Currently available tools for WSI processing focus mostly on the analysis of human-inter-

pretable features by means of nuclei segmentation, object quantification and region-of-interest

annotation [16–18]; but WSI preparation into tiles for external ML applications has not yet

been directly addressed. To systematize the WSI preprocessing procedure for these applica-

tions, and in order to streamline the data preparation stage at the initial phase of a ML project

by avoiding the need of creating custom image preprocessing scripts, we developed PyHIST, a

command-line based pipeline to segment the regions of a histological image into tiles with rel-

evant tissue content (foreground) with little user intervention. PyHIST was developed to pro-

cess Aperio SVS/TIFF WSIs due to this format being supported by large slide databases such

as The Cancer Genome Atlas (TCGA) which has approximately 31,000 WSIs [19] and The

Genotype-Tissue Expression Project (GTEx) with approximately 25,000 WSIs [20]. PyHIST

currently has experimental support for other image formats (see S1 Text).
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Design and implementation

PyHIST is a command-line Python tool based on OpenSlide [21], a library to read high-resolu-

tion histological images in a memory-efficient way. PyHIST’s input is a WSI encoded in SVS

format (Fig 1A), and the main output is a series of image tiles retrieved from regions with tis-

sue content (Fig 1E).

The PyHIST pipeline involves three main steps: 1) produce a mask for the input WSI that

differentiates the tissue from the background, 2) create a grid of tiles on top of the mask, evalu-

ate each tile to see if it meets the minimum content threshold to be considered as foreground

and 3) extract the selected tiles from the input WSI at the requested resolution. By default,

PyHIST uses a graph-based segmentation method to produce the mask. In this method, first,

tissue edges inside the WSI are identified using a Canny edge detector (Fig 1B), generating an

alternative version of the image with diminished noise and an enhanced distinction between

the background and the tissue foreground. Second, these edges are processed by a graph-based

segmentation algorithm [22], which is used here to identify tissue content. In short, this step

evaluates the boundaries between different regions of an image as defined by the edges;

Fig 1. PyHIST pipeline. (a) The input to the pipeline is a Whole Slide Image (WSI). Within PyHIST, the user can decide to scale down the

image to perform the segmentation and tile extraction at lower resolutions. The WSI shown is of a skin tissue sample (GTEX-1117F-0126) from

the Genotype-Tissue Expression (GTEx) project [20]. (b) An alternative version of the input image is generated, where the tissue edges are

highlighted using a Canny edge detector. A graph segmentation algorithm is employed over this image in order to generate the mask shown in

(c). PyHIST extracts tiles of specific dimensions from the masked regions, and provides an overview image to inspect the output of the

segmentation and masking procedure, as shown in (d), where the red lines indicate the grid generated by tiling the image at user-specified tile

dimensions, while the blue crosses indicate the selected tiles meeting a certain user-specified threshold of tissue content with respect to the total

area of the tile. In (e), examples of selected tiles are shown.

https://doi.org/10.1371/journal.pcbi.1008349.g001
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different parts of the image are represented as connected components of a graph, and the

"within" and "in-between" variations of neighboring components are assessed in order to

decide if the examined image regions should be merged or not into a single component. From

this, a mask is obtained in which the background and the different tissue slices are separated

and marked as distinct objects using different colors (Fig 1C). Finally, the mask is divided into

a tile grid with a user-specified tile size. These tiles are then assessed to see if they meet a mini-

mum foreground (tissue) threshold with respect to the total area of the tile, in which case they

are kept, and otherwise are discarded. Optionally, the user can also decide to save all the tiles

in the image.

Of note, tile generation can be performed at the native resolution of the WSI, but downsam-

pling factors can also be specified to generate tiles at lower resolutions. Additionally, edge

detection and mask generation can also be performed on downsampled versions of WSIs—

reducing segmentation runtimes (S1 Fig, S1 Text). A segmentation overview image is gener-

ated at the end of the segmentation procedure for the user to visually inspect the selected tiles

(Fig 1D). With the set of parameters available in PyHIST (S2 Text), the user can specify regions

to ignore when performing the masking and segmentation (S2 Fig), and have a fine-grained

control over specific use-cases.

By default, PyHIST uses the graph-based segmentation method described previously due to

its robustness in detecting tissue foreground in WSIs that do not have a homogeneous compo-

sition. However, alternative tile-generation methods based on thresholding that tend to work

well on heterogeneous WSIs are also implemented (S3–S5 Figs, see S1 Text for details and

benchmarking information). PyHIST also has a random tile sampling mode for those applica-

tions that do not necessarily need to distinguish the background from the foreground. In this

mode, tiles at a user-specified size and resolution will be extracted from random starting posi-

tions in the WSI.

Results

To demonstrate how PyHIST can be used to preprocess WSIs for usage in a ML application,

we generated a use case example with the goal of building a classifier at the tile-level that allows

us to determine the cancer-affected tissue of origin based on the histological patterns encoded

in these tiles. To this end, we first retrieved a total of 36 publicly available WSIs, six from each

of the following human tissues hosted in The Cancer Genome Atlas (TCGA) [23]: Brain (glio-

blastoma), Breast (infiltrating ductal carcinoma), Colon (adenocarcinoma), Kidney (clear cell

carcinoma), Liver (hepatocellular carcinoma), and Skin (malignant melanoma). Slides within

each tissue have the same cancer primary diagnosis as established by TCGA. Second, these

WSIs were preprocessed with PyHIST, generating a total of 7163 tiles with dimensions

512x512. These tiles were then partitioned into training and test sets (constraining all the tiles

of a given WSI to be in only one of the two sets), and we then fit a deep learning convolutional

neural network model over these tiles with weighted sampling at training time (S6 Fig), achiev-

ing a classification accuracy of 95% (Fig 2A, S1 Table, S2 Table, see S3 Text for data prepara-

tion and model details, and a detailed assessment of Fig 2A).

We also inspected the feature vectors generated by the deep learning model: for each tile,

we retrieved the features corresponding to the linear layer of the last (fully connected) sequen-

tial container of the model, and performed dimensionality reduction (t-SNE) over the stacked

matrix of these vectors. From here, we infer that the learned features recapitulate tissue mor-

phology since tile clusters corresponding to each tissue are formed (Fig 2B, S7 Fig). We note

that this classifier is only an exercise to show end-users how to quickly prepare WSI data using

PyHIST to generate tiles, reducing the overhead to start performing downstream analyses:
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further tuning of the model with more data is desirable to ensure that the classifier is robust

enough to generalize to different types of unseen WSIs for a real application.

Availability and future directions

The example use case described above is documented and fully available at https://pyhist.

readthedocs.io/en/latest/testcase/, and divided into three Jupyter notebooks: 1) Data prepro-

cessing with PyHIST, 2) Constructing a deep learning tissue classifier, and 3) Dimensionality

reduction. The TCGA WSIs in the use case were downloaded from the Genomic Data Com-

mons (GDC) repository (https://gdc.cancer.gov/) using the GDC Data-transfer tool (https://

gdc.cancer.gov/access-data/gdc-data-transfer-tool).

PyHIST is a generic tool to segment histological images automatically: it allows for easy and

rapid WSI cleaning and preprocessing with minimal effort to generate image tiles geared

towards usage in ML analyses. The tool is available at https://github.com/manuel-munoz-

aguirre/PyHIST and released under a GPL license. Updated documentation and a tutorial can

be found at https://pyhist.readthedocs.io/. PyHIST is highly customizable, enabling the user to

tune the segmentation process in order to suit the needs of any particular application that

relies on histological image tiles. The software and all of its dependencies have been packaged

in a Docker image, ensuring portability across different systems. PyHIST can also be used

locally within a regular computing environment with minimal requirements. Future directions

and improvements include adding support for more histological image formats and features to

save tiles into specialized data structures, as well as the inclusion of a graphical user interface

to ease the learning curve for users who are new to the field of image processing for ML analy-

ses. Finally, PyHIST is open source software: all the code and reproducible notebooks for the

example use case are available in GitHub and will continue to be improved based on user

feedback.

Supporting information

S1 Text. PyHIST overview. General description of the pipeline: supported file formats, tile

generation methods, and execution times.

(PDF)

S2 Text. Parameter description. Description of supported arguments in PyHIST.

(PDF)

S3 Text. TCGA tissue classification use case. Description of data preprocessing, model train-

ing and analysis for the TCGA tissue classification use case.

(PDF)

S1 Fig. WSI scaling steps in PyHIST. (a) WSI at its original resolution (1x). (b) The mask can

be generated and processed at a given downsampling factor. A smaller resolution will lead to a

faster segmentation. (c) The output can be requested at a given downsampling factor. (d) The

segmentation overview image can also be generated at a given downsampling factor. The

dimensions in all steps are matched to ensure that the tile sizes and grid are consistent. The

Fig 2. TCGA use case. (a) Examples of the top 5 most accurately predicted tiles per cancer-affected tissue (rows) from the

TCGA use case test set. The label above each tile shows the predicted cancer-affected tissue type (GB: glioblastoma, DC:

infiltrating ductal carcinoma, AC: adenocarcinoma, CC: clear cell carcinoma, HC: hepatocellular carcinoma, MM:

malignant melanoma), followed by the probability of the ground truth label. All of these tiles were correctly classified. (b)

Dimensionality reduction of TCGA tiles. t-SNE performed with the feature vectors of each tile that were derived from the

deep learning classifier model. Each dot corresponds to an image tile.

https://doi.org/10.1371/journal.pcbi.1008349.g002
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downsampling choices for all the steps are independent of each other.

(PNG)

S2 Fig. Image in graph-based segmentation test mode. Test mode allows the user to see how

the image mask will be with the chosen segmentation parameters and tile dimension configu-

ration, before proceeding to generate the individual tile files. The black border defines the

region of exclusion for tissue content placed within the edges of the slide (see—borders and—

corners arguments, and section 2.2 in S2 Text).

(PNG)

S3 Fig. Comparison of mask generation methods. (a) Adipose tissue WSI from the GTEx

project, from sample GTEX-111CU-1826. Thresholding-based masks (b-d) are generated by

first converting (a) into grayscale and then applying the corresponding thresholding method.

Note that simple thresholding is shown here for completeness but only Otsu and adaptive are

implemented in PyHIST due to their overall better performance when compared to simple

thresholding. In the graph-based method, an image with highlighted edges is first generated

through a Canny edge detector (e, left) and then the connected components are labeled

through graph-based segmentation (e, right).

(PNG)

S4 Fig. Runtime benchmarks for random sampling and graph-based segmentation. (a) Exe-

cution time to perform random sampling (y-axis) of a varying number of tiles (x-axis) at differ-

ent downsampling factors for the WSI shown in S1 Fig. For each combination of number of

tiles and downsampling factor, the sampling was repeated 30 times. Each dot represents the

average running time across the 30 runs, while the interval shows the range between the maxi-

mal and minimal running time. (b) Execution time to perform random sampling of 1000 tiles

(y-axis) at different tile dimensions (x-axis) at different downsampling factors for the same WSI

in (a). Each combination was repeated 50 times, with each dot showing the average runtime. (c)

Segmentation runtime of 50 Stomach WSIs from the GTEx project, at different downsampling

factors, at a tile size of 256x256. Each dot represents the average execution time. Each interval

shows the range between the fastest and slowest segmentations, while the labels show the

dimensions of the corresponding WSIs. (d) Segmentation runtime (y-axis) at 1x resolution for

the 50 Stomach WSIs, with respect to the number of pixels in the WSI (x-axis).

(PNG)

S5 Fig. Runtime comparison of mask-generating methods. Tile extraction was evaluated for

the three different methods at four different settings of tile size. Each method + tile size combi-

nation was repeated ten times to show runtime variability.

(PNG)

S6 Fig. Tile distribution per class in a training epoch in the TCGA example use case.

Within each training epoch, weighted random sampling is performed to create batches with a

fair distribution of tiles among the classes. Even if the sample sizes in the training dataset are

different among the classes, the balance in the number of tiles per epoch is obtained through

data augmentation.

(PNG)

S7 Fig. Correlation matrix of TCGA tiles based on their feature vectors. Heatmap of Pear-

son’s correlation matrix between the feature vectors obtained for each TCGA tile. Rows and

columns are reordered with hierarchical agglomerative clustering.

(PNG)
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S1 Table. Tile distribution across classes in the TCGA use case training and test sets.

(PNG)

S2 Table. Confusion matrix for the tiles in the test set of the TCGA use case.

(PNG)
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